mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Update rnn_cell.py and char_rnn.py example with new `brew` model. - Deprecated CNNModelHelper - replace all helper functions with brew helper functions - Use `model.net.<SingleOp>` format to create bare bone Operator for better clarity. Reviewed By: salexspb Differential Revision: D5062963 fbshipit-source-id: 254f7b9059a29621027d2b09e932f3f81db2e0ce
115 lines
3.8 KiB
Python
115 lines
3.8 KiB
Python
## @package normalization
|
|
# Module caffe2.python.helpers.normalization
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import core
|
|
|
|
|
|
def lrn(model, blob_in, blob_out, order="NCHW", use_cudnn=False, **kwargs):
|
|
"""LRN"""
|
|
if use_cudnn:
|
|
kwargs['engine'] = 'CUDNN'
|
|
blobs_out = blob_out
|
|
else:
|
|
blobs_out = [blob_out, "_" + blob_out + "_scale"]
|
|
lrn = model.net.LRN(
|
|
blob_in,
|
|
blobs_out,
|
|
order=order,
|
|
**kwargs
|
|
)
|
|
|
|
if use_cudnn:
|
|
return lrn
|
|
else:
|
|
return lrn[0]
|
|
|
|
|
|
def softmax(model, blob_in, blob_out=None, use_cudnn=False, **kwargs):
|
|
"""Softmax."""
|
|
if use_cudnn:
|
|
kwargs['engine'] = 'CUDNN'
|
|
if blob_out is not None:
|
|
return model.net.Softmax(blob_in, blob_out, **kwargs)
|
|
else:
|
|
return model.net.Softmax(blob_in, **kwargs)
|
|
|
|
|
|
def instance_norm(model, blob_in, blob_out, dim_in, order="NCHW", **kwargs):
|
|
blob_out = blob_out or model.net.NextName()
|
|
# Input: input, scale, bias
|
|
# Output: output, saved_mean, saved_inv_std
|
|
# scale: initialize with ones
|
|
# bias: initialize with zeros
|
|
|
|
def init_blob(value, suffix):
|
|
return model.param_init_net.ConstantFill(
|
|
[], blob_out + "_" + suffix, shape=[dim_in], value=value)
|
|
scale, bias = init_blob(1.0, "s"), init_blob(0.0, "b")
|
|
|
|
model.params.extend([scale, bias])
|
|
model.weights.append(scale)
|
|
model.biases.append(bias)
|
|
blob_outs = [blob_out, blob_out + "_sm", blob_out + "_siv"]
|
|
if 'is_test' in kwargs and kwargs['is_test']:
|
|
blob_outputs = model.net.InstanceNorm(
|
|
[blob_in, scale, bias], [blob_out],
|
|
order=order, **kwargs)
|
|
return blob_outputs
|
|
else:
|
|
blob_outputs = model.net.InstanceNorm(
|
|
[blob_in, scale, bias], blob_outs,
|
|
order=order, **kwargs)
|
|
# Return the output
|
|
return blob_outputs[0]
|
|
|
|
|
|
def spatial_bn(model, blob_in, blob_out, dim_in, order="NCHW", **kwargs):
|
|
blob_out = blob_out or model.net.NextName()
|
|
# Input: input, scale, bias, est_mean, est_inv_var
|
|
# Output: output, running_mean, running_inv_var, saved_mean,
|
|
# saved_inv_var
|
|
# scale: initialize with ones
|
|
# bias: initialize with zeros
|
|
# est mean: zero
|
|
# est var: ones
|
|
|
|
def init_blob(value, suffix):
|
|
return model.param_init_net.ConstantFill(
|
|
[], blob_out + "_" + suffix, shape=[dim_in], value=value)
|
|
|
|
if model.init_params:
|
|
scale, bias = init_blob(1.0, "s"), init_blob(0.0, "b")
|
|
running_mean = init_blob(0.0, "rm")
|
|
running_inv_var = init_blob(1.0, "riv")
|
|
else:
|
|
scale = core.ScopedBlobReference(
|
|
blob_out + '_s', model.param_init_net)
|
|
bias = core.ScopedBlobReference(
|
|
blob_out + '_b', model.param_init_net)
|
|
running_mean = core.ScopedBlobReference(
|
|
blob_out + '_rm', model.param_init_net)
|
|
running_inv_var = core.ScopedBlobReference(
|
|
blob_out + '_riv', model.param_init_net)
|
|
|
|
model.params.extend([scale, bias])
|
|
model.computed_params.extend([running_mean, running_inv_var])
|
|
model.weights.append(scale)
|
|
model.biases.append(bias)
|
|
blob_outs = [blob_out, running_mean, running_inv_var,
|
|
blob_out + "_sm", blob_out + "_siv"]
|
|
if 'is_test' in kwargs and kwargs['is_test']:
|
|
blob_outputs = model.net.SpatialBN(
|
|
[blob_in, scale, bias, blob_outs[1], blob_outs[2]], [blob_out],
|
|
order=order, **kwargs)
|
|
return blob_outputs
|
|
else:
|
|
blob_outputs = model.net.SpatialBN(
|
|
[blob_in, scale, bias, blob_outs[1], blob_outs[2]], blob_outs,
|
|
order=order, **kwargs)
|
|
# Return the output
|
|
return blob_outputs[0]
|