mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: `IValue::toString()` creates a `new c10::intrusive_ptr` (like `std::shared_ptr`) and `->string()` immediately accesses it, creating an atomic reference increment/decrement. We can skip both of these operations by calling `IValue::toStringRef()`. Test Plan: CI Reviewed By: jaybean-dev Differential Revision: D39605242 Pull Request resolved: https://github.com/pytorch/pytorch/pull/85437 Approved by: https://github.com/jfix71
121 lines
3.7 KiB
C++
121 lines
3.7 KiB
C++
#include <gtest/gtest.h>
|
|
#include <torch/csrc/deploy/deploy.h>
|
|
#include <torch/cuda.h>
|
|
#include <torch/script.h>
|
|
#include <torch/torch.h>
|
|
#include <future>
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
int main(int argc, char* argv[]) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
int rc = RUN_ALL_TESTS();
|
|
return rc;
|
|
}
|
|
|
|
const char* simple = "torch/csrc/deploy/example/generated/simple";
|
|
const char* simple_jit = "torch/csrc/deploy/example/generated/simple_jit";
|
|
|
|
const char* path(const char* envname, const char* path) {
|
|
const char* e = getenv(envname);
|
|
return e ? e : path;
|
|
}
|
|
|
|
TEST(TorchDeployGPUTest, SimpleModel) {
|
|
if (!torch::cuda::is_available()) {
|
|
GTEST_SKIP();
|
|
}
|
|
const char* model_filename = path("SIMPLE", simple);
|
|
const char* jit_filename = path("SIMPLE_JIT", simple_jit);
|
|
|
|
// Test
|
|
torch::deploy::InterpreterManager m(1);
|
|
torch::deploy::Package p = m.loadPackage(model_filename);
|
|
auto model = p.loadPickle("model", "model.pkl");
|
|
{
|
|
auto M = model.acquireSession();
|
|
M.self.attr("to")({"cuda"});
|
|
}
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
std::vector<at::IValue> inputs;
|
|
{
|
|
auto I = p.acquireSession();
|
|
auto eg = I.self.attr("load_pickle")({"model", "example.pkl"}).toIValue();
|
|
inputs = eg.toTupleRef().elements();
|
|
inputs[0] = inputs[0].toTensor().to("cuda");
|
|
}
|
|
at::Tensor output = model(inputs).toTensor();
|
|
ASSERT_TRUE(output.device().is_cuda());
|
|
|
|
// Reference
|
|
auto ref_model = torch::jit::load(jit_filename);
|
|
ref_model.to(torch::kCUDA);
|
|
at::Tensor ref_output = ref_model.forward(inputs).toTensor();
|
|
|
|
ASSERT_TRUE(ref_output.allclose(output, 1e-03, 1e-05));
|
|
}
|
|
|
|
TEST(TorchDeployGPUTest, UsesDistributed) {
|
|
const auto model_filename = path(
|
|
"USES_DISTRIBUTED",
|
|
"torch/csrc/deploy/example/generated/uses_distributed");
|
|
torch::deploy::InterpreterManager m(1);
|
|
torch::deploy::Package p = m.loadPackage(model_filename);
|
|
{
|
|
auto I = p.acquireSession();
|
|
I.self.attr("import_module")({"uses_distributed"});
|
|
}
|
|
}
|
|
|
|
#ifdef FBCODE_CAFFE2
|
|
TEST(TorchDeployGPUTest, TensorRT) {
|
|
if (!torch::cuda::is_available()) {
|
|
GTEST_SKIP();
|
|
}
|
|
auto packagePath = path(
|
|
"MAKE_TRT_MODULE", "torch/csrc/deploy/example/generated/make_trt_module");
|
|
torch::deploy::InterpreterManager m(1);
|
|
torch::deploy::Package p = m.loadPackage(packagePath);
|
|
auto makeModel = p.loadPickle("make_trt_module", "model.pkl");
|
|
{
|
|
auto I = makeModel.acquireSession();
|
|
auto model = I.self(at::ArrayRef<at::IValue>{});
|
|
auto input = at::ones({1, 2, 3}).cuda();
|
|
auto output = input * 2;
|
|
ASSERT_TRUE(
|
|
output.allclose(model(at::IValue{input}).toIValue().toTensor()));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// OSS build does not have bultin numpy support yet. Use this flag to guard the
|
|
// test case.
|
|
#if HAS_NUMPY
|
|
TEST(TorchpyTest, TestNumpy) {
|
|
torch::deploy::InterpreterManager m(2);
|
|
auto noArgs = at::ArrayRef<torch::deploy::Obj>();
|
|
auto I = m.acquireOne();
|
|
auto mat35 = I.global("numpy", "random").attr("rand")({3, 5});
|
|
auto mat58 = I.global("numpy", "random").attr("rand")({5, 8});
|
|
auto mat38 = I.global("numpy", "matmul")({mat35, mat58});
|
|
EXPECT_EQ(2, mat38.attr("shape").attr("__len__")(noArgs).toIValue().toInt());
|
|
EXPECT_EQ(3, mat38.attr("shape").attr("__getitem__")({0}).toIValue().toInt());
|
|
EXPECT_EQ(8, mat38.attr("shape").attr("__getitem__")({1}).toIValue().toInt());
|
|
}
|
|
#endif
|
|
|
|
#if HAS_PYYAML
|
|
TEST(TorchpyTest, TestPyYAML) {
|
|
const std::string kDocument = "a: 1\n";
|
|
|
|
torch::deploy::InterpreterManager m(2);
|
|
auto I = m.acquireOne();
|
|
|
|
auto load = I.global("yaml", "load")({kDocument});
|
|
EXPECT_EQ(1, load.attr("__getitem__")({"a"}).toIValue().toInt());
|
|
|
|
auto dump = I.global("yaml", "dump")({load});
|
|
EXPECT_EQ(kDocument, dump.toIValue().toStringRef());
|
|
}
|
|
#endif
|