pytorch/caffe2/python/layers/functional.py
Andrey Malevich a3726759c6 Add a way do describe layers in a more AdHoc manner.
Summary:
This diff is trying to address one of the concerns that Xianjie have had - requirements create a layer for all operators and attach pass shapes and other info around.

The basic idea of the diff:
1. Try to create a layer with a given name, but if it's not available try to fallback on operator with that name (that is expected to have no parameters).
2. For all operators that we're adding through this functional style of creation - try to use C2 Shape/Type inference logic to get output type. If we fail to get - it just return untyped record and expect user to annotate it when it's really needed.

Reviewed By: xianjiec

Differential Revision: D4408771

fbshipit-source-id: aced7487571940d726424269970df0eb62670c39
2017-02-27 23:30:39 -08:00

73 lines
2.6 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, schema, scope, workspace
from caffe2.python.layers.layers import (
ModelLayer,
)
import caffe2.proto.caffe2_pb2 as caffe2_pb2
import numpy as np
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class Functional(ModelLayer):
def __init__(self, model, input_record, num_outputs, function,
name='functional', **kwargs):
super(Functional, self).__init__(model, name, input_record, **kwargs)
self._function = function
with scope.NameScope(self.name):
self.output_schema = schema.NewRecord(
model.net, schema.RawTuple(num_outputs))
# Fake execution of the function to infer shapes and types automatically
had_issues = False
try:
type_net = core.Net('_temp_type_and_shape_inference_net')
schema.InitEmptyRecord(type_net, input_record, enforce_types=True)
function(type_net, self.input_record, self.output_schema)
(shapes, types) = workspace.InferShapesAndTypes([type_net], {})
for i in range(num_outputs):
blob = self.output_schema[i]()
if blob not in types or blob not in shapes:
had_issues = True
continue
# If batch dimension is not first - give up on shape
# inference for that blob
if shapes[blob][0] != 0:
had_issues = True
continue
shape = tuple(shapes[blob][1:])
# TODO(amalevich): Move it to some shared library
dtype = None
if types[blob] == caffe2_pb2.TensorProto.DOUBLE:
dtype = (np.float64, shape)
elif types[blob] == caffe2_pb2.TensorProto.FLOAT:
dtype = (np.float32, shape)
elif types[blob] == caffe2_pb2.TensorProto.INT32:
dtype = (np.int32, shape)
elif types[blob] == caffe2_pb2.TensorProto.INT64:
dtype = (np.int64, shape)
if dtype is not None:
self.output_schema[i].set_type(dtype)
except TypeError as ex:
had_issues = True
logger.warning(str(ex))
if had_issues:
logger.warning(
"Type inference had problems for layer: {}".format(self.name))
def add_ops(self, net):
self._function(net, self.input_record, self.output_schema)