mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
* Fix cross device indexing for more than 1 cuda device. Cross device indexing is attempted from ATen, which doesn't work well because ATen doesn't have AutoGPU, etc. Instead, before dispatching to ATen we do type conversion on the indices; it would probably be better if we pushed all this down to ATen, but that will take some work. * Small cleanup.
371 lines
12 KiB
C++
371 lines
12 KiB
C++
#include "torch/csrc/autograd/python_variable_indexing.h"
|
|
|
|
#include "torch/csrc/DynamicTypes.h"
|
|
#include "torch/csrc/Exceptions.h"
|
|
#include "torch/csrc/THP_export.h"
|
|
#include "torch/csrc/autograd/function.h"
|
|
#include "torch/csrc/autograd/python_variable.h"
|
|
#include "torch/csrc/autograd/utils/wrap_outputs.h"
|
|
#include "torch/csrc/autograd/variable.h"
|
|
#include "torch/csrc/utils/python_compat.h"
|
|
#include "torch/csrc/utils/python_numbers.h"
|
|
#include "torch/csrc/utils/tensor_new.h"
|
|
#include "torch/csrc/utils/tensor_conversion_dispatch.h"
|
|
|
|
#include <ATen/ExpandUtils.h>
|
|
#include <vector>
|
|
|
|
using namespace at;
|
|
using namespace torch::autograd::utils;
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
Py_ssize_t THPVariable_length(PyObject* self) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
if (self_.dim() == 0) {
|
|
return 0;
|
|
}
|
|
return (Py_ssize_t)self_.size(0);
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
|
|
// We allow indexing by integers, slices, ellipsis, None, Variables,
|
|
// and tuples of those types. We also handle bools as if they were a
|
|
// Variable[ByteTensor].
|
|
|
|
static int64_t count_specified_dimensions(PyObject* index) {
|
|
// Count the number of indexed dimensions (everything but ellipsis and None)
|
|
int64_t count = 0;
|
|
auto size = PyTuple_GET_SIZE(index);
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
PyObject* obj = PyTuple_GET_ITEM(index, i);
|
|
if (THPVariable_Check(obj)) {
|
|
auto& var = reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
if (var.type().scalarType() == kByte) {
|
|
count += var.dim();
|
|
} else {
|
|
count++;
|
|
}
|
|
} else if (obj != Py_None && obj != Py_Ellipsis) {
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
[[noreturn]]
|
|
static void invalid_index(PyObject* obj) {
|
|
throw IndexError(
|
|
"only integers, slices (`:`), ellipsis (`...`), None and long or byte "
|
|
"Variables are valid indices (got %s)", Py_TYPE(obj)->tp_name);
|
|
}
|
|
|
|
static Variable applySlice(const Variable& self, int64_t dim, PyObject* slice, bool ensure_view=false) {
|
|
Py_ssize_t start, stop, step, slicelength;
|
|
auto length = self.size(dim);
|
|
if (!THPUtils_parseSlice(slice, length, &start, &stop, &step, &slicelength)) {
|
|
throw python_error();
|
|
}
|
|
if (step == 0) {
|
|
throw ValueError("step cannot be zero");
|
|
}
|
|
if (step < 0) {
|
|
// TODO: implement negative step
|
|
throw ValueError("negative step not yet supported");
|
|
}
|
|
if (!ensure_view && start == 0 && stop == length && step == 1) {
|
|
return self;
|
|
}
|
|
return self.slice(dim, start, stop, step);
|
|
}
|
|
|
|
static Variable applySelect(const Variable& self, int64_t dim, int64_t index) {
|
|
if (index == 0 && dim == 0 && self.dim() == 0) {
|
|
// Deprecated support for indexing 0-dim tensors as if they were 1-dim.
|
|
PyErr_WarnEx(PyExc_UserWarning,
|
|
"invalid index of a 0-dim tensor. This will be an error in PyTorch 0.5. "
|
|
"Use tensor.item() to convert a 0-dim tensor to a Python number", 1);
|
|
return at::alias(self);
|
|
}
|
|
int64_t size = self.size(dim);
|
|
if (index < -size || index >= size) {
|
|
throw IndexError("index %lld is out of bounds for dimension %lld with size %lld",
|
|
index, dim, size);
|
|
}
|
|
if (index < 0) {
|
|
index += size;
|
|
}
|
|
return self.select(dim, index);
|
|
}
|
|
|
|
static Variable sequenceToVariable(const Type& type, PyObject* seq) {
|
|
auto& idx_type = type.toScalarType(kLong);
|
|
return torch::utils::legacy_new_from_data(idx_type, -1, seq);
|
|
}
|
|
|
|
static Variable valueToTensor(const Type & type, PyObject* value) {
|
|
if (THPVariable_Check(value)) {
|
|
return reinterpret_cast<THPVariable*>(value)->cdata;
|
|
}
|
|
if (THPUtils_checkLong(value)) {
|
|
return type.scalarTensor(Scalar(THPUtils_unpackLong(value)));
|
|
}
|
|
if (PyFloat_Check(value)) {
|
|
return type.scalarTensor(Scalar(THPUtils_unpackDouble(value)));
|
|
}
|
|
throw TypeError("can't assign a %s to a %s", Py_TYPE(value)->tp_name, type.toString());
|
|
}
|
|
|
|
static Variable applySlicing(const Variable& self, PyObject* index, variable_list& outIndices) {
|
|
int64_t size = PyTuple_GET_SIZE(index);
|
|
int64_t dim = 0;
|
|
int64_t specified_dims = count_specified_dimensions(index);
|
|
|
|
auto handle_var = [&](const Variable& var) {
|
|
// TODO: check scalarType
|
|
outIndices.resize(dim + 1);
|
|
outIndices[dim] = var;
|
|
dim++;
|
|
};
|
|
|
|
if (specified_dims > self.dim()) {
|
|
throw IndexError("too many indices for tensor of dimension %d", (int)self.dim());
|
|
}
|
|
|
|
Variable result = self;
|
|
for (int64_t i = 0; i < size; i++) {
|
|
PyObject* obj = PyTuple_GET_ITEM(index, i);
|
|
if (THPUtils_checkLong(obj)) {
|
|
result = applySelect(result, dim, THPUtils_unpackLong(obj));
|
|
} else if (PySlice_Check(obj)) {
|
|
result = applySlice(result, dim, obj);
|
|
dim++;
|
|
} else if (obj == Py_Ellipsis) {
|
|
dim += self.dim() - specified_dims;
|
|
} else if (obj == Py_None) {
|
|
result = result.unsqueeze(dim);
|
|
dim++;
|
|
} else if (THPVariable_Check(obj)) {
|
|
auto& var = THPVariable_Unpack(obj);
|
|
auto scalar_type = var.type().scalarType();
|
|
if (var.dim() == 0 && at::isIntegralType(scalar_type) && scalar_type != at::kByte) {
|
|
result = applySelect(result, dim, THPUtils_unpackLong(obj));
|
|
} else {
|
|
handle_var(var);
|
|
}
|
|
} else if (PySequence_Check(obj)) {
|
|
handle_var(sequenceToVariable(self.type(), obj));
|
|
} else {
|
|
auto index = THPObjectPtr(PyNumber_Index(obj));
|
|
if (!index) {
|
|
PyErr_Clear();
|
|
invalid_index(obj);
|
|
}
|
|
result = applySelect(result, dim, THPUtils_unpackLong(index));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static std::vector<Tensor> typeConvertIndices(const Variable& self, const variable_list& indices) {
|
|
std::vector<Tensor> converted_inds(indices.size());
|
|
int64_t device = self.is_cuda() ? self.get_device() : -1;
|
|
for (size_t i = 0; i < indices.size(); ++i) {
|
|
const auto &ind = indices[i];
|
|
if (ind.defined()) {
|
|
auto& new_type = ind.type().toBackend(self.type().backend());
|
|
converted_inds[i] = torch::utils::dispatch_type_conversion(ind, new_type, device, false);
|
|
} else {
|
|
converted_inds[i] = indices[i];
|
|
}
|
|
}
|
|
return converted_inds;
|
|
}
|
|
|
|
static Variable dispatch_index(const Variable& self, const variable_list& indices) {
|
|
std::vector<Tensor> converted_indices = typeConvertIndices(self, indices);
|
|
AutoNoGIL no_gil;
|
|
AutoGPU auto_gpu(self);
|
|
return self.index(converted_indices);
|
|
}
|
|
|
|
static Variable dispatch_index_put_(Variable& self, const variable_list& indices, const Variable& value) {
|
|
std::vector<Tensor> converted_indices = typeConvertIndices(self, indices);
|
|
AutoNoGIL no_gil;
|
|
AutoGPU auto_gpu(self);
|
|
return self.index_put_(converted_indices, value);
|
|
}
|
|
|
|
static bool treatSequenceAsTuple(PyObject* index) {
|
|
if (PyTuple_Check(index)) {
|
|
return true;
|
|
}
|
|
if (!PySequence_Check(index)) {
|
|
return false;
|
|
}
|
|
// This uses a heuristics from NumPy for determining whether to treat
|
|
// non-tuple sequences as if they were a tuple. From the NumPy code comments:
|
|
//
|
|
// "At this point, we're left with a non-tuple, non-array, sequence:
|
|
// typically, a list. We use some somewhat-arbitrary heuristics from here
|
|
// onwards to decided whether to treat that list as a single index, or a
|
|
// list of indices. Backwards compatibility only takes effect for short
|
|
// sequences - otherwise we treat it like any other scalar."
|
|
auto n = PySequence_Size(index);
|
|
if (n < 0) {
|
|
// Negative size indicates a Python error in the PySequence_Size call.
|
|
PyErr_Clear();
|
|
return false;
|
|
}
|
|
if (n >= 32) {
|
|
return false;
|
|
}
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
auto obj = THPObjectPtr{PySequence_GetItem(index, i)};
|
|
if (!obj.get()) {
|
|
PyErr_Clear();
|
|
return false;
|
|
}
|
|
if (THPVariable_Check(obj.get()) || PySequence_Check(obj.get()) || PySlice_Check(obj.get())) {
|
|
return true;
|
|
}
|
|
if (obj.get() == Py_Ellipsis || obj.get() == Py_None) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static THPObjectPtr wrapTuple(PyObject* index) {
|
|
THPObjectPtr res;
|
|
if (treatSequenceAsTuple(index)) {
|
|
res = PySequence_Tuple(index);
|
|
} else {
|
|
res = PyTuple_Pack(1, index);
|
|
}
|
|
if (!res) throw python_error();
|
|
return res;
|
|
}
|
|
|
|
static bool isSingleBoolScalar(const variable_list& vars) {
|
|
return vars.size() == 1 && vars[0].type().scalarType() == ScalarType::Byte && vars[0].dim() == 0;
|
|
}
|
|
|
|
static PyObject* applyBoolGetitem(const Variable& self, bool index) {
|
|
if (index) {
|
|
return wrap(self.type().copy(self.unsqueeze(0)));
|
|
} else {
|
|
return wrap(self.type().tensor({0}));
|
|
}
|
|
}
|
|
|
|
PyObject* THPVariable_getitem(PyObject* self, PyObject* index) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
AutoGPU auto_gpu(self_);
|
|
|
|
// handle simple types: integers, slices, ellipsis
|
|
if (index == Py_None) {
|
|
return wrap(self_.unsqueeze(0));
|
|
} else if (index == Py_Ellipsis) {
|
|
return wrap(at::alias(self_));
|
|
} else if (THPUtils_checkLong(index)) {
|
|
return wrap(applySelect(self_, 0, THPUtils_unpackLong(index)));
|
|
} else if (PyBool_Check(index)) {
|
|
return applyBoolGetitem(self_, index == Py_True);
|
|
} else if (PySlice_Check(index)) {
|
|
return wrap(applySlice(self_, 0, index, true));
|
|
}
|
|
|
|
// wrap index in a tuple if it's not already one
|
|
THPObjectPtr holder = wrapTuple(index);
|
|
|
|
variable_list variableIndices;
|
|
Variable sliced = applySlicing(self_, holder.get(), variableIndices);
|
|
if (variableIndices.empty()) {
|
|
if (sliced.is_same(self_)) {
|
|
// ensure we return a shallow copy for things like x[...]
|
|
sliced = at::alias(sliced);
|
|
}
|
|
return wrap(sliced);
|
|
}
|
|
if (isSingleBoolScalar(variableIndices)) {
|
|
return applyBoolGetitem(self_, variableIndices[0].toCByte());
|
|
}
|
|
|
|
// indexing by tensors ("advanced" indexing)
|
|
return wrap(dispatch_index(sliced, variableIndices));
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static void copy_to(Variable dst, const Variable& src) {
|
|
Tensor b_src;
|
|
// To match numpy semantics:
|
|
// As a special case for backwards compatibility,
|
|
// strip away unit dimensions from the left of 'src'
|
|
auto src_sizes = src.sizes();
|
|
size_t first_nonzero_src = src_sizes.size();
|
|
for (size_t i = 0; i < src_sizes.size(); ++i) {
|
|
if (src_sizes[i] != 1) {
|
|
first_nonzero_src = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
src_sizes = src_sizes.slice(first_nonzero_src);
|
|
std::tie(b_src) = expand_inplace(dst, src.view(src_sizes), "setitem");
|
|
dst.copy_(b_src);
|
|
}
|
|
|
|
int THPVariable_setitem(PyObject* self, PyObject* index, PyObject* py_value) {
|
|
HANDLE_TH_ERRORS
|
|
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
|
|
AutoGPU auto_gpu(self_);
|
|
auto value = valueToTensor(self_.type(), py_value);
|
|
|
|
// handle simple types: integers, slices, ellipsis, bool
|
|
if (index == Py_False) {
|
|
// do nothing for false (technically we should check the size, but we don't have
|
|
// real 0-sized shapes.
|
|
return 0;
|
|
} else if (index == Py_Ellipsis) {
|
|
copy_to(self_, value);
|
|
return 0;
|
|
} else if (index == Py_None || index == Py_True) {
|
|
copy_to(self_.unsqueeze(0), value);
|
|
return 0;
|
|
} else if (THPUtils_checkLong(index)) {
|
|
copy_to(applySelect(self_, 0, THPUtils_unpackLong(index)), value);
|
|
return 0;
|
|
} else if (PySlice_Check(index)) {
|
|
copy_to(applySlice(self_, 0, index), value);
|
|
return 0;
|
|
}
|
|
|
|
// wrap index in a tuple if it's not already one
|
|
THPObjectPtr holder = wrapTuple(index);
|
|
|
|
variable_list variableIndices;
|
|
Variable sliced = applySlicing(self_, holder.get(), variableIndices);
|
|
if (variableIndices.empty()) {
|
|
copy_to(sliced, value);
|
|
return 0;
|
|
}
|
|
if (isSingleBoolScalar(variableIndices)) {
|
|
if (variableIndices[0].toCByte()) {
|
|
copy_to(self_.unsqueeze(0), value);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// indexing by tensors ("advanced" indexing)
|
|
dispatch_index_put_(sliced, variableIndices, value);
|
|
return 0;
|
|
END_HANDLE_TH_ERRORS_RET(-1)
|
|
}
|
|
|
|
}} // namespace torch::autograd
|