mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This is a proof-of-concept of how we could serialize a guard and deserialize it back from the bytes. The main behavioral change introduced in this diff is on CheckFunctionManager: ``` check_fn_manager = CheckFunctionManager(code, output_graph, guards_serialization_mode="save") guards_state: bytes = check_fn_manager.guards_state ``` Once `guards_serialization_mode` is set to `save`, CheckFunctionManager will return an addtional `bytes` object called `guards_state` which should contain all the information needed for deserializing guards later. When we load back guards state, we will set `guards_serialization_mode` is set to `load`: ``` output_graph_state = pickle.loads(guards_state) check_fn_manager = CheckFunctionManager(code, output_graph_state, guards_serialization_mode="load") ``` # TENSOR_MATCH Since we have many types of guards to support, we will break the work into small diffs instead of a single diff to support every guards. We kick off the work from TENSOR_MATCH from this diff. # Testing For each type of guard we will test it like the following: 1. Use guard_filter_fn to select 1 type of guard each time. 2. Call InstructionTranslator directly on an example function to get OutputGraph and CheckFunctionManager (reference guard manager) 3. Serialize->deserialize the output graph state and re-build the guards with a new CheckFunctionManager (loaded guard manager) 4. Throw a set of example inputs to both reference and loaded guard manager to see if their behavior match. Pull Request resolved: https://github.com/pytorch/pytorch/pull/151318 Approved by: https://github.com/jansel, https://github.com/anijain2305
148 lines
4.8 KiB
Python
148 lines
4.8 KiB
Python
# Owner(s): ["module: dynamo"]
|
|
|
|
import dataclasses
|
|
import pickle
|
|
import sys
|
|
import types
|
|
|
|
import torch
|
|
import torch._dynamo.testing
|
|
import torch._inductor.config
|
|
import torch._inductor.test_case
|
|
import torch.onnx.operators
|
|
import torch.utils.cpp_extension
|
|
from torch._dynamo.bytecode_transformation import transform_code_object
|
|
from torch._dynamo.guards import CheckFunctionManager, CompileId
|
|
from torch._dynamo.symbolic_convert import InstructionTranslator
|
|
from torch._dynamo.utils import dynamo_timed, get_metrics_context
|
|
from torch._guards import compile_context, CompileContext, tracing
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class _FrameState:
|
|
f_locals: dict
|
|
f_globals: dict
|
|
f_code: types.CodeType
|
|
f_builtins: dict
|
|
|
|
|
|
class TestGuardSerialization(torch._inductor.test_case.TestCase):
|
|
def _tracefunc(self, frame, event, arg):
|
|
if event != "call":
|
|
return
|
|
|
|
if self._frame_state is not None:
|
|
return
|
|
|
|
self._frame_state = _FrameState(
|
|
f_locals=frame.f_locals,
|
|
f_globals=frame.f_globals,
|
|
f_code=frame.f_code,
|
|
f_builtins=frame.f_builtins,
|
|
)
|
|
|
|
def _test_serialization(self, guard_type, fn, *args, **kwargs):
|
|
self._frame_state = None
|
|
sys.settrace(self._tracefunc)
|
|
try:
|
|
fn(*args, **kwargs)
|
|
finally:
|
|
sys.settrace(None)
|
|
|
|
assert self._frame_state is not None
|
|
|
|
def guard_filter_fn(guards):
|
|
return [g.guard_type == guard_type for g in guards]
|
|
|
|
ref_gm = None
|
|
loaded_gm = None
|
|
|
|
def transform(instructions: list, code_options: dict[str, object]):
|
|
"""
|
|
The goal is here is not to reimplement dynamo, but just to have a
|
|
simplified version to extract the state from symbolic convert.
|
|
Should not work on all cases, but should work on simple functions
|
|
in this test file.
|
|
"""
|
|
nonlocal ref_gm
|
|
nonlocal loaded_gm
|
|
|
|
tracer = InstructionTranslator(
|
|
instructions,
|
|
self._frame_state.f_code,
|
|
self._frame_state.f_locals,
|
|
self._frame_state.f_globals,
|
|
self._frame_state.f_builtins,
|
|
(), # TODO closure
|
|
[], # TODO tf_mode_stack,
|
|
code_options,
|
|
lambda gm, *args, **kwargs: gm.forward,
|
|
one_graph=False,
|
|
export=False,
|
|
export_constraints=None,
|
|
frame_state=None,
|
|
speculation_log=None,
|
|
exn_vt_stack=None,
|
|
distributed_state=None,
|
|
)
|
|
with compile_context(CompileContext(CompileId(0, 0))), tracing(
|
|
tracer.output.tracing_context
|
|
), tracer.set_current_tx(), get_metrics_context(), dynamo_timed(""):
|
|
tracer.run()
|
|
|
|
check_fn_manager = CheckFunctionManager(
|
|
self._frame_state.f_code,
|
|
tracer.output,
|
|
guard_filter_fn=guard_filter_fn,
|
|
guards_serialization_mode="save",
|
|
)
|
|
ref_gm = check_fn_manager.guard_manager
|
|
guards_state = check_fn_manager.guards_state
|
|
self.assertIsNotNone(guards_state)
|
|
guards_state = pickle.loads(guards_state)
|
|
|
|
check_fn_manager = CheckFunctionManager(
|
|
self._frame_state.f_code,
|
|
guards_state.output_graph,
|
|
guards_serialization_mode="load",
|
|
)
|
|
loaded_gm = check_fn_manager.guard_manager
|
|
|
|
try:
|
|
transform_code_object(self._frame_state.f_code, transform)
|
|
finally:
|
|
self._frame_state = None
|
|
|
|
self.assertIsNotNone(ref_gm)
|
|
self.assertIsNotNone(loaded_gm)
|
|
return ref_gm, loaded_gm
|
|
|
|
def _test_check_fn(self, ref, loaded, inputs, expected):
|
|
self.assertIsInstance(inputs, dict)
|
|
self.assertEqual(ref.check(inputs), expected)
|
|
self.assertEqual(ref.check(inputs), loaded.check(inputs))
|
|
|
|
def test_tensor_match(self):
|
|
def f(x: torch.Tensor):
|
|
return x + 1
|
|
|
|
ref, loaded = self._test_serialization(
|
|
"TENSOR_MATCH", f, torch.ones(2, dtype=torch.float32)
|
|
)
|
|
self._test_check_fn(
|
|
ref, loaded, {"x": torch.randn(2, dtype=torch.float32)}, True
|
|
)
|
|
self._test_check_fn(
|
|
ref, loaded, {"x": torch.randn(3, dtype=torch.float32)}, False
|
|
)
|
|
self._test_check_fn(
|
|
ref, loaded, {"x": torch.randn(2, dtype=torch.float64)}, False
|
|
)
|
|
self._test_check_fn(ref, loaded, {"x": None}, False)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from torch._dynamo.test_case import run_tests
|
|
|
|
run_tests()
|