pytorch/test/cpp/api/init.cpp
Will Feng a54416d208 [C++ API] Remove deprecated torch::nn::BatchNorm / FeatureDropout / modules_ordered_dict and torch::nn::init::Nonlinearity / FanMode (#34508)
Summary:
This PR is BC-breaking in the following way:
- The deprecated `torch::nn::BatchNorm` is removed in favor of `torch::nn::BatchNorm{1,2,3}d`
- The deprecated `torch::nn::FeatureDropout` is removed in favor of `torch::nn::Dropout{2,3}d`
- The deprecated `torch::nn::modules_ordered_dict` is removed. User should do `Sequential sequential({{"m1", MyModule(1)}, {"m2", MyModule(2)}})` instead.
- The deprecated `torch::nn::init::Nonlinearity` is removed, in favor of the following enums:
    - `torch::kLinear`
    - `torch::kConv1D`
    - `torch::kConv2D`
    - `torch::kConv3D`
    - `torch::kConvTranspose1D`
    - `torch::kConvTranspose2D`
    - `torch::kConvTranspose3D`
    - `torch::kSigmoid`
    - `torch::kTanh`
    - `torch::kReLU`
    - `torch::kLeakyReLU`
- The deprecated `torch::nn::init::FanMode` is removed, in favor of the following enums:
    - `torch::kFanIn`
    - `torch::kFanOut`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34508

Differential Revision: D20351601

Pulled By: yf225

fbshipit-source-id: cca0cd112f29a31bb023e348ca8f82780e42bea3
2020-03-12 10:09:58 -07:00

134 lines
4.1 KiB
C++

#include <gtest/gtest.h>
#include <torch/torch.h>
#include <test/cpp/api/init_baseline.h>
#include <test/cpp/api/support.h>
#include <functional>
#include <vector>
using namespace torch::test;
void check_exact_values(
const std::vector<torch::Tensor>& parameters,
const std::vector<std::vector<torch::Tensor>>& expected_parameters) {
ASSERT_EQ(parameters.size(), expected_parameters.size());
for (size_t i = 0; i < parameters.size(); i++) {
auto layerParameters = parameters[i];
auto expectedLayerParameters = expected_parameters[i];
if (layerParameters.size(0) != expectedLayerParameters.size()) {
std::cout << "layer #" << i
<< " layerParameters size: " << layerParameters.size(0)
<< " != "
<< " expectedLayerParameters size: "
<< expectedLayerParameters.size() << std::endl;
ASSERT_TRUE(false);
}
for (size_t p = 0; p < layerParameters.size(0); p++) {
// Always compare using double dtype, regardless of the original dtype of the tensors
auto tensor = layerParameters[p].to(torch::kFloat64);
auto expectedTensor = expectedLayerParameters[p].to(torch::kFloat64);
if (!tensor.allclose(expectedTensor, /*rtol=*/1e-3, /*atol=*/5e-4)) {
std::cout << "layer " << i << ": " << tensor << " != " << expectedTensor
<< " (parameter " << p << ")" << std::endl;
ASSERT_TRUE(false);
}
}
}
}
void check_initializer_against_baseline(
std::function<void(torch::Tensor)> initializer,
std::vector<std::vector<torch::Tensor>> expected) {
torch::manual_seed(0);
auto layer1 = torch::nn::Linear(7, 15);
initializer(layer1->weight);
layer1->to(torch::kFloat64);
auto layer2 = torch::nn::Linear(15, 15);
initializer(layer2->weight);
layer2->to(torch::kFloat64);
auto layer3 = torch::nn::Linear(15, 2);
initializer(layer3->weight);
layer3->to(torch::kFloat64);
auto parameters = std::vector<torch::Tensor>{
layer1->weight,
layer2->weight,
layer3->weight,
};
check_exact_values(parameters, expected);
}
TEST(InitTest, ProducesPyTorchValues_XavierUniform) {
auto expected = expected_parameters::Xavier_Uniform();
auto initializer = [](torch::Tensor tensor) {
torch::nn::init::xavier_uniform_(tensor);
};
check_initializer_against_baseline(initializer, expected);
}
TEST(InitTest, ProducesPyTorchValues_XavierNormal) {
auto expected = expected_parameters::Xavier_Normal();
auto initializer = [](torch::Tensor tensor) {
torch::nn::init::xavier_normal_(tensor);
};
check_initializer_against_baseline(initializer, expected);
}
TEST(InitTest, ProducesPyTorchValues_KaimingNormal) {
auto expected = expected_parameters::Kaiming_Normal();
auto initializer = [](torch::Tensor tensor) {
torch::nn::init::kaiming_normal_(tensor);
};
check_initializer_against_baseline(initializer, expected);
}
TEST(InitTest, ProducesPyTorchValues_KaimingUniform) {
auto expected = expected_parameters::Kaiming_Uniform();
auto initializer = [](torch::Tensor tensor) {
torch::nn::init::kaiming_uniform_(tensor);
};
check_initializer_against_baseline(initializer, expected);
}
TEST(InitTest, CanInitializeTensorThatRequiresGrad) {
auto tensor = torch::empty({3, 4}, torch::requires_grad());
ASSERT_THROWS_WITH(
tensor.fill_(1),
"a leaf Variable that requires grad "
"is being used in an in-place operation");
ASSERT_EQ(torch::nn::init::ones_(tensor).sum().item<int32_t>(), 12);
}
TEST(InitTest, CalculateGainWithTanh) {
double gain =
torch::nn::init::calculate_gain(torch::kTanh);
ASSERT_DOUBLE_EQ(gain, 5.0 / 3.0);
}
TEST(InitTest, CalculateGainWithRelu) {
double gain =
torch::nn::init::calculate_gain(torch::kReLU);
ASSERT_DOUBLE_EQ(gain, std::sqrt(2.0));
}
TEST(InitTest, CalculateGainWithLeakyRelu) {
double gain =
torch::nn::init::calculate_gain(torch::kLeakyReLU);
ASSERT_DOUBLE_EQ(gain, std::sqrt(2.0 / (1 + pow(0.01, 2))));
}
TEST(InitTest, CanInitializeCnnWithOrthogonal) {
torch::nn::Conv2d conv_layer(torch::nn::Conv2dOptions(3, 2, 3).stride(2));
torch::nn::init::orthogonal_(conv_layer->named_parameters()["weight"]);
}