mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Use decorator `torch.jit.batch` to implement auto-batching (call `to_batch` pass to do IR tranformation). - `to_batch` pass: "to_batch.h/cpp" in csrc/jit/passess to transform a graph to a new batched graph. - Write several basic operators for BatchTensor (add, mul, sigmoid, tanh, mm, matmul, select). - Register the operators in a lookup table `<std::string, std::shared_ptr<Graph>>`. (use the Graph to replace the original node in IR graph) Move BatchTensor in python from torch.BatchTensor to torch.jit.BatchTensor Pull Request resolved: https://github.com/pytorch/pytorch/pull/9198 Reviewed By: zdevito Differential Revision: D8744466 Pulled By: ChunliF fbshipit-source-id: 9ea56a30f55cb870f13a2069a47cc635419763ff
213 lines
7.7 KiB
C++
213 lines
7.7 KiB
C++
#include "torch/csrc/utils/pybind.h"
|
|
|
|
#include "torch/csrc/jit/python_tracer.h"
|
|
#include "torch/csrc/jit/tracer.h"
|
|
#include "torch/csrc/jit/python_ir.h"
|
|
#include "torch/csrc/jit/python_arg_flatten.h"
|
|
#include "torch/csrc/jit/export.h"
|
|
#include "torch/csrc/jit/argument_spec.h"
|
|
#include "torch/csrc/jit/passes/graph_fuser.h"
|
|
#include "torch/csrc/jit/passes/onnx.h"
|
|
#include "torch/csrc/jit/passes/dead_code_elimination.h"
|
|
#include "torch/csrc/jit/passes/erase_number_types.h"
|
|
#include "torch/csrc/jit/passes/common_subexpression_elimination.h"
|
|
#include "torch/csrc/jit/passes/peephole.h"
|
|
#include "torch/csrc/jit/passes/canonicalize.h"
|
|
#include "torch/csrc/jit/passes/onnx/peephole.h"
|
|
#include "torch/csrc/jit/passes/onnx/fixup_onnx_loop.h"
|
|
#include "torch/csrc/jit/passes/shape_analysis.h"
|
|
#include "torch/csrc/jit/passes/decompose_addmm.h"
|
|
#include "torch/csrc/jit/passes/loop_unrolling.h"
|
|
#include "torch/csrc/jit/passes/to_batch.h"
|
|
#include "torch/csrc/jit/passes/specialize_undef.h"
|
|
#include "torch/csrc/jit/graph_executor.h"
|
|
#include "torch/csrc/jit/script/init.h"
|
|
#include "torch/csrc/jit/script/python_tree_views.h"
|
|
#include "torch/csrc/jit/batched/BatchTensor.h"
|
|
#include "torch/csrc/jit/pybind_utils.h"
|
|
|
|
namespace torch { namespace jit {
|
|
|
|
namespace {
|
|
|
|
using autograd::variable_list;
|
|
|
|
bool loadPythonClasses() {
|
|
// Leaving this code here, because it will likely be useful at some point
|
|
//PyObject *jit_module = PyImport_ImportModule("torch.jit");
|
|
//THPUtils_assert(jit_module, "class loader couldn't access "
|
|
//"torch.jit module");
|
|
//PyObject *jit_dict = PyModule_GetDict(jit_module);
|
|
|
|
return true;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
extern std::string runJITCPPTests();
|
|
|
|
void initJITBindings(PyObject *module) {
|
|
auto m = py::handle(module).cast<py::module>();
|
|
|
|
py::class_<python::IODescriptor>(m, "IODescriptor");
|
|
|
|
m.def("_jit_init", loadPythonClasses)
|
|
.def("_jit_pass_onnx", ToONNX)
|
|
.def("_jit_pass_onnx_peephole", PeepholeOptimizeONNX)
|
|
.def("_jit_pass_fuse", FuseGraph)
|
|
.def("_jit_pass_dce", [](std::shared_ptr<Graph>& g){
|
|
return EliminateDeadCode(g); // overload resolution
|
|
})
|
|
.def("_jit_pass_cse", EliminateCommonSubexpression)
|
|
.def("_jit_pass_peephole", PeepholeOptimize)
|
|
.def("_jit_pass_canonicalize", [](const std::shared_ptr<Graph>& g) {
|
|
return Canonicalize(g);
|
|
})
|
|
.def("_jit_pass_lint", LintGraph)
|
|
.def("_jit_pass_shape_analysis", [](Graph& graph, py::tuple inputs, bool with_grad) {
|
|
auto tensor_inputs = createVariableTensorList(inputs);
|
|
PropagateInputShapes(graph, ArgumentSpec(with_grad, tensor_inputs));
|
|
})
|
|
.def("_jit_pass_erase_number_types", EraseNumberTypes)
|
|
.def("_jit_pass_loop_unrolling", UnrollLoops)
|
|
.def("_jit_run_cpp_tests", [] {
|
|
// We have to release the GIL inside this method, because if we happen to
|
|
// initialize the autograd engine in these tests, the newly spawned worker threads will
|
|
// try to initialize their PyThreadState*, and they need the GIL for this.
|
|
AutoNoGIL _no_gil;
|
|
return runJITCPPTests();
|
|
})
|
|
.def("_jit_flatten", [](py::handle& obj) {
|
|
auto res = python::flatten(obj);
|
|
return std::make_pair(res.vars, res.desc);
|
|
})
|
|
.def("_jit_unflatten", [](autograd::variable_list vars, python::IODescriptor& desc) {
|
|
return py::reinterpret_steal<py::object>(python::unflatten(vars, desc));
|
|
})
|
|
.def("_jit_pass_onnx_block", BlockToONNX)
|
|
.def("_jit_pass_fixup_onnx_loops", FixupONNXLoops)
|
|
.def("_jit_pass_decompose_addmm", DecomposeAddmm)
|
|
.def("_jit_pass_specialize_undef", specializeUndef)
|
|
.def("_jit_differentiate", [](Graph &g, const std::vector<bool>& requires_grad) {
|
|
// the python binding slightly differs in semantics
|
|
// it makes a copy of the input Graph, and works on that
|
|
// jit::differentiate mutates the input Graph
|
|
auto g_clone = g.copy();
|
|
return differentiate(g_clone, requires_grad);
|
|
});
|
|
|
|
py::class_<ArgumentSpec>(m, "ArgumentSpec")
|
|
.def("__repr__", [](ArgumentSpec& self) {
|
|
std::ostringstream s;
|
|
s << self;
|
|
return s.str();
|
|
});
|
|
py::class_<Code>(m, "Code")
|
|
.def("executors", [](Code& c) {
|
|
return py::make_iterator(c.executors().begin(), c.executors().end());
|
|
});
|
|
|
|
py::class_<ExecutionPlanState>(m, "ExecutionPlanState")
|
|
.def_property_readonly("graph", [](ExecutionPlanState& s) {
|
|
return s.graph;
|
|
})
|
|
.def_property_readonly("code", [](ExecutionPlanState& s) {
|
|
return s.f;
|
|
})
|
|
.def_property_readonly("grad_executor", [](ExecutionPlanState& s) {
|
|
return s.grad_executor.get();
|
|
});
|
|
|
|
py::class_<Gradient>(m, "Gradient")
|
|
.def_property_readonly("f", [](Gradient& m) {
|
|
return m.f;
|
|
})
|
|
.def_property_readonly("df", [](Gradient& m) {
|
|
return m.df;
|
|
})
|
|
.def_property_readonly("f_real_outputs", [](Gradient& m) {
|
|
return m.f_real_outputs;
|
|
})
|
|
.def_property_readonly("df_input_vjps", [](Gradient& m) {
|
|
return m.df_input_vjps;
|
|
})
|
|
.def_property_readonly("df_input_captured_inputs", [](Gradient& m) {
|
|
return m.df_input_captured_inputs;
|
|
})
|
|
.def_property_readonly("df_input_captured_outputs", [](Gradient& m) {
|
|
return m.df_input_captured_outputs;
|
|
})
|
|
.def_property_readonly("df_output_vjps", [](Gradient& m) {
|
|
return m.df_output_vjps;
|
|
});
|
|
|
|
py::class_<GraphExecutorState>(m, "GraphExecutorState")
|
|
.def_property_readonly("graph", [](GraphExecutorState& s) {
|
|
return s.graph;
|
|
})
|
|
.def_property_readonly("execution_plans", [](GraphExecutorState& s) {
|
|
return s.execution_plans;
|
|
})
|
|
.def_property_readonly("autograd_fallback", [](GraphExecutorState& s) {
|
|
return s.autograd_fallback;
|
|
})
|
|
.def_property_readonly("autograd_fallback_graph", [](GraphExecutorState& s) {
|
|
return s.autograd_fallback_graph;
|
|
});
|
|
|
|
py::class_<GraphExecutor>(m, "GraphExecutor", py::dynamic_attr())
|
|
.def(
|
|
py::init([](py::function func,
|
|
variable_list inputs,
|
|
bool optimize) {
|
|
size_t num_inputs = inputs.size();
|
|
auto graph = tracer::createGraphByTracing(func, std::move(inputs), num_inputs);
|
|
return GraphExecutor(graph, optimize);
|
|
}),
|
|
py::arg("func"),
|
|
py::arg("inputs"),
|
|
py::arg("optimize") = true)
|
|
.def(
|
|
py::init([](std::shared_ptr<Graph> graph, bool optimize) {
|
|
return GraphExecutor(std::move(graph), optimize);
|
|
}),
|
|
py::arg("graph"),
|
|
py::arg("optimize") = true)
|
|
.def_property_readonly("graph", [](GraphExecutor& ge) {
|
|
return ge.graph();
|
|
})
|
|
.def("graph_for", [](GraphExecutor& ge, py::args args) {
|
|
return ge.graphFor(createVariableTensorList(args));
|
|
})
|
|
.def("get_debug_state", [](GraphExecutor& ge) {
|
|
return ge.getDebugState();
|
|
})
|
|
.def("__call__", [](GraphExecutor& ge, py::args args) -> py::object {
|
|
auto inputs = createVariableTensorList(args);
|
|
auto outputs = ge.run(std::move(inputs));
|
|
// if we don't tell pybind these are variables it chokes on the
|
|
// conversion.
|
|
// TODO: fix conversions to be sane and make sure this works.
|
|
if (outputs.size() == 0) {
|
|
return py::none();
|
|
} else if (outputs.size() == 1) {
|
|
return py::cast(autograd::as_variable_ref(outputs[0]));
|
|
} else {
|
|
py::tuple tuple(outputs.size());
|
|
for(size_t i = 0; i < outputs.size(); i++) {
|
|
tuple[i] = py::cast(autograd::as_variable_ref(outputs[i]));
|
|
}
|
|
return tuple;
|
|
}
|
|
});
|
|
|
|
initPythonIRBindings(module);
|
|
tracer::initPythonTracerBindings(module);
|
|
script::initTreeViewBindings(module);
|
|
script::initJitScriptBindings(module);
|
|
initBatchTensorBindings(module);
|
|
initRegisterBatchOpsBindings(module);
|
|
}
|
|
|
|
}}
|