pytorch/torch/distributed/_composable/replicate.py
Charlie Yan a1a2f548a9 [Composable API] Enable composable fully_shard submodules in replicate parent module (#90711)
To make sure `fully_shard` and `replicate` can work together, we need to check for each other in the implementation. This change adds the check in `replicate()`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90711
Approved by: https://github.com/mrshenli
2022-12-17 09:28:38 +00:00

96 lines
2.9 KiB
Python

from typing import List, Tuple
import torch
import torch.nn as nn
from . import _ddp
from .contract import contract, _get_registry
@contract()
def replicate(
module: nn.Module, # NOTE: contract now supports single module only
**kwargs,
) -> nn.Module:
r"""Replicates a module
Args:
module (torch.nn.Module): module to replicate
Example::
>>> module = nn.Linear(3, 3)
>>> replicate(module)
"""
_ReplicateState().mark_modules(module, **kwargs)
return module
def _can_compose(module: nn.Module) -> bool:
r"""Check if module is composable for `replicate` API."""
return "fully_shard" not in _get_registry(module)
class _ReplicateState:
def __init__(self) -> None:
self.modules: List[nn.Module] = []
self.has_initialized: bool = False
self._param_list: nn.ParameterList = nn.ParameterList()
self.kwargs: dict = {}
def mark_modules(self, *modules: nn.Module, **kwargs) -> None:
for module in modules:
if not _can_compose(module):
raise AssertionError("Cannot apply `replicate()` on a Module already managed by `fully_shard`")
self.modules.append(module)
replicate.state(module)._distributed_state = self
replicate.state(module)._params_collected = False
module.register_forward_pre_hook(self.forward_pre_hook)
# TODO(@yhcharles): fix type error
module.register_forward_hook(self.forward_post_hook) # type: ignore[arg-type]
self.kwargs = kwargs
def _recursive_collect_params(self, module: nn.Module) -> None:
# skip if managed by other APIs
if not _can_compose(module):
return
# skip if module parameters already collected
if hasattr(replicate.state(module), "_params_collected"):
if replicate.state(module)._params_collected:
return
replicate.state(module)._params_collected = True
self._param_list.extend(
param
for param in module.parameters(recurse=False)
if param.requires_grad
)
for child in module.children():
self._recursive_collect_params(child)
def init_helper(self) -> None:
if self.has_initialized:
return
self.has_initialized = True
for module in self.modules:
self._recursive_collect_params(module)
self._ddp = _ddp.DistributedDataParallel(
self._param_list, **self.kwargs
)
def forward_pre_hook(
self, module: nn.Module, input: Tuple[torch.Tensor]
) -> None:
self.init_helper()
self._ddp.pre_forward()
def forward_post_hook(
self,
module: nn.Module,
input: Tuple[torch.Tensor],
output: torch.Tensor,
) -> torch.Tensor:
return self._ddp.post_forward(output)