pytorch/caffe2/python/helpers/normalization.py
Yiming Wu a28b01c155 rnn with brew
Summary:
Update rnn_cell.py and char_rnn.py example with new `brew` model.

- Deprecated CNNModelHelper
- replace all helper functions with brew helper functions
- Use `model.net.<SingleOp>` format to create bare bone Operator for better clarity.

Reviewed By: salexspb

Differential Revision: D5062963

fbshipit-source-id: 254f7b9059a29621027d2b09e932f3f81db2e0ce
2017-05-16 13:33:44 -07:00

115 lines
3.8 KiB
Python

## @package normalization
# Module caffe2.python.helpers.normalization
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core
def lrn(model, blob_in, blob_out, order="NCHW", use_cudnn=False, **kwargs):
"""LRN"""
if use_cudnn:
kwargs['engine'] = 'CUDNN'
blobs_out = blob_out
else:
blobs_out = [blob_out, "_" + blob_out + "_scale"]
lrn = model.net.LRN(
blob_in,
blobs_out,
order=order,
**kwargs
)
if use_cudnn:
return lrn
else:
return lrn[0]
def softmax(model, blob_in, blob_out=None, use_cudnn=False, **kwargs):
"""Softmax."""
if use_cudnn:
kwargs['engine'] = 'CUDNN'
if blob_out is not None:
return model.net.Softmax(blob_in, blob_out, **kwargs)
else:
return model.net.Softmax(blob_in, **kwargs)
def instance_norm(model, blob_in, blob_out, dim_in, order="NCHW", **kwargs):
blob_out = blob_out or model.net.NextName()
# Input: input, scale, bias
# Output: output, saved_mean, saved_inv_std
# scale: initialize with ones
# bias: initialize with zeros
def init_blob(value, suffix):
return model.param_init_net.ConstantFill(
[], blob_out + "_" + suffix, shape=[dim_in], value=value)
scale, bias = init_blob(1.0, "s"), init_blob(0.0, "b")
model.params.extend([scale, bias])
model.weights.append(scale)
model.biases.append(bias)
blob_outs = [blob_out, blob_out + "_sm", blob_out + "_siv"]
if 'is_test' in kwargs and kwargs['is_test']:
blob_outputs = model.net.InstanceNorm(
[blob_in, scale, bias], [blob_out],
order=order, **kwargs)
return blob_outputs
else:
blob_outputs = model.net.InstanceNorm(
[blob_in, scale, bias], blob_outs,
order=order, **kwargs)
# Return the output
return blob_outputs[0]
def spatial_bn(model, blob_in, blob_out, dim_in, order="NCHW", **kwargs):
blob_out = blob_out or model.net.NextName()
# Input: input, scale, bias, est_mean, est_inv_var
# Output: output, running_mean, running_inv_var, saved_mean,
# saved_inv_var
# scale: initialize with ones
# bias: initialize with zeros
# est mean: zero
# est var: ones
def init_blob(value, suffix):
return model.param_init_net.ConstantFill(
[], blob_out + "_" + suffix, shape=[dim_in], value=value)
if model.init_params:
scale, bias = init_blob(1.0, "s"), init_blob(0.0, "b")
running_mean = init_blob(0.0, "rm")
running_inv_var = init_blob(1.0, "riv")
else:
scale = core.ScopedBlobReference(
blob_out + '_s', model.param_init_net)
bias = core.ScopedBlobReference(
blob_out + '_b', model.param_init_net)
running_mean = core.ScopedBlobReference(
blob_out + '_rm', model.param_init_net)
running_inv_var = core.ScopedBlobReference(
blob_out + '_riv', model.param_init_net)
model.params.extend([scale, bias])
model.computed_params.extend([running_mean, running_inv_var])
model.weights.append(scale)
model.biases.append(bias)
blob_outs = [blob_out, running_mean, running_inv_var,
blob_out + "_sm", blob_out + "_siv"]
if 'is_test' in kwargs and kwargs['is_test']:
blob_outputs = model.net.SpatialBN(
[blob_in, scale, bias, blob_outs[1], blob_outs[2]], [blob_out],
order=order, **kwargs)
return blob_outputs
else:
blob_outputs = model.net.SpatialBN(
[blob_in, scale, bias, blob_outs[1], blob_outs[2]], blob_outs,
order=order, **kwargs)
# Return the output
return blob_outputs[0]