pytorch/torch/nn/qat/modules/embedding_ops.py
Ben Koopman a58ff186e8 [quant][embedding qat] Add basic EmbeddingBag QAT fakeQuant workflow (#65443)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/65443

Test Plan: Imported from OSS

Reviewed By: dagitses, supriyar

Differential Revision: D31456445

Pulled By: b-koopman

fbshipit-source-id: 0edda6e272d9005fce65f2ba6a5e6abc831836de
2021-10-07 20:19:29 -07:00

71 lines
3.4 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
class EmbeddingBag(nn.EmbeddingBag):
r"""
An embedding bag module attached with FakeQuantize modules for weight,
used for quantization aware training.
We adopt the same interface as `torch.nn.EmbeddingBag`, please see
https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html#torch.nn.EmbeddingBag
for documentation.
Similar to `torch.nn.EmbeddingBag`, with FakeQuantize modules initialized to
default.
Attributes:
weight: fake quant module for weight
"""
_FLOAT_MODULE = nn.EmbeddingBag
def __init__(self, num_embeddings, embedding_dim, max_norm=None, norm_type=2.0,
scale_grad_by_freq=False, mode='mean', sparse=False, _weight=None,
include_last_offset=False, padding_idx=None, qconfig=None, device=None,
dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__(num_embeddings, embedding_dim, max_norm, norm_type,
scale_grad_by_freq, mode, sparse, _weight,
include_last_offset, padding_idx, **factory_kwargs)
assert qconfig, 'qconfig must be provided for QAT module'
assert qconfig.weight().qscheme == torch.per_channel_affine_float_qparams, \
'Embedding Bag weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \
str(qconfig.weight().qscheme)
self.qconfig = qconfig
self.weight_fake_quant = qconfig.weight(factory_kwargs=factory_kwargs)
def forward(self, input):
return F.embedding_bag(input, self.weight_fake_quant(self.weight))
@classmethod
def from_float(cls, mod):
r"""Create a qat module from a float module
Args: `mod` a float module, either produced by torch.quantization utilities
or directly from user
"""
assert type(mod) == cls._FLOAT_MODULE, ' qat.' + cls.__name__ + '.from_float only works for ' + \
cls._FLOAT_MODULE.__name__
assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
assert mod.qconfig, 'Input float module must have a valid qconfig'
assert mod.qconfig.weight().qscheme == torch.per_channel_affine_float_qparams, \
'Embedding Bag weights requires a qscheme of torch.per_channel_affine_float_qparams Got ' + \
mod.qconfig.weight().qscheme.__name__
qconfig = mod.qconfig
qat_embedding_bag = cls(mod.num_embeddings, mod.embedding_dim, mod.max_norm, mod.norm_type,
mod.scale_grad_by_freq, mod.mode, mod.sparse, mod.weight,
mod.include_last_offset, mod.padding_idx, qconfig=qconfig)
qat_embedding_bag.weight = mod.weight
return qat_embedding_bag
def to_float(self):
embedding_bag = torch.nn.EmbeddingBag(self.num_embeddings, self.embedding_dim, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.mode, self.sparse,
None, self.include_last_offset, self.padding_idx,
self.device, self.dtype)
embedding_bag.weight = torch.nn.Parameter(self.weight.detach())
embedding_bag.train(self.training)
return embedding_bag