pytorch/torch/ao/ns/fx/mappings.py
Ben Koopman a58ff186e8 [quant][embedding qat] Add basic EmbeddingBag QAT fakeQuant workflow (#65443)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/65443

Test Plan: Imported from OSS

Reviewed By: dagitses, supriyar

Differential Revision: D31456445

Pulled By: b-koopman

fbshipit-source-id: 0edda6e272d9005fce65f2ba6a5e6abc831836de
2021-10-07 20:19:29 -07:00

651 lines
15 KiB
Python

import operator
import torch
import torch.nn as nn
import torch.nn.functional as F
toq = torch.ops.quantized
import torch.nn.quantized as nnq
import torch.nn.quantized.dynamic as nnqd
import torch.nn.intrinsic.quantized as nniq
import torch.nn.intrinsic.quantized.dynamic as nniqd
import torch.nn.intrinsic.qat as nniqat
import torch.nn.intrinsic as nni
import torch.nn.qat as nnqat
from .ns_types import NSNodeTargetType
from typing import Set, Dict, List, Optional
def get_base_name_to_sets_of_related_ops() -> Dict[str, Set[NSNodeTargetType]]:
sets_of_related_ops: List[Set[NSNodeTargetType]] = [
# conv modules
set([
nn.Conv1d,
nnq.Conv1d,
nniqat.ConvBn1d,
nniqat.ConvBnReLU1d,
nniq.ConvReLU1d,
nni.ConvReLU1d,
]),
set([
nn.Conv2d,
nnq.Conv2d,
nnqat.Conv2d,
nniqat.ConvBn2d,
nniqat.ConvBnReLU2d,
nniqat.ConvReLU2d,
nniq.ConvReLU2d,
nni.ConvReLU2d,
]),
set([
nn.Conv3d,
nnq.Conv3d,
nnqat.Conv3d,
nniqat.ConvBn3d,
nniqat.ConvBnReLU3d,
nniqat.ConvReLU3d,
nniq.ConvReLU3d,
nni.ConvReLU3d,
]),
# conv functionals
set([
F.conv1d,
toq.conv1d,
toq.conv1d_relu,
]),
set([
F.conv2d,
toq.conv2d,
toq.conv2d_relu,
]),
set([
F.conv3d,
toq.conv3d,
toq.conv3d_relu,
]),
# linear modules
set([
nn.Linear,
nnq.Linear,
nni.LinearReLU,
nniq.LinearReLU,
nniqd.LinearReLU,
nnqat.Linear,
nnqd.Linear,
nniqat.LinearReLU,
nn.modules.linear.NonDynamicallyQuantizableLinear,
]),
# linear functionals
set([
F.linear,
toq.linear,
toq.linear_relu,
]),
# average pool
set([
nn.AvgPool1d,
torch.avg_pool1d,
]),
set([
nn.AvgPool2d,
torch._C._nn.avg_pool2d,
]),
set([
nn.AvgPool3d,
torch._C._nn.avg_pool3d,
]),
# adaptive average pool
set([
nn.AdaptiveAvgPool1d,
F.adaptive_avg_pool1d,
]),
set([
nn.AdaptiveAvgPool2d,
F.adaptive_avg_pool2d,
]),
set([
nn.AdaptiveAvgPool3d,
F.adaptive_avg_pool3d,
]),
# LSTM
set([
nn.LSTM,
nnqd.LSTM,
]),
# add
set([
torch.add,
toq.add,
operator.add, # x + y
toq.add_relu,
]),
# cat
set([
torch.cat,
toq.cat,
]),
# mul
set([
torch.mul,
toq.mul,
operator.mul,
toq.mul_relu,
]),
# relu
set([
F.relu,
nn.ReLU,
'relu',
'relu_',
torch.relu,
]),
# maxpool
set([
nn.MaxPool1d,
F.max_pool1d,
]),
set([
nn.MaxPool2d,
F.max_pool2d,
]),
set([
nn.MaxPool3d,
F.max_pool3d,
]),
# sigmoid
set([
torch.sigmoid,
'sigmoid',
'sigmoid_',
nn.Sigmoid,
F.sigmoid,
]),
# BatchNorm
set([
nn.BatchNorm2d,
nnq.BatchNorm2d,
]),
set([
nn.BatchNorm3d,
nnq.BatchNorm3d,
]),
# ConvTranspose
set([
nn.ConvTranspose1d,
nnq.ConvTranspose1d,
]),
set([
nn.ConvTranspose2d,
nnq.ConvTranspose2d,
]),
# ELU
set([
nn.ELU,
nnq.ELU,
]),
# Embedding
set([
nn.Embedding,
nnq.Embedding,
]),
# EmbeddingBag
set([
nn.EmbeddingBag,
nnq.EmbeddingBag,
nnqat.EmbeddingBag,
]),
# GroupNorm
set([
nn.GroupNorm,
nnq.GroupNorm,
]),
# Hardswish
set([
nn.Hardswish,
nnq.Hardswish,
]),
# InstanceNorm
set([
nn.InstanceNorm1d,
nnq.InstanceNorm1d,
]),
set([
nn.InstanceNorm2d,
nnq.InstanceNorm2d,
]),
set([
nn.InstanceNorm3d,
nnq.InstanceNorm3d,
]),
# LayerNorm
set([
nn.LayerNorm,
nnq.LayerNorm,
]),
# LeakyReLU
set([
nn.LeakyReLU,
nnq.LeakyReLU,
]),
# ReLU6
set([
nn.ReLU6,
F.relu6,
nnq.ReLU6,
]),
# BNReLU2d
set([
nni.BNReLU2d,
nniq.BNReLU2d,
]),
set([
nni.BNReLU3d,
nniq.BNReLU3d,
]),
# F.elu
set([
F.elu,
toq.elu,
]),
# F.hardswish
set([
F.hardswish,
toq.hardswish,
]),
# F.instance_norm
set([
F.instance_norm,
toq.instance_norm,
]),
# F.layer_norm
set([
F.layer_norm,
toq.layer_norm,
]),
# F.leaky_relu
set([
F.leaky_relu,
toq.leaky_relu,
]),
# F.silu
set([
nn.SiLU,
F.silu,
]),
# F.mish
set([
nn.Mish,
F.mish,
]),
# F.tanh
set([
nn.Tanh,
F.tanh,
torch.tanh,
'tanh_',
'tanh',
]),
# F.hardsigmoid
set([
'hardsigmoid_',
'hardsigmoid',
F.hardsigmoid,
nn.Hardsigmoid,
]),
# F.hardtanh
set([
nn.Hardtanh,
F.hardtanh,
F.hardtanh_,
]),
# floordiv
set([
operator.floordiv,
]),
# unsqueeze
set([
torch.unsqueeze,
]),
# stack
set([
torch.stack,
]),
# squeeze
set([
torch.squeeze,
]),
# sort
set([
torch.sort,
]),
# repeat_interleave
set([
torch.repeat_interleave,
]),
# min
set([
torch.min,
]),
# mean
set([
torch.mean,
]),
# max
set([
torch.max,
]),
# transpose
set([
torch.transpose,
]),
# flatten
set([
torch.flatten,
]),
# clamp
set([
torch.clamp,
]),
# chunk
set([
torch.chunk,
]),
# interpolate
set([
torch.nn.functional.interpolate,
]),
# dropout
set([
nn.Dropout,
F.dropout,
]),
]
base_name_to_sets_of_related_ops: Dict[str, Set[NSNodeTargetType]] = {}
counter = 0
for set_of_related_ops in sets_of_related_ops:
base_name = str(counter)
counter += 1
base_name_to_sets_of_related_ops[base_name] = set_of_related_ops
return base_name_to_sets_of_related_ops
def get_base_name_for_op(
base_name_to_sets_of_related_ops: Dict[str, Set[NSNodeTargetType]],
op: NSNodeTargetType,
) -> Optional[str]:
for base_name, set_of_related_ops in base_name_to_sets_of_related_ops.items():
if op in set_of_related_ops:
return base_name
return None
def add_op_to_sets_of_related_ops(
base_name_to_sets_of_related_ops: Dict[str, Set[NSNodeTargetType]],
op: NSNodeTargetType,
related_op: Optional[NSNodeTargetType],
) -> None:
if related_op is not None:
for base_name, set_of_related_ops in base_name_to_sets_of_related_ops.items():
if related_op in set_of_related_ops:
set_of_related_ops.add(op)
return
# if we got here, related_op was not found
raise AssertionError(f"{related_op} was not found")
else:
counter = 0
while str(counter) in base_name_to_sets_of_related_ops:
counter += 1
base_name_to_sets_of_related_ops[str(counter)] = set([op])
# TODO(future PR): clean this up
def get_node_type_to_io_type_map() -> Dict[str, Set[NSNodeTargetType]]:
FUNS_IO_TYPE_FP32: Set[NSNodeTargetType] = set([
F.linear,
F.conv1d,
F.conv2d,
F.conv3d,
torch.cat,
F.elu,
F.hardswish,
F.instance_norm,
F.layer_norm,
F.leaky_relu,
F.silu,
F.mish,
# TODO(future PR): implement shadowing for binary ops and
# uncomment below
# operator.add,
# operator.mul,
torch.sum,
])
FUNS_IO_TYPE_FP16: Set[NSNodeTargetType] = set()
FUNS_IO_TYPE_INT8: Set[NSNodeTargetType] = set([
toq.linear,
toq.linear_relu,
toq.conv1d,
toq.conv1d_relu,
toq.conv2d,
toq.conv2d_relu,
toq.conv3d,
toq.conv3d_relu,
toq.cat,
toq.elu,
toq.hardswish,
toq.instance_norm,
toq.layer_norm,
toq.leaky_relu,
# TODO(future PR): implement shadowing for binary ops and
# uncomment below
# toq.add,
# toq.mul,
])
FUNS_IO_TYPE_FP32_OR_INT8: Set[NSNodeTargetType] = set([
F.relu,
F.tanh,
torch.tanh,
F.sigmoid,
torch.sigmoid,
F.hardsigmoid,
operator.floordiv,
torch.adaptive_avg_pool1d,
F.adaptive_avg_pool2d,
F.adaptive_avg_pool3d,
F.dropout,
F.hardtanh,
F.hardtanh_,
F.interpolate,
F.max_pool1d,
F.max_pool2d,
F.max_pool3d,
F.relu6,
torch.avg_pool1d,
torch._C._nn.avg_pool2d,
torch._C._nn.avg_pool3d,
torch.cat,
torch.chunk,
torch.clamp,
torch.flatten,
torch.transpose,
torch.max,
torch.mean,
torch.min,
torch.repeat_interleave,
torch.sort,
torch.squeeze,
torch.stack,
torch.unsqueeze,
])
MODS_IO_TYPE_FP32: Set[NSNodeTargetType] = set([
nn.Linear,
nnqat.Linear,
nnqd.Linear,
torch.nn.modules.linear.NonDynamicallyQuantizableLinear,
nn.Conv1d,
nn.Conv2d,
nn.Conv3d,
nnqat.Conv2d,
nnqat.Conv3d,
nnqat.EmbeddingBag,
nn.LSTM,
# note: nnqd.Linear is an instance of nnq.Linear, so this
# check has to happen before the int8 module check
nnqd.LSTM,
nn.BatchNorm2d,
nn.BatchNorm3d,
nn.ConvTranspose1d,
nn.ConvTranspose2d,
nn.ELU,
nn.GroupNorm,
nn.InstanceNorm1d,
nn.InstanceNorm2d,
nn.InstanceNorm3d,
nn.LayerNorm,
nn.Hardswish,
nn.LeakyReLU,
nn.ReLU6,
nn.SiLU,
nn.Mish,
nni.BNReLU2d,
nni.BNReLU3d,
nni.ConvReLU1d,
nni.ConvReLU2d,
nni.ConvReLU3d,
nni.LinearReLU,
nni.ConvBn1d,
nni.ConvBn2d,
nni.ConvBn3d,
nniqat.ConvBn1d,
nniqat.ConvBn2d,
nniqat.ConvBn3d,
nniqat.ConvBnReLU1d,
nniqat.ConvBnReLU2d,
nniqat.ConvBnReLU3d,
nniqat.ConvReLU2d,
nniqat.ConvReLU3d,
nniqat.LinearReLU,
nniqd.LinearReLU,
])
MODS_IO_TYPE_INT8: Set[NSNodeTargetType] = set([
nnq.Linear,
nnq.Conv1d,
nnq.Conv2d,
nniq.ConvReLU2d,
nnq.Conv3d,
nnq.BatchNorm2d,
nnq.BatchNorm3d,
nnq.ConvTranspose1d,
nnq.ConvTranspose2d,
nnq.ELU,
nnq.GroupNorm,
nnq.InstanceNorm1d,
nnq.InstanceNorm2d,
nnq.InstanceNorm3d,
nnq.LayerNorm,
nnq.Hardswish,
nnq.LeakyReLU,
nnq.ReLU6,
nnq.EmbeddingBag,
nniq.BNReLU2d,
nniq.BNReLU3d,
nniq.ConvReLU1d,
nniq.ConvReLU2d,
nniq.ConvReLU3d,
nniq.LinearReLU,
])
MODS_IO_TYPE_FP32_OR_INT8: Set[NSNodeTargetType] = set([
nn.ReLU,
nn.Tanh,
nn.Sigmoid,
nn.Hardsigmoid,
nn.AdaptiveAvgPool1d,
nn.AdaptiveAvgPool2d,
nn.AdaptiveAvgPool3d,
nn.AvgPool1d,
nn.AvgPool2d,
nn.AvgPool3d,
nn.Dropout,
nn.Hardtanh,
nn.Identity,
nn.MaxPool1d,
nn.MaxPool2d,
nn.MaxPool3d,
nn.ReLU6,
])
METHS_IO_TYPE_FP32_OR_INT8: Set[NSNodeTargetType] = set([
'sigmoid_',
'sigmoid',
'tanh_',
'tanh',
'hardsigmoid_',
'hardsigmoid',
'relu_',
'relu',
])
return {
'funs_io_type_fp32': FUNS_IO_TYPE_FP32,
'funs_io_type_fp16': FUNS_IO_TYPE_FP16,
'funs_io_type_int8': FUNS_IO_TYPE_INT8,
'funs_io_type_fp32_or_int8': FUNS_IO_TYPE_FP32_OR_INT8,
'mods_io_type_fp32': MODS_IO_TYPE_FP32,
'mods_io_type_int8': MODS_IO_TYPE_INT8,
'mods_io_type_fp32_or_int8': MODS_IO_TYPE_FP32_OR_INT8,
'meths_io_type_fp32_or_int8': METHS_IO_TYPE_FP32_OR_INT8,
}
def get_unmatchable_types_map() -> Dict[str, Set[NSNodeTargetType]]:
FUNS_UNMATCHABLE: Set[NSNodeTargetType] = set([
torch.quantize_per_tensor,
operator.getitem,
])
MODS_UNMATCHABLE: Set[NSNodeTargetType] = set([
nn.Identity,
])
METHS_UNMATCHABLE: Set[NSNodeTargetType] = set([
'to',
'dequantize',
'reshape',
'view',
'unsqueeze_',
'unsqueeze',
'transpose',
'squeeze_',
'squeeze',
'size',
'shape',
'resize_',
'repeat_interleave',
'repeat',
'permute',
'numel',
'mean',
'detach_',
'detach',
'contiguous',
'clamp',
'chunk',
])
return {
'funs_unmatchable': FUNS_UNMATCHABLE,
'mods_unmatchable': MODS_UNMATCHABLE,
'meths_unmatchable': METHS_UNMATCHABLE,
}