pytorch/torch/ao/quantization/quantize_fx.py
Zafar 0d020effab [quant] Fix the parts that were missing after initial migration (#66058)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66058

After the initial migration from `torch.quantization` to `torch.ao.quantization`, some of the files did not change.
This happened because the migration was done in parallel, and some of the files were landed while the others were still in the original location.
This is the last fix in the AO migration phase 1, which completely enables the ao.quantization namespace.

Test Plan: `python test/test_quantization.py`

Reviewed By: vkuzo

Differential Revision: D31366066

Pulled By: z-a-f

fbshipit-source-id: bf4a74885be89d098df2d87e685795a2a64026c5
2021-10-05 11:45:37 -07:00

580 lines
24 KiB
Python

import torch
from torch.fx import GraphModule
from torch.fx._symbolic_trace import Tracer
from torch.fx.node import Target, Node, Argument
from .fx import Fuser # noqa: F401
from .fx import prepare, convert # noqa: F401
from .fx import get_fbgemm_backend_config_dict # noqa: F401
from .fx import get_tensorrt_backend_config_dict # noqa: F401
from .fx.utils import graph_pretty_str # noqa: F401
from .fx.utils import get_custom_module_class_keys # noqa: F401
from .fx.graph_module import ObservedGraphModule, QuantizedGraphModule
from .fx.qconfig_utils import (
check_is_valid_convert_custom_config_dict,
check_is_valid_fuse_custom_config_dict,
check_is_valid_prepare_custom_config_dict,
check_is_valid_qconfig_dict)
from torch.nn.intrinsic import _FusedModule
from typing import Dict, Any, List, Callable, Tuple, Optional, Set
def _check_is_graph_module(model: torch.nn.Module) -> None:
if not isinstance(model, GraphModule):
raise ValueError(
'input model must be a GraphModule, ' +
'Got type:' + str(type(model)) + ' Please make ' +
'sure to follow the tutorials.')
def _swap_ff_with_fxff(model: torch.nn.Module) -> None:
r""" Swap FloatFunctional with FXFloatFunctional
"""
modules_to_swap = []
for name, module in model.named_children():
if isinstance(module, torch.nn.quantized.FloatFunctional):
modules_to_swap.append(name)
else:
_swap_ff_with_fxff(module)
for name in modules_to_swap:
del model._modules[name]
model._modules[name] = torch.nn.quantized.FXFloatFunctional()
def _fuse_fx(
graph_module: GraphModule,
fuse_custom_config_dict: Dict[str, Any] = None) -> GraphModule:
r""" Internal helper function to fuse modules in preparation for quantization
Args:
graph_module: GraphModule object from symbolic tracing (torch.fx.symbolic_trace)
"""
_check_is_graph_module(graph_module)
fuser = Fuser()
return fuser.fuse(graph_module, fuse_custom_config_dict)
class Scope(object):
""" Scope object that records the module path and the module type
of a module. Scope is used to track the information of the module
that contains a Node in a Graph of GraphModule. For example:
class Sub(torch.nn.Module):
def forward(self, x):
# This will be a call_method Node in GraphModule,
# scope for this would be (module_path="sub", module_type=Sub)
return x.transpose(1, 2)
class M(torch.nn.Module):
def __init__(self):
self.sub = Sub()
def forward(self, x):
# This will be a call_method Node as well,
# scope for this would be (module_path="", None)
x = x.transpose(1, 2)
x = self.sub(x)
return x
"""
def __init__(self, module_path: str, module_type: Any):
super().__init__()
self.module_path = module_path
self.module_type = module_type
class ScopeContextManager(object):
""" A context manager to track the Scope of Node during symbolic
tracing.
When entering a forward function of a Module, we'll update the scope information of
the current module, and when we exit, we'll restore the previous scope information.
"""
def __init__(
self,
scope: Scope,
current_module: torch.nn.Module,
current_module_path: str):
super().__init__()
self.prev_module_type = scope.module_type
self.prev_module_path = scope.module_path
self.scope = scope
self.scope.module_path = current_module_path
self.scope.module_type = type(current_module)
def __enter__(self):
return
def __exit__(self, *args):
self.scope.module_path = self.prev_module_path
self.scope.module_type = self.prev_module_type
return
class QuantizationTracer(Tracer):
def __init__(
self,
skipped_module_names: List[str],
skipped_module_classes: List[Callable]):
super().__init__()
self.skipped_module_names = skipped_module_names
self.skipped_module_classes = skipped_module_classes
# NB: initialized the module_type of top level module to None
# we are assuming people won't configure the model with the type of top level
# module here, since people can use "" for global config
# We can change this if there is a use case that configures
# qconfig using top level module type
self.scope = Scope("", None)
self.node_name_to_scope : Dict[str, Tuple[str, type]] = {}
def is_leaf_module(self, m: torch.nn.Module, module_qualified_name : str) -> bool:
return (m.__module__.startswith("torch.nn") and
not isinstance(m, torch.nn.Sequential)) or \
module_qualified_name in self.skipped_module_names or \
type(m) in self.skipped_module_classes or \
isinstance(m, _FusedModule)
def call_module(self, m: torch.nn.Module, forward: Callable[..., Any], args : Tuple[Any, ...], kwargs : Dict[str, Any]) -> Any:
module_qualified_name = self.path_of_module(m)
# Creating scope with information of current module
# scope will be restored automatically upon exit
with ScopeContextManager(self.scope, m, module_qualified_name):
return super().call_module(m, forward, args, kwargs)
def create_node(self, kind : str, target : Target,
args : Tuple[Argument, ...], kwargs : Dict[str, Argument], name : Optional[str] = None,
type_expr : Optional[Any] = None) -> Node:
node = super().create_node(kind, target, args, kwargs, name, type_expr)
self.node_name_to_scope[node.name] = (self.scope.module_path, self.scope.module_type)
return node
def _prepare_fx(model: torch.nn.Module,
qconfig_dict: Any,
prepare_custom_config_dict: Optional[Dict[str, Any]] = None,
equalization_qconfig_dict: Optional[Dict[str, Any]] = None,
backend_config_dict: Optional[Dict[str, Any]] = None,
is_standalone_module: bool = False) -> ObservedGraphModule:
r""" Internal helper function for prepare_fx
Args:
`model`, `qconfig_dict`, `prepare_custom_config_dict`, `equalization_qonfig_dict`:
see docs for :func:`~torch.ao.quantization.prepare_fx`
`is_standalone_module`: a boolean flag indicates whether we are
quantizing a standalone module or not, a standalone module
is a submodule of the parent module that is not inlined in the
forward graph of the parent module,
the way we quantize standalone module is described in:
:func:`~torch.ao.quantization._prepare_standalone_module_fx`
"""
if prepare_custom_config_dict is None:
prepare_custom_config_dict = {}
if equalization_qconfig_dict is None:
equalization_qconfig_dict = {}
check_is_valid_qconfig_dict(qconfig_dict)
check_is_valid_prepare_custom_config_dict(prepare_custom_config_dict)
check_is_valid_qconfig_dict(equalization_qconfig_dict)
skipped_module_names = prepare_custom_config_dict.get("non_traceable_module_name", [])
skipped_module_classes = prepare_custom_config_dict.get("non_traceable_module_class", [])
# swap FloatFunctional with FXFloatFunctional
_swap_ff_with_fxff(model)
# symbolically trace the model
if not is_standalone_module:
# standalone module and custom module config are applied in top level module
standalone_module_name_configs = prepare_custom_config_dict.get("standalone_module_name", [])
skipped_module_names += [config[0] for config in standalone_module_name_configs]
standalone_module_class_configs = prepare_custom_config_dict.get("standalone_module_class", [])
skipped_module_classes += [config[0] for config in standalone_module_class_configs]
float_custom_module_classes = get_custom_module_class_keys(
prepare_custom_config_dict, "float_to_observed_custom_module_class")
skipped_module_classes += float_custom_module_classes
preserved_attributes = prepare_custom_config_dict.get("preserved_attributes", [])
tracer = QuantizationTracer(
skipped_module_names, skipped_module_classes)
graph_module = GraphModule(model, tracer.trace(model))
for attr_name in preserved_attributes:
setattr(graph_module, attr_name, getattr(model, attr_name))
graph_module = _fuse_fx(graph_module, prepare_custom_config_dict)
prepared = prepare(
graph_module,
qconfig_dict,
tracer.node_name_to_scope,
prepare_custom_config_dict=prepare_custom_config_dict,
equalization_qconfig_dict=equalization_qconfig_dict,
backend_config_dict=backend_config_dict,
is_standalone_module=is_standalone_module)
for attr_name in preserved_attributes:
setattr(prepared, attr_name, getattr(model, attr_name))
return prepared
def _prepare_standalone_module_fx(
model: torch.nn.Module,
qconfig_dict: Any,
prepare_custom_config_dict: Dict[str, Any] = None,
backend_config_dict: Dict[str, Any] = None) -> GraphModule:
r""" [Internal use only] Prepare a standalone module, so that it can be used when quantizing the
parent module.
standalone_module means it a submodule that is not inlined in parent module,
and will be quantized separately as one unit.
How the standalone module is observed is specified by `input_quantized_idxs` and
`output_quantized_idxs` in the prepare_custom_config for the standalone module
Returns:
model(GraphModule): prepared standalone module
attributes:
_standalone_module_input_quantized_idxs(List[Int]): a list of
indexes for the graph input that is expected to be quantized,
same as input_quantized_idxs configuration provided
for the standalone module
_standalone_module_output_quantized_idxs(List[Int]): a list of
indexs for the graph output that is quantized
same as input_quantized_idxs configuration provided
for the standalone module
"""
return _prepare_fx(model, qconfig_dict, prepare_custom_config_dict, backend_config_dict, is_standalone_module=True)
def fuse_fx(model: torch.nn.Module,
fuse_custom_config_dict: Dict[str, Any] = None) -> GraphModule:
r""" Fuse modules like conv+bn, conv+bn+relu etc, model must be in eval mode.
Fusion rules are defined in torch.ao.quantization.fx.fusion_pattern.py
Args:
`model`: a torch.nn.Module model
`fuse_custom_config_dict`: Dictionary for custom configurations for fuse_fx, e.g.
fuse_custom_config_dict = {
"additional_fuser_method_mapping": {
(Module1, Module2): fuse_module1_module2
}
# Attributes that are not used in forward function will
# be removed when constructing GraphModule, this is a list of attributes
# to preserve as an attribute of the GraphModule even when they are
# not used in the code, these attributes will also persist through deepcopy
"preserved_attributes": ["preserved_attr"],
}
Example:
```python
from torch.ao.quantization import fuse_fx
m = Model().eval()
m = fuse_fx(m)
```
"""
torch._C._log_api_usage_once("quantization_api.quantize_fx.fuse_fx")
assert not model.training, 'fuse_fx only works on models in eval mode'
check_is_valid_fuse_custom_config_dict(fuse_custom_config_dict)
graph_module = torch.fx.symbolic_trace(model)
preserved_attributes: Set[str] = set()
if fuse_custom_config_dict:
preserved_attributes = set(fuse_custom_config_dict.get("preserved_attributes", []))
for attr_name in preserved_attributes:
setattr(graph_module, attr_name, getattr(model, attr_name))
return _fuse_fx(graph_module, fuse_custom_config_dict)
def prepare_fx(
model: torch.nn.Module, qconfig_dict: Any,
prepare_custom_config_dict: Optional[Dict[str, Any]] = None,
equalization_qconfig_dict: Optional[Dict[str, Any]] = None,
backend_config_dict: Optional[Dict[str, Any]] = None) -> ObservedGraphModule:
r""" Prepare a model for post training static quantization
Args:
`model`: torch.nn.Module model, must be in eval mode
`qconfig_dict`: qconfig_dict is a dictionary with the following configurations:
qconfig_dict = {
# optional, global config
"": qconfig?,
# optional, used for module and function types
# could also be split into module_types and function_types if we prefer
"object_type": [
(torch.nn.Conv2d, qconfig?),
(torch.nn.functional.add, qconfig?),
...,
],
# optional, used for module names
"module_name": [
("foo.bar", qconfig?)
...,
],
# optional, matched in order, first match takes precedence
"module_name_regex": [
("foo.*bar.*conv[0-9]+", qconfig?)
...,
],
# optional, used for matching object type invocations in a submodule by
# order
# TODO(future PR): potentially support multiple indices ('0,1') and/or
# ranges ('0:3').
"module_name_object_type_order": [
# fully_qualified_name, object_type, index, qconfig
("foo.bar", torch.nn.functional.linear, 0, qconfig?),
],
# priority (in increasing order):
# global, object_type, module_name_regex, module_name,
# module_name_object_type_order
# qconfig == None means fusion and quantization should be skipped for anything
# matching the rule
}
`prepare_custom_config_dict`: customization configuration dictionary for
quantization tool:
prepare_custom_config_dict = {
# optional: specify the path for standalone modules
# These modules are symbolically traced and quantized as one unit
"standalone_module_name": [
# module_name, qconfig_dict, prepare_custom_config_dict
("submodule.standalone",
None, # qconfig_dict for the prepare function called in the submodule,
# None means use qconfig from parent qconfig_dict
{"input_quantized_idxs": [], "output_quantized_idxs": []}) # prepare_custom_config_dict
],
"standalone_module_class": [
# module_class, qconfig_dict, prepare_custom_config_dict
(StandaloneModule,
None, # qconfig_dict for the prepare function called in the submodule,
# None means use qconfig from parent qconfig_dict
{"input_quantized_idxs": [0], "output_quantized_idxs": [0]}) # prepare_custom_config_dict
],
# user will manually define the corresponding observed
# module class which has a from_float class method that converts
# float custom module to observed custom module
# (only needed for static quantization)
"float_to_observed_custom_module_class": {
"static": {
CustomModule: ObservedCustomModule
}
},
# the qualified names for the submodule that are not symbolically traceable
"non_traceable_module_name": [
"non_traceable_module"
],
# the module classes that are not symbolically traceable
# we'll also put dynamic/weight_only custom module here
"non_traceable_module_class": [
NonTraceableModule
],
# Additional fuser_method mapping
"additional_fuser_method_mapping": {
(torch.nn.Conv2d, torch.nn.BatchNorm2d): fuse_conv_bn
},
# Additioanl module mapping for qat
"additional_qat_module_mapping": {
torch.nn.intrinsic.ConvBn2d: torch.nn.qat.ConvBn2d
},
# Additional fusion patterns
"additional_fusion_pattern": {
(torch.nn.BatchNorm2d, torch.nn.Conv2d): ConvReluFusionhandler
},
# Additional quantization patterns
"additional_quant_pattern": {
torch.nn.Conv2d: ConvReluQuantizeHandler,
(torch.nn.ReLU, torch.nn.Conv2d): ConvReluQuantizeHandler,
}
# By default, inputs and outputs of the graph are assumed to be in
# fp32. Providing `input_quantized_idxs` will set the inputs with the
# corresponding indices to be quantized. Providing
# `output_quantized_idxs` will set the outputs with the corresponding
# indices to be quantized.
"input_quantized_idxs": [0],
"output_quantized_idxs": [0],
# Attributes that are not used in forward function will
# be removed when constructing GraphModule, this is a list of attributes
# to preserve as an attribute of the GraphModule even when they are
# not used in the code, these attributes will also persist through deepcopy
"preserved_attributes": ["preserved_attr"],
}
`equalization_qconfig_dict`: equalization_qconfig_dict is a dictionary
with a similar structure as qconfig_dict except it will contain
configurations specific to equalization techniques such as input-weight
equalization.
`backend_config_dict`: a dictionary that specifies how operators are quantized
in a backend, this includes how the operaetors are observed,
supported fusion patterns, how quantize/dequantize ops are
inserted, supported dtypes etc. The structure of the dictionary is still WIP
and will change in the future, please don't use right now.
Return:
A GraphModule with observer (configured by qconfig_dict), ready for calibration
Example:
```python
import torch
from torch.ao.quantization import get_default_qconfig
from torch.ao.quantization import prepare_fx
float_model.eval()
qconfig = get_default_qconfig('fbgemm')
def calibrate(model, data_loader):
model.eval()
with torch.no_grad():
for image, target in data_loader:
model(image)
qconfig_dict = {"": qconfig}
prepared_model = prepare_fx(float_model, qconfig_dict)
# Run calibration
calibrate(prepared_model, sample_inference_data)
```
"""
torch._C._log_api_usage_once("quantization_api.quantize_fx.prepare_fx")
assert not model.training, 'prepare_fx only works for models in ' + \
'eval mode'
return _prepare_fx(
model,
qconfig_dict,
prepare_custom_config_dict,
equalization_qconfig_dict,
backend_config_dict)
def prepare_qat_fx(
model: torch.nn.Module, qconfig_dict: Any,
prepare_custom_config_dict: Optional[Dict[str, Any]] = None,
backend_config_dict: Optional[Dict[str, Any]] = None) -> ObservedGraphModule:
r""" Prepare a model for quantization aware training
Args:
`model`: torch.nn.Module model, must be in train mode
`qconfig_dict`: see :func:`~torch.ao.quantization.prepare_fx`
`prepare_custom_config_dict`: see :func:`~torch.ao.quantization.prepare_fx`
`backend_config_dict`: see :func:`~torch.ao.quantization.prepare_fx`
Return:
A GraphModule with fake quant modules (configured by qconfig_dict), ready for
quantization aware training
Example:
```python
import torch
from torch.ao.quantization import get_default_qat_qconfig
from torch.ao.quantization import prepare_fx
qconfig = get_default_qat_qconfig('fbgemm')
def train_loop(model, train_data):
model.train()
for image, target in data_loader:
...
float_model.train()
qconfig_dict = {"": qconfig}
prepared_model = prepare_fx(float_model, qconfig_dict)
# Run calibration
train_loop(prepared_model, train_loop)
```
"""
torch._C._log_api_usage_once("quantization_api.quantize_fx.prepare_qat_fx")
assert model.training, 'prepare_qat_fx only works for models in ' + \
'train mode'
return _prepare_fx(
model,
qconfig_dict,
prepare_custom_config_dict,
backend_config_dict=backend_config_dict)
def _convert_fx(
graph_module: GraphModule, is_reference: bool,
convert_custom_config_dict: Dict[str, Any] = None,
is_standalone_module: bool = False,
_remove_qconfig: bool = True) -> QuantizedGraphModule:
""" `is_standalone_module`: see docs in :func:`~torch.ao.quantization.prepare_standalone_module_fx`
"""
if convert_custom_config_dict is None:
convert_custom_config_dict = {}
_check_is_graph_module(graph_module)
check_is_valid_convert_custom_config_dict(convert_custom_config_dict)
quantized = convert(
graph_module, is_reference, convert_custom_config_dict,
is_standalone_module, _remove_qconfig_flag=_remove_qconfig)
preserved_attributes = convert_custom_config_dict.get("preserved_attributes", [])
for attr_name in preserved_attributes:
setattr(quantized, attr_name, getattr(graph_module, attr_name))
return quantized
def convert_fx(
graph_module: GraphModule, is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None,
_remove_qconfig: bool = True) -> QuantizedGraphModule:
r""" Convert a calibrated or trained model to a quantized model
Args:
`graph_module`: A prepared and calibrated/trained model (GraphModule)
`is_reference`: flag for whether to produce a reference quantized model,
which will be a common interface between pytorch quantization with
other backends like accelerators
`convert_custom_config_dict`: dictionary for custom configurations for convert function:
convert_custom_config_dict = {
# addtional object (module/operator) mappings that will overwrite the default
# module mappingn
"additional_object_mapping": {
"static": {
FloatModule: QuantizedModule,
float_op: quantized_op
},
"dynamic": {
FloatModule: DynamicallyQuantizedModule,
float_op: dynamically_quantized_op
},
},
# user will manually define the corresponding quantized
# module class which has a from_observed class method that converts
# observed custom module to quantized custom module
"observed_to_quantized_custom_module_class": {
"static": {
ObservedCustomModule: QuantizedCustomModule
},
"dynamic": {
ObservedCustomModule: QuantizedCustomModule
},
"weight_only": {
ObservedCustomModule: QuantizedCustomModule
}
},
# Attributes that are not used in forward function will
# be removed when constructing GraphModule, this is a list of attributes
# to preserve as an attribute of the GraphModule even when they are
# not used in the code
"preserved_attributes": ["preserved_attr"],
}
`_remove_qconfig`: Option to remove the qconfig attributes in the model after convert.
Return:
A quantized model (GraphModule)
Example:
```python
# prepared_model: the model after prepare_fx/prepare_qat_fx and calibration/training
quantized_model = convert_fx(prepared_model)
```
"""
torch._C._log_api_usage_once("quantization_api.quantize_fx.convert_fx")
return _convert_fx(graph_module, is_reference, convert_custom_config_dict, _remove_qconfig=_remove_qconfig)
def _convert_standalone_module_fx(
graph_module: GraphModule, is_reference: bool = False,
convert_custom_config_dict: Dict[str, Any] = None) -> QuantizedGraphModule:
r""" [Internal use only] Convert a model produced by :func:`~torch.ao.quantization.prepare_standalone_module_fx`
and convert it to a quantized model
Returns a quantized standalone module, whether input/output is quantized is
specified by prepare_custom_config_dict, with
input_quantized_idxs, output_quantized_idxs, please
see docs for prepare_fx for details
"""
return _convert_fx(graph_module, is_reference, convert_custom_config_dict, is_standalone_module=True)