mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
**Summary** NamedTuple attributes can be annotated to declare their type:
```python
class MyNamedTuple(NamedTuple):
x: int
y: torch.Tensor
z: MyOtherType
```
Normally in python you can also declare your types as strings, `x: 'int'`. But NamedTuples previously didn't support this, because their annotation evaluation process was slightly different. This PR updates the NamedTuple attribute type annotation evaluation method to support ForwardRef declarations (i.e. declaring as strings).
**Details**
Below I repeat the comment I left in _jit_internal.py:
NamedTuple types are slightly different from normal types.
Normally, annotations are evaluted like this (during jit.script):
1. Load strings of python code into c++ and parse.
2. Get annotations as strings
3. Use the PythonResolver's resolution callback (rcb) to convert the string into a python object
4. We call into annotations.py:ann_to_type to convert python obj from step 3 into a type that torchscript understands.
NamedTuples are more complicated, because they have sub-types. Normally, once we have the NamedTuple type object from #3, we can just look at the annotation literal values and use ann_to_type directly on them.
But sometimes, users will annotate with string literals, e.g.
```
x: 'int'
```
This also happens with PEP563 (from __forward__ import annotations)
These annotations appear in the annotation dict as ForwardRef('int').
Then, we need to convert the string into a python object. This requires having local context for custom objects or imported types. rcb() is what gives us this. So, we plumb rcb through the stack so it can be used in this context for the if block below.
FAQ:
- Why do we need this special handling for NamedTuple but string annotations work fine for normal types? Normally, we parse the string directly and then call rcb() directly from C++.
- Why not use ForwardRef._evaluate? For that, we need globals() and locals() for the local context where the NamedTuple was defined. rcb is what lets us look up into these. So, basically rcb does the hard work for us.
- What is rcb? rcb is a ResolutionCallback - python callable that takes a string and returns a type. It's generated by `createResolutionCallback.*` in _jit_internal.py.
**Why is this only partial support**:
This only plumbs the rcb through some paths. In particular, the `toSugaredValue` path uses a fake rcb.
**Alternatives**:
We could also treat this the way we treat non-nn.Module classes: we evaluate them separately, ahead of time. That solution is probably better, but probably requires a more risky refactor for the way NamedTuples are handled.
Fixes #95858
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96933
Approved by: https://github.com/qihqi
463 lines
17 KiB
Python
463 lines
17 KiB
Python
import ast
|
|
import dis
|
|
import enum
|
|
import inspect
|
|
import re
|
|
import builtins
|
|
import torch
|
|
import warnings
|
|
from .._jit_internal import List, Tuple, is_tuple, is_list, Dict, is_dict, Optional, \
|
|
is_optional, _qualified_name, Any, Future, is_future, _Await, is_await, is_ignored_fn, Union, is_union
|
|
from .._jit_internal import BroadcastingList1, BroadcastingList2, BroadcastingList3 # type: ignore[attr-defined]
|
|
from ._state import _get_script_class
|
|
|
|
from torch._C import TensorType, TupleType, FloatType, IntType, ComplexType, \
|
|
ListType, StringType, DictType, BoolType, OptionalType, InterfaceType, AnyType, \
|
|
NoneType, DeviceObjType, StreamObjType, FutureType, AwaitType, EnumType, UnionType, NumberType
|
|
|
|
|
|
from textwrap import dedent
|
|
from torch._sources import get_source_lines_and_file
|
|
from typing import Type
|
|
|
|
if torch.distributed.rpc.is_available():
|
|
from .._jit_internal import RRef, is_rref
|
|
from torch._C import RRefType
|
|
|
|
from torch._ops import OpOverloadPacket
|
|
|
|
class Module:
|
|
def __init__(self, name, members):
|
|
self.name = name
|
|
self.members = members
|
|
|
|
def __getattr__(self, name):
|
|
try:
|
|
return self.members[name]
|
|
except KeyError:
|
|
raise RuntimeError(f"Module {self.name} has no member called {name}") from None
|
|
|
|
|
|
class EvalEnv:
|
|
env = {
|
|
'torch': Module('torch', {'Tensor': torch.Tensor}),
|
|
'Tensor': torch.Tensor,
|
|
'typing': Module('typing', {'Tuple': Tuple}),
|
|
'Tuple': Tuple,
|
|
'List': List,
|
|
'Dict': Dict,
|
|
'Optional': Optional,
|
|
'Union': Union,
|
|
'Future': Future,
|
|
'Await': _Await
|
|
}
|
|
|
|
def __init__(self, rcb):
|
|
self.rcb = rcb
|
|
if torch.distributed.rpc.is_available():
|
|
self.env['RRef'] = RRef
|
|
|
|
def __getitem__(self, name):
|
|
if name in self.env:
|
|
return self.env[name]
|
|
if self.rcb is not None:
|
|
return self.rcb(name)
|
|
return getattr(builtins, name, None)
|
|
|
|
def get_signature(fn, rcb, loc, is_method):
|
|
if isinstance(fn, OpOverloadPacket):
|
|
signature = try_real_annotations(fn.op, loc)
|
|
else:
|
|
signature = try_real_annotations(fn, loc)
|
|
if signature is not None and is_method:
|
|
# If this is a method, then the signature will include a type for
|
|
# `self`, but type comments do not contain a `self`. So strip it
|
|
# away here so everything is consistent (`inspect.ismethod` does
|
|
# not work here since `fn` is unbound at this point)
|
|
param_types, return_type = signature
|
|
param_types = param_types[1:]
|
|
signature = (param_types, return_type)
|
|
|
|
if signature is None:
|
|
type_line, source = None, None
|
|
try:
|
|
source = dedent(''.join(get_source_lines_and_file(fn)[0]))
|
|
type_line = get_type_line(source)
|
|
except TypeError:
|
|
pass
|
|
# This might happen both because we failed to get the source of fn, or
|
|
# because it didn't have any annotations.
|
|
if type_line is not None:
|
|
signature = parse_type_line(type_line, rcb, loc)
|
|
|
|
return signature
|
|
|
|
|
|
def is_function_or_method(the_callable):
|
|
# A stricter version of `inspect.isroutine` that does not pass for built-in
|
|
# functions
|
|
return inspect.isfunction(the_callable) or inspect.ismethod(the_callable)
|
|
|
|
|
|
def is_vararg(the_callable):
|
|
if not is_function_or_method(the_callable) and hasattr(the_callable, '__call__'): # noqa: B004
|
|
# If `the_callable` is a class, de-sugar the call so we can still get
|
|
# the signature
|
|
the_callable = the_callable.__call__
|
|
|
|
if is_function_or_method(the_callable):
|
|
return inspect.getfullargspec(the_callable).varargs is not None
|
|
else:
|
|
return False
|
|
|
|
|
|
def get_param_names(fn, n_args):
|
|
if isinstance(fn, OpOverloadPacket):
|
|
fn = fn.op
|
|
|
|
if not is_function_or_method(fn) and hasattr(fn, '__call__') and is_function_or_method(fn.__call__): # noqa: B004
|
|
# De-sugar calls to classes
|
|
fn = fn.__call__
|
|
|
|
if is_function_or_method(fn):
|
|
if is_ignored_fn(fn):
|
|
fn = inspect.unwrap(fn)
|
|
return inspect.getfullargspec(fn).args
|
|
else:
|
|
# The `fn` was not a method or function (maybe a class with a __call__
|
|
# method, so use a default param name list)
|
|
return [str(i) for i in range(n_args)]
|
|
|
|
|
|
def check_fn(fn, loc):
|
|
# Make sure the function definition is not a class instantiation
|
|
try:
|
|
source = dedent(''.join(get_source_lines_and_file(fn)[0]))
|
|
except (TypeError, IOError):
|
|
return
|
|
if source is None:
|
|
return
|
|
|
|
py_ast = ast.parse(source)
|
|
if len(py_ast.body) == 1 and isinstance(py_ast.body[0], ast.ClassDef):
|
|
raise torch.jit.frontend.FrontendError(
|
|
loc, f"Cannot instantiate class '{py_ast.body[0].name}' in a script function")
|
|
if len(py_ast.body) != 1 or not isinstance(py_ast.body[0], ast.FunctionDef):
|
|
raise torch.jit.frontend.FrontendError(loc, "Expected a single top-level function")
|
|
|
|
|
|
def _eval_no_call(stmt, glob, loc):
|
|
"""Evaluate statement as long as it does not contain any method/function calls"""
|
|
bytecode = compile(stmt, "", mode="eval")
|
|
for insn in dis.get_instructions(bytecode):
|
|
if "CALL" in insn.opname:
|
|
raise RuntimeError(f"Type annotation should not contain calls, but '{stmt}' does")
|
|
return eval(bytecode, glob, loc) # type: ignore[arg-type] # noqa: P204
|
|
|
|
|
|
def parse_type_line(type_line, rcb, loc):
|
|
"""Parses a type annotation specified as a comment.
|
|
|
|
Example inputs:
|
|
# type: (Tensor, torch.Tensor) -> Tuple[Tensor]
|
|
# type: (Tensor, Tuple[Tensor, Tensor]) -> Tensor
|
|
"""
|
|
arg_ann_str, ret_ann_str = split_type_line(type_line)
|
|
|
|
try:
|
|
arg_ann = _eval_no_call(arg_ann_str, {}, EvalEnv(rcb))
|
|
except (NameError, SyntaxError) as e:
|
|
raise RuntimeError("Failed to parse the argument list of a type annotation") from e
|
|
|
|
if not isinstance(arg_ann, tuple):
|
|
arg_ann = (arg_ann,)
|
|
|
|
try:
|
|
ret_ann = _eval_no_call(ret_ann_str, {}, EvalEnv(rcb))
|
|
except (NameError, SyntaxError) as e:
|
|
raise RuntimeError("Failed to parse the return type of a type annotation") from e
|
|
|
|
arg_types = [ann_to_type(ann, loc) for ann in arg_ann]
|
|
return arg_types, ann_to_type(ret_ann, loc)
|
|
|
|
|
|
def get_type_line(source):
|
|
"""Tries to find the line containing a comment with the type annotation."""
|
|
type_comment = '# type:'
|
|
|
|
lines = source.split('\n')
|
|
lines = [(line_num, line) for line_num, line in enumerate(lines)]
|
|
type_lines = list(filter(lambda line: type_comment in line[1], lines))
|
|
# `type: ignore` comments may be needed in JIT'ed functions for mypy, due
|
|
# to the hack in torch/_VF.py.
|
|
|
|
# An ignore type comment can be of following format:
|
|
# 1) type: ignore
|
|
# 2) type: ignore[rule-code]
|
|
# This ignore statement must be at the end of the line
|
|
|
|
# adding an extra backslash before the space, to avoid triggering
|
|
# one of the checks in .github/workflows/lint.yml
|
|
type_pattern = re.compile("# type:\\ ignore(\\[[a-zA-Z-]+\\])?$")
|
|
type_lines = list(filter(lambda line: not type_pattern.search(line[1]),
|
|
type_lines))
|
|
|
|
if len(type_lines) == 0:
|
|
# Catch common typo patterns like extra spaces, typo in 'ignore', etc.
|
|
wrong_type_pattern = re.compile("#[\t ]*type[\t ]*(?!: ignore(\\[.*\\])?$):")
|
|
wrong_type_lines = list(filter(lambda line: wrong_type_pattern.search(line[1]), lines))
|
|
if len(wrong_type_lines) > 0:
|
|
raise RuntimeError("The annotation prefix in line " + str(wrong_type_lines[0][0])
|
|
+ " is probably invalid.\nIt must be '# type:'"
|
|
+ "\nSee PEP 484 (https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code)" # noqa: B950
|
|
+ "\nfor examples")
|
|
return None
|
|
elif len(type_lines) == 1:
|
|
# Only 1 type line, quit now
|
|
return type_lines[0][1].strip()
|
|
|
|
# Parse split up argument types according to PEP 484
|
|
# https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code
|
|
return_line = None
|
|
parameter_type_lines = []
|
|
for line_num, line in type_lines:
|
|
if '# type: (...) -> ' in line:
|
|
return_line = (line_num, line)
|
|
break
|
|
elif type_comment in line:
|
|
parameter_type_lines.append(line)
|
|
if return_line is None:
|
|
raise RuntimeError(
|
|
"Return type line '# type: (...) -> ...' not found on multiline "
|
|
"type annotation\nfor type lines:\n" +
|
|
'\n'.join([line[1] for line in type_lines]) +
|
|
"\n(See PEP 484 https://www.python.org/dev/peps/pep-0484/#suggested-syntax-for-python-2-7-and-straddling-code)")
|
|
|
|
def get_parameter_type(line):
|
|
item_type = line[line.find(type_comment) + len(type_comment):]
|
|
return item_type.strip()
|
|
|
|
types = map(get_parameter_type, parameter_type_lines)
|
|
parameter_types = ", ".join(types)
|
|
|
|
return return_line[1].replace("...", parameter_types)
|
|
|
|
|
|
def split_type_line(type_line):
|
|
"""Splits the comment with the type annotation into parts for argument and return types.
|
|
|
|
For example, for an input of:
|
|
# type: (Tensor, torch.Tensor) -> Tuple[Tensor, Tensor]
|
|
|
|
This function will return:
|
|
("(Tensor, torch.Tensor)", "Tuple[Tensor, Tensor]")
|
|
|
|
"""
|
|
start_offset = len('# type:')
|
|
try:
|
|
arrow_pos = type_line.index('->')
|
|
except ValueError:
|
|
raise RuntimeError("Syntax error in type annotation (cound't find `->`)") from None
|
|
return type_line[start_offset:arrow_pos].strip(), type_line[arrow_pos + 2:].strip()
|
|
|
|
|
|
def try_real_annotations(fn, loc):
|
|
"""Tries to use the Py3.5+ annotation syntax to get the type."""
|
|
try:
|
|
# Note: anything annotated as `Optional[T]` will automatically
|
|
# be returned as `Union[T, None]` per
|
|
# https://github.com/python/typing/blob/master/src/typing.py#L850
|
|
sig = inspect.signature(fn)
|
|
except ValueError:
|
|
return None
|
|
|
|
all_annots = [sig.return_annotation] + [p.annotation for p in sig.parameters.values()]
|
|
if all(ann is sig.empty for ann in all_annots):
|
|
return None
|
|
|
|
arg_types = [ann_to_type(p.annotation, loc)
|
|
for p in sig.parameters.values()]
|
|
return_type = ann_to_type(sig.return_annotation, loc)
|
|
return arg_types, return_type
|
|
|
|
|
|
# Finds common type for enum values belonging to an Enum class. If not all
|
|
# values have the same type, AnyType is returned.
|
|
def get_enum_value_type(e: Type[enum.Enum], loc):
|
|
enum_values: List[enum.Enum] = list(e)
|
|
if not enum_values:
|
|
raise ValueError(f"No enum values defined for: '{e.__class__}'")
|
|
|
|
types = {type(v.value) for v in enum_values}
|
|
ir_types = [try_ann_to_type(t, loc) for t in types]
|
|
|
|
# If Enum values are of different types, an exception will be raised here.
|
|
# Even though Python supports this case, we chose to not implement it to
|
|
# avoid overcomplicate logic here for a rare use case. Please report a
|
|
# feature request if you find it necessary.
|
|
res = torch._C.unify_type_list(ir_types)
|
|
if not res:
|
|
return AnyType.get()
|
|
return res
|
|
|
|
def is_tensor(ann):
|
|
if issubclass(ann, torch.Tensor):
|
|
return True
|
|
|
|
if issubclass(ann, (torch.LongTensor, torch.DoubleTensor, torch.FloatTensor,
|
|
torch.IntTensor, torch.ShortTensor, torch.HalfTensor,
|
|
torch.CharTensor, torch.ByteTensor, torch.BoolTensor)):
|
|
warnings.warn("TorchScript will treat type annotations of Tensor "
|
|
"dtype-specific subtypes as if they are normal Tensors. "
|
|
"dtype constraints are not enforced in compilation either.")
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
def _fake_rcb(inp):
|
|
return None
|
|
|
|
|
|
def try_ann_to_type(ann, loc, rcb=None):
|
|
if ann is inspect.Signature.empty:
|
|
return TensorType.getInferred()
|
|
if ann is None:
|
|
return NoneType.get()
|
|
if inspect.isclass(ann) and is_tensor(ann):
|
|
return TensorType.get()
|
|
if is_tuple(ann):
|
|
# Special case for the empty Tuple type annotation `Tuple[()]`
|
|
if len(ann.__args__) == 1 and ann.__args__[0] == ():
|
|
return TupleType([])
|
|
return TupleType([try_ann_to_type(a, loc) for a in ann.__args__])
|
|
if is_list(ann):
|
|
elem_type = try_ann_to_type(ann.__args__[0], loc)
|
|
if elem_type:
|
|
return ListType(elem_type)
|
|
if is_dict(ann):
|
|
key = try_ann_to_type(ann.__args__[0], loc)
|
|
value = try_ann_to_type(ann.__args__[1], loc)
|
|
# Raise error if key or value is None
|
|
if key is None:
|
|
raise ValueError(f"Unknown type annotation: '{ann.__args__[0]}' at {loc.highlight()}")
|
|
if value is None:
|
|
raise ValueError(f"Unknown type annotation: '{ann.__args__[1]}' at {loc.highlight()}")
|
|
return DictType(key, value)
|
|
if is_optional(ann):
|
|
if issubclass(ann.__args__[1], type(None)):
|
|
contained = ann.__args__[0]
|
|
else:
|
|
contained = ann.__args__[1]
|
|
valid_type = try_ann_to_type(contained, loc)
|
|
msg = "Unsupported annotation {} could not be resolved because {} could not be resolved. At\n{}"
|
|
assert valid_type, msg.format(repr(ann), repr(contained), repr(loc))
|
|
return OptionalType(valid_type)
|
|
if is_union(ann):
|
|
# TODO: this is hack to recognize NumberType
|
|
if set(ann.__args__) == {int, float, complex}:
|
|
return NumberType.get()
|
|
inner: List = []
|
|
# We need these extra checks because both `None` and invalid
|
|
# values will return `None`
|
|
# TODO: Determine if the other cases need to be fixed as well
|
|
for a in ann.__args__:
|
|
if a is None:
|
|
inner.append(NoneType.get())
|
|
maybe_type = try_ann_to_type(a, loc)
|
|
msg = "Unsupported annotation {} could not be resolved because {} could not be resolved. At\n{}"
|
|
assert maybe_type, msg.format(repr(ann), repr(maybe_type), repr(loc))
|
|
inner.append(maybe_type)
|
|
return UnionType(inner) # type: ignore[arg-type]
|
|
if torch.distributed.rpc.is_available() and is_rref(ann):
|
|
return RRefType(try_ann_to_type(ann.__args__[0], loc))
|
|
if is_future(ann):
|
|
return FutureType(try_ann_to_type(ann.__args__[0], loc))
|
|
if is_await(ann):
|
|
elementType = try_ann_to_type(ann.__args__[0], loc) if hasattr(ann, "__args__") else AnyType.get()
|
|
return AwaitType(elementType)
|
|
if ann is float:
|
|
return FloatType.get()
|
|
if ann is complex:
|
|
return ComplexType.get()
|
|
if ann is int:
|
|
return IntType.get()
|
|
if ann is str:
|
|
return StringType.get()
|
|
if ann is bool:
|
|
return BoolType.get()
|
|
if ann is Any:
|
|
return AnyType.get()
|
|
if ann is type(None):
|
|
return NoneType.get()
|
|
if inspect.isclass(ann) and hasattr(ann, "__torch_script_interface__"):
|
|
return InterfaceType(ann.__torch_script_interface__)
|
|
if ann is torch.device:
|
|
return DeviceObjType.get()
|
|
if ann is torch.Stream:
|
|
return StreamObjType.get()
|
|
if ann is torch.dtype:
|
|
return IntType.get() # dtype not yet bound in as its own type
|
|
if inspect.isclass(ann) and issubclass(ann, enum.Enum):
|
|
if _get_script_class(ann) is None:
|
|
scripted_class = torch.jit._script._recursive_compile_class(ann, loc)
|
|
name = scripted_class.qualified_name()
|
|
else:
|
|
name = _qualified_name(ann)
|
|
return EnumType(name, get_enum_value_type(ann, loc), list(ann))
|
|
if inspect.isclass(ann):
|
|
maybe_script_class = _get_script_class(ann)
|
|
if maybe_script_class is not None:
|
|
return maybe_script_class
|
|
if torch._jit_internal.can_compile_class(ann):
|
|
return torch.jit._script._recursive_compile_class(ann, loc)
|
|
|
|
# Maybe resolve a NamedTuple to a Tuple Type
|
|
if rcb is None:
|
|
rcb = _fake_rcb
|
|
return torch._C._resolve_type_from_object(ann, loc, rcb)
|
|
|
|
|
|
def ann_to_type(ann, loc, rcb=None):
|
|
the_type = try_ann_to_type(ann, loc, rcb)
|
|
if the_type is not None:
|
|
return the_type
|
|
raise ValueError(f"Unknown type annotation: '{ann}' at {loc.highlight()}")
|
|
|
|
|
|
__all__ = [
|
|
'Any',
|
|
'List',
|
|
'BroadcastingList1',
|
|
'BroadcastingList2',
|
|
'BroadcastingList3',
|
|
'Tuple',
|
|
'is_tuple',
|
|
'is_list',
|
|
'Dict',
|
|
'is_dict',
|
|
'is_optional',
|
|
'is_union',
|
|
'TensorType',
|
|
'TupleType',
|
|
'FloatType',
|
|
'ComplexType',
|
|
'IntType',
|
|
'ListType',
|
|
'StringType',
|
|
'DictType',
|
|
'AnyType',
|
|
'Module',
|
|
# TODO: Consider not exporting these during wildcard import (reserve
|
|
# that for the types; for idiomatic typing code.)
|
|
'get_signature',
|
|
'check_fn',
|
|
'get_param_names',
|
|
'parse_type_line',
|
|
'get_type_line',
|
|
'split_type_line',
|
|
'try_real_annotations',
|
|
'try_ann_to_type',
|
|
'ann_to_type',
|
|
]
|