mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Same fix as https://github.com/caffe2/caffe2/pull/249, but for SparseAdagrad. Also update the tests for both ops to test this functionality. Closes https://github.com/caffe2/caffe2/pull/675 Differential Revision: D5148750 Pulled By: akyrola fbshipit-source-id: d30b722429bc547fd53400c1a29e4ee9e2e6ed18
123 lines
4.8 KiB
Python
123 lines
4.8 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import functools
|
|
|
|
import hypothesis
|
|
from hypothesis import given
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
|
|
from caffe2.python import core
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
|
|
|
|
class TestAdam(hu.HypothesisTestCase):
|
|
|
|
@staticmethod
|
|
def ref_adam(param, mom1, mom2, grad, LR, ITER,
|
|
beta1, beta2, epsilon):
|
|
t = ITER + 1
|
|
corrected_local_rate = LR * np.sqrt(1 - np.power(beta2, t)) / \
|
|
(1 - np.power(beta1, t))
|
|
mom1_out = (beta1 * mom1) + (1 - beta1) * grad
|
|
mom2_out = (beta2 * mom2) + (1 - beta2) * np.square(grad)
|
|
param_out = param + corrected_local_rate * mom1_out / \
|
|
(np.sqrt(mom2_out) + epsilon)
|
|
return param_out, mom1_out, mom2_out
|
|
|
|
@given(inputs=hu.tensors(n=4),
|
|
ITER=st.integers(min_value=0, max_value=10000),
|
|
LR=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
beta1=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
beta2=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
epsilon=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
**hu.gcs)
|
|
def test_adam(self, inputs, ITER, LR, beta1, beta2, epsilon, gc, dc):
|
|
param, mom1, mom2, grad = inputs
|
|
ITER = np.array([ITER], dtype=np.int64)
|
|
LR = np.array([LR], dtype=np.float32)
|
|
|
|
op = core.CreateOperator(
|
|
"Adam",
|
|
["param", "mom1", "mom2", "grad", "lr", "iter"],
|
|
["output_param", "output_mom1", "output_mom2"],
|
|
beta1=beta1, beta2=beta2, epsilon=epsilon)
|
|
|
|
# Iter lives on the CPU
|
|
input_device_options = {'iter': hu.cpu_do}
|
|
|
|
self.assertReferenceChecks(
|
|
gc, op,
|
|
[param, mom1, mom2, grad, LR, ITER],
|
|
functools.partial(
|
|
self.ref_adam,
|
|
beta1=beta1, beta2=beta2, epsilon=epsilon),
|
|
input_device_options=input_device_options)
|
|
|
|
@given(inputs=hu.tensors(n=4),
|
|
ITER=st.integers(min_value=0, max_value=10000),
|
|
LR=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
beta1=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
beta2=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
epsilon=st.floats(min_value=0.01, max_value=0.99,
|
|
allow_nan=False, allow_infinity=False),
|
|
data_strategy=st.data(),
|
|
**hu.gcs)
|
|
def test_sparse_adam(self, inputs, ITER, LR, beta1, beta2, epsilon,
|
|
data_strategy, gc, dc):
|
|
param, mom1, mom2, grad = inputs
|
|
mom1 = np.absolute(mom1)
|
|
mom2 = np.absolute(mom2)
|
|
ITER = np.array([ITER], dtype=np.int64)
|
|
LR = np.array([LR], dtype=np.float32)
|
|
|
|
# Create an indexing array containing values which index into grad
|
|
indices = data_strategy.draw(
|
|
hu.tensor(dtype=np.int64,
|
|
elements=st.sampled_from(np.arange(grad.shape[0]))),
|
|
)
|
|
hypothesis.note('indices.shape: %s' % str(indices.shape))
|
|
|
|
# For now, the indices must be unique
|
|
hypothesis.assume(np.array_equal(np.unique(indices.flatten()),
|
|
np.sort(indices.flatten())))
|
|
|
|
# Sparsify grad
|
|
grad = grad[indices]
|
|
|
|
op = core.CreateOperator(
|
|
"SparseAdam",
|
|
["param", "mom1", "mom2", "indices", "grad", "lr", "iter"],
|
|
["param", "mom1", "mom2"],
|
|
beta1=beta1, beta2=beta2, epsilon=epsilon)
|
|
|
|
def ref_sparse(param, mom1, mom2, indices, grad, LR, ITER):
|
|
param_out = np.copy(param)
|
|
mom1_out = np.copy(mom1)
|
|
mom2_out = np.copy(mom2)
|
|
for i, index in enumerate(indices):
|
|
param_out[index], mom1_out[index], mom2_out[index] = \
|
|
self.ref_adam(param[index], mom1[index], mom2[index],
|
|
grad[i], LR, ITER,
|
|
beta1, beta2, epsilon)
|
|
return (param_out, mom1_out, mom2_out)
|
|
|
|
# Iter lives on the CPU
|
|
input_device_options = {'iter': hu.cpu_do}
|
|
|
|
self.assertReferenceChecks(
|
|
gc, op,
|
|
[param, mom1, mom2, indices, grad, LR, ITER],
|
|
ref_sparse,
|
|
input_device_options=input_device_options)
|