pytorch/test/distributed/test_device_mesh.py
fduwjj a0c7029a75 [c10d][Reland] Remove Option for ProcessGroup and Expose backend Options to reflect the correct code structure (#132931) (#135653)
We introduced the dispatchable backend for a ProcessGroup and collective in https://github.com/pytorch/pytorch/issues/86225. This PR is a follow-up cleanup to clean up the option of a ProcessGroup and ask users to either set timeout or backend later on or directly create backend after creating a PG.

Also PGNCCL is using option class from ProcessGroup but we actually should use Option from backend class. So this PR is to make the type or name to be aligned with what we are doing in cpp side. I don't change the signature for the public API, so they still use args named "pg_options"

We need to make changes to the test to make it aligned with the change.

This is try to reland D62008954 by fixing internal errors.

Differential Revision: [D62483294](https://our.internmc.facebook.com/intern/diff/D62483294/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135653
Approved by: https://github.com/wz337, https://github.com/H-Huang
2024-09-16 19:56:42 +00:00

972 lines
38 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates
# Owner(s): ["oncall: distributed"]
import os
import torch
import torch.distributed._functional_collectives as funcol
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import _mesh_resources, DeviceMesh, init_device_mesh
from torch.distributed.distributed_c10d import (
_get_default_group,
_world,
get_global_rank,
get_world_size,
init_process_group,
is_initialized,
is_nccl_available,
ProcessGroup,
)
from torch.distributed.tensor._collective_utils import (
mesh_broadcast,
mesh_scatter,
unpad_tensor,
)
from torch.distributed.tensor.placement_types import _Partial, Shard
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed.fake_pg import FakeStore
def _get_device_type(world_size):
if (
torch.cuda.is_available()
and torch.cuda.device_count() >= world_size
and is_nccl_available()
):
device_type = "cuda"
else:
device_type = "cpu"
return device_type
def _set_env_var(addr="localhost", port="25364", world_size=1, rank=0):
os.environ["MASTER_ADDR"] = addr
os.environ["MASTER_PORT"] = port
os.environ["WORLD_SIZE"] = f"{world_size}"
os.environ["RANK"] = f"{rank}"
class DeviceMeshTestGlooBackend(DTensorTestBase):
@property
def backend(self):
return "gloo"
@with_comms
def test_device_mesh_reuse_default_group(self):
mesh = init_device_mesh(self.device_type, (self.world_size,))
mesh_group = mesh.get_group()
default_group = _get_default_group()
if torch.cuda.is_available():
self.assertNotEqual(mesh_group, default_group)
self.assertEqual(get_world_size(mesh_group), get_world_size(default_group))
else:
self.assertEqual(mesh_group, default_group)
class DeviceMeshTest(DTensorTestBase):
@property
def world_size(self):
return 4
def test_init_process_group(self):
device_type = _get_device_type(self.world_size)
mesh_tensor = torch.arange(4).reshape(2, 2)
self.assertTrue(not is_initialized())
_set_env_var(world_size=self.world_size, rank=self.rank)
DeviceMesh(device_type, mesh_tensor)
self.assertTrue(is_initialized())
self.destroy_pg()
@with_comms
@skip_if_lt_x_gpu(4)
def test_assert_invalid_mesh_tensor(self):
mesh = torch.arange(self.world_size).to(self.rank)
with self.assertRaises(ValueError):
device_mesh = DeviceMesh(self.device_type, mesh)
@with_comms
def test_get_group_and_get_all_groups(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
)
tp_mesh = mesh_2d["tp"]
dp_mesh = mesh_2d["dp"]
self.assertEqual(mesh_2d.get_group(0), mesh_2d.get_group("dp"))
self.assertEqual(mesh_2d.get_group(1), mesh_2d.get_group("tp"))
self.assertEqual(mesh_2d.get_group("dp"), dp_mesh.get_group())
self.assertEqual(mesh_2d.get_group("tp"), tp_mesh.get_group())
groups = mesh_2d.get_all_groups()
self.assertEqual(len(groups), 2)
self.assertTrue(tp_mesh.get_group() in groups)
self.assertTrue(dp_mesh.get_group() in groups)
@with_comms
def test_get_local_rank_raises_exception(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
)
with self.assertRaisesRegex(
RuntimeError,
"Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.",
):
local_rank = mesh_2d.get_local_rank()
@with_comms
def test_get_local_rank(self):
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "tp")
)
self.assertEqual(mesh_2d.get_local_rank("dp"), mesh_2d.get_local_rank(0))
self.assertEqual(mesh_2d.get_local_rank("tp"), mesh_2d.get_local_rank(1))
dp_mesh = mesh_2d["dp"]
tp_mesh = mesh_2d["tp"]
self.assertEqual(dp_mesh.get_local_rank(), mesh_2d.get_local_rank("dp"))
self.assertEqual(tp_mesh.get_local_rank(), mesh_2d.get_local_rank("tp"))
# Verify flattened mesh local rank correctness.
flattened_mesh = mesh_2d["dp", "tp"]._flatten()
self.assertEqual(flattened_mesh.get_local_rank(), self.rank)
@with_comms
def test_device_mesh_2d(self):
mesh_tensor = torch.arange(4).reshape(2, 2)
# construct a cuda device mesh
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
expected_ranks_by_dim = [[[0, 2], [1, 3]], [[0, 1], [2, 3]]]
for dim, dim_group in enumerate(dim_to_subgroups):
self.assertTrue(dim < 2)
dim_ranks = expected_ranks_by_dim[dim]
dim_group_size = get_world_size(dim_group)
self.assertIsInstance(dim_group, ProcessGroup)
self.assertEqual(dim_group_size, 2)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
current_rank_expected_group_ranks = (
dim_ranks[0] if self.rank in dim_ranks[0] else dim_ranks[1]
)
self.assertEqual(global_ranks, current_rank_expected_group_ranks)
@with_comms
def test_device_mesh_init_backend(self):
mesh = DeviceMesh(self.device_type, [1], _init_backend=False)
with self.assertRaisesRegex(RuntimeError, "process groups not initialized!"):
mesh.get_group()
# coordinates should always been populated when init_backend is False, as whenever
# we call init_backend we should make sure the default pg already created
mesh.get_coordinate()
def test_fake_pg_device_mesh(self):
fake_store = FakeStore()
init_process_group("fake", store=fake_store, rank=0, world_size=self.world_size)
device_type = "cuda" if torch.cuda.is_available() else "cpu"
mesh = DeviceMesh(device_type, torch.arange(self.world_size))
local_tensor = torch.randn(2, 8)
global_tensor = funcol.all_gather_tensor(
local_tensor, gather_dim=0, group=(mesh, 0)
)
self.assertEqual(global_tensor.shape, (self.world_size * 2, 8))
@with_comms
def test_from_group_with_global_pg(self):
# Simple test: check `from_group` from a mesh pg vs. directly
# initializing via `init_device_mesh`
ref_global_mesh = init_device_mesh(self.device_type, (self.world_size,))
mesh_pg = ref_global_mesh.get_group()
global_mesh = DeviceMesh.from_group(mesh_pg, self.device_type)
self.assertEqual(ref_global_mesh, global_mesh)
self.assertEqual(ref_global_mesh._dim_group_infos, global_mesh._dim_group_infos)
self.assertEqual(
ref_global_mesh._coordinate_on_dim, global_mesh._coordinate_on_dim
)
@with_comms
def test_from_group_with_invalid_mesh(self):
global_pg = _get_default_group()
global_pg_size = global_pg.size()
assert global_pg_size == 4, "Test assumes global world size of 4"
invalid_mesh = [[0, 1], [2, 3]] # 2D mesh when we need 1D
regex = r"Invalid mesh \[\[0, 1\], \[2, 3\]\] for ProcessGroup with ranks \[0, 1, 2, 3\]"
with self.assertRaisesRegex(ValueError, regex):
DeviceMesh.from_group(global_pg, "cuda", invalid_mesh)
device_mesh = init_device_mesh(self.device_type, (2, 2))
groups = device_mesh.get_all_groups()
invalid_mesh = (0, 1, 2, 3) # 1D mesh when we need 2D
regex = r"Expects mesh with ndim equal to number of ProcessGroups but got mesh \[0, 1, 2, 3\] and 2 ProcessGroups"
with self.assertRaisesRegex(ValueError, regex):
DeviceMesh.from_group(groups, self.device_type, invalid_mesh)
def test_raises_invalid_device_type(self):
with self.assertRaisesRegex(
RuntimeError,
"Device type with GPU index is not supported",
):
# test init_device_mesh with an invalid device type that contains a GPU index
mesh_shape = (2, self.world_size // 2)
mesh_2d = init_device_mesh(
"cuda:0", mesh_shape=mesh_shape, mesh_dim_names=("dp", "tp")
)
@with_comms
def test_set_mesh_dim_group_options(self):
device_type = "cuda" if torch.cuda.is_available() else "cpu"
_mesh_resources._set_mesh_dim_group_options(1, "fake", None)
mesh_tensor = torch.arange(4).reshape(2, 2)
mesh = DeviceMesh(device_type, mesh_tensor)
# Fake pg only have BackendType as BackendType::CUSTOM.
self.assertEqual(mesh.get_group(1)._get_backend_name(), "custom")
class DeviceMeshTestNDim(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_device_mesh_nd(self):
# construct a cuda device mesh
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
self.assertTrue(dim < mesh_tensor.ndim)
dim_ranks = mesh_tensor.swapdims(-1, dim).reshape(-1, 2)
dim_group_size = get_world_size(dim_group)
self.assertIsInstance(dim_group, ProcessGroup)
self.assertEqual(dim_group_size, 2)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
for ranks in dim_ranks:
if self.rank in ranks:
self.assertEqual(global_ranks, ranks.tolist())
@with_comms
def test_device_mesh_hash(self):
mesh_tensor_2d = torch.arange(8).reshape(4, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor_2d)
mesh2 = DeviceMesh(self.device_type, mesh_tensor_2d)
self.assertEqual(hash(mesh), hash(mesh2))
mesh_tensor_3d = torch.arange(8).reshape(2, 2, 2)
mesh3 = DeviceMesh(self.device_type, mesh_tensor_3d)
self.assertNotEqual(hash(mesh), hash(mesh3))
self.assertNotEqual(hash(mesh2), hash(mesh3))
@with_comms
def test_get_local_rank_3d(self):
"""
If we have a 3D mesh and we want to apply dp, pp, tp to it,
mesh_dim_names = ["dp", "pp", "tp"], and the mesh tensor would be:
mesh_3d_tensor = [
[
[0, 1],
[2, 3],
],
[
[4, 5],
[6, 7],
]
]
"""
mesh_shape = (2, 2, 2)
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=("dp", "pp", "tp")
)
# tp_rank_0: [0, 2, 4, 6], tp_rank_1: [1, 3, 5, 7]
tp_rank = mesh_3d.get_local_rank("tp")
expected_tp_rank = self.rank % 2
self.assertEqual(tp_rank, expected_tp_rank)
# pp_rank_0: [0, 1, 4, 5], pp_rank_1: [2, 3, 6, 7]
pp_rank = mesh_3d.get_local_rank("pp")
expected_pp_rank = 0 if self.rank % 4 <= 1 else 1
self.assertEqual(pp_rank, expected_pp_rank)
# dp_rank_0: [0, 1, 2, 3], dp_rank_1: [4, 5, 6, 7]
dp_rank = mesh_3d.get_local_rank("dp")
expected_dp_rank = self.rank // 4
self.assertEqual(dp_rank, expected_dp_rank)
@with_comms
def test_device_mesh_parent_child_hash(self):
mesh_2d = init_device_mesh(
self.device_type, (2, self.world_size // 2), mesh_dim_names=("DP", "TP")
)
mesh_group_1 = torch.arange(0, self.world_size // 2)
mesh_group_2 = torch.arange(self.world_size // 2, self.world_size)
ep_mesh_1 = DeviceMesh(self.device_type, mesh_group_1)
ep_mesh_2 = DeviceMesh(self.device_type, mesh_group_2)
ep_mesh = ep_mesh_1 if self.rank < self.world_size // 2 else ep_mesh_2
# ep_mesh is considered different from mesh_2d["TP"]
self.assertEqual(mesh_2d["TP"]._flatten_mesh_list, ep_mesh._flatten_mesh_list)
self.assertEqual(mesh_2d["TP"].mesh.shape, ep_mesh.mesh.shape)
self.assertEqual(mesh_2d["TP"].device_type, ep_mesh.device_type)
self.assertNotEqual(mesh_2d["TP"].mesh_dim_names, ep_mesh.mesh_dim_names)
self.assertEqual(mesh_2d["TP"]._thread_id, ep_mesh._thread_id)
self.assertNotEqual(hash(mesh_2d["TP"]), hash(ep_mesh))
self.assertNotEqual(mesh_2d["TP"], ep_mesh)
another_mesh_1 = DeviceMesh(self.device_type, mesh_group_1)
another_mesh_2 = DeviceMesh(self.device_type, mesh_group_2)
another_mesh = (
another_mesh_1 if self.rank < self.world_size // 2 else another_mesh_2
)
# another_mesh is considered the same as ep_mesh
self.assertEqual(ep_mesh._flatten_mesh_list, another_mesh._flatten_mesh_list)
self.assertEqual(ep_mesh.mesh.shape, another_mesh.mesh.shape)
self.assertEqual(ep_mesh.device_type, another_mesh.device_type)
self.assertEqual(ep_mesh.mesh_dim_names, another_mesh.mesh_dim_names)
self.assertEqual(ep_mesh._thread_id, another_mesh._thread_id)
self.assertEqual(hash(ep_mesh), hash(another_mesh))
self.assertEqual(ep_mesh, another_mesh)
@with_comms
def test_from_group_with_mesh_shape(self):
"""Tests ``from_group`` when passing ``mesh_shape`` as 2D."""
# Consider two different logical views of the same mesh:
# - (4, 2) ("dp", "tp") mesh
# - (2, 2, 2) ("dp_replicate", "dp_shard", "tp") mesh
mesh_shape = (2, 2, 2)
mesh_dim_names = ("dp_replicate", "dp_shard", "tp")
ref_mesh = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
dp_shard_group = ref_mesh["dp_shard"].get_group()
dp_replicate_group = ref_mesh["dp_replicate"].get_group()
dp_mesh = DeviceMesh.from_group(
[dp_replicate_group, dp_shard_group],
self.device_type,
mesh=ref_mesh.mesh[:, :, ref_mesh.get_local_rank(2)],
mesh_dim_names=mesh_dim_names[:2],
)
ref_mesh_dp_dim_group_infos = ref_mesh._dim_group_infos[:2]
for (_, ref_ranks, _), (_, ranks, _) in zip(
ref_mesh_dp_dim_group_infos, dp_mesh._dim_group_infos
):
self.assertEqual(ref_ranks, ranks)
# Cannot check directly for mesh equality since parent meshes are not
# the same since the ref's parent mesh is 3D
self.assertEqual(dp_mesh["dp_replicate"].mesh, ref_mesh["dp_replicate"].mesh)
for (_, ref_ranks, _), (_, ranks, _) in zip(
dp_mesh["dp_replicate"]._dim_group_infos,
ref_mesh["dp_replicate"]._dim_group_infos,
):
self.assertEqual(ref_ranks, ranks)
self.assertEqual(dp_mesh["dp_shard"].mesh, ref_mesh["dp_shard"].mesh)
for (_, ref_ranks, _), (_, ranks, _) in zip(
dp_mesh["dp_shard"]._dim_group_infos, ref_mesh["dp_shard"]._dim_group_infos
):
self.assertEqual(ref_ranks, ranks)
class InitDeviceMeshTest(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_init_device_mesh(self):
mesh_shape = (2, 4)
mesh_dim_names = ("DP", "TP")
ref_mesh = DeviceMesh(
self.device_type,
torch.arange(8).view(mesh_shape),
mesh_dim_names=mesh_dim_names,
)
# test init_device_mesh with mesh_dim_names
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
self.assertEqual(mesh_2d, ref_mesh)
self.assertEqual(mesh_2d.mesh_dim_names, mesh_dim_names)
@with_comms
def test_raises_duplicate_mesh_dim_names(self):
with self.assertRaisesRegex(
RuntimeError,
"Each mesh_dim_name must be unique.",
):
mesh = init_device_mesh(
self.device_type,
(2, 4),
mesh_dim_names=["dp", "dp"],
)
@with_comms
def test_raises_mesh_shape_mesh_dim_names_mismatch(self):
with self.assertRaisesRegex(
RuntimeError,
"mesh_shape and mesh_dim_names should have same length!",
):
mesh = init_device_mesh(
self.device_type,
(8,),
mesh_dim_names=["dp", "tp"],
)
class TestDeviceMeshGetItem(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_raises_no_mesh_dim_found(self):
with self.assertRaisesRegex(
RuntimeError, "Cannot slice a DeviceMesh without mesh_dim_names!"
):
mesh = init_device_mesh(self.device_type, (2, 4))
child_mesh = mesh["DP"]
@with_comms
def test_raises_invalid_mesh_dim_name(self):
child_mesh_dim_name = ("PP",)
with self.assertRaisesRegex(KeyError, "Invalid mesh_dim_name"):
mesh_dim_names = ("DP", "TP")
mesh = init_device_mesh(
self.device_type, (2, 4), mesh_dim_names=mesh_dim_names
)
child_mesh = mesh[child_mesh_dim_name]
@with_comms
def test_get_item_2d(self):
mesh_shape = (2, 4)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
pg_ranks_by_dim_name = {}
for mesh_dim_name in mesh_dim_names:
mesh_dim = mesh_dim_names.index(mesh_dim_name)
pg_ranks_by_dim_name[mesh_dim_name] = mesh_2d.mesh.swapdims(
-1, mesh_dim
).reshape(-1, mesh_2d.mesh.size(mesh_dim))
tp_mesh = mesh_2d["TP"]
tp_group_idx = self.rank // 4
self.assertEqual(tp_mesh.mesh, pg_ranks_by_dim_name["TP"][tp_group_idx])
dp_mesh = mesh_2d["DP"]
dp_group_idx = self.rank % 4
self.assertEqual(mesh_2d["DP"].mesh, pg_ranks_by_dim_name["DP"][dp_group_idx])
@with_comms
def test_get_item_1d(self):
mesh = init_device_mesh(self.device_type, (8,), mesh_dim_names=("dp",))
# Make sure slicing out 1D mesh from a 1D mesh works.
dp_mesh = mesh["dp"]
self.assertEqual(dp_mesh, mesh)
with self.assertRaisesRegex(KeyError, "Invalid mesh_dim_name"):
dp_mesh = mesh["dim0"]
@with_comms
def test_get_item_3d(self):
mesh_shape = (2, 2, 2)
mesh_dim_names = ("Replicate", "Shard", "TP")
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
tp_group = [[0, 1], [2, 3], [4, 5], [6, 7]]
tp_group_idx = int(self.rank / 2)
self.assertEqual(mesh_3d["TP"].mesh.tolist(), tp_group[tp_group_idx])
shard_group = [[0, 2], [1, 3], [4, 6], [5, 7]]
shard_group_idx = self.rank % 2 + self.rank // 4 * 2
self.assertEqual(mesh_3d["Shard"].mesh.tolist(), shard_group[shard_group_idx])
replicate_group = [[0, 4], [1, 5], [2, 6], [3, 7]]
replicate_group_idx = self.rank % 4
self.assertEqual(
mesh_3d["Replicate"].mesh.tolist(), replicate_group[replicate_group_idx]
)
# We support both UX for nD slicing.
# mesh_3d[["Replicate", "Shard"]] or mesh_3d["Replicate", "Shard"]
hsdp_mesh_1 = mesh_3d[["Replicate", "Shard"]]
hsdp_mesh_2 = mesh_3d["Replicate", "Shard"]
hsdp_group = [[[0, 2], [4, 6]], [[1, 3], [5, 7]]]
hsdp_group_idx = self.rank % 2
self.assertEqual(hsdp_mesh_1.mesh.tolist(), hsdp_group[hsdp_group_idx])
self.assertEqual(hsdp_mesh_2.mesh.tolist(), hsdp_group[hsdp_group_idx])
self.assertEqual(hsdp_mesh_1, hsdp_mesh_2)
@with_comms
def test_cache_and_reuse_submesh_slice_result(self):
mesh = init_device_mesh(self.device_type, (2, 4), mesh_dim_names=("dp", "tp"))
dp_mesh = mesh["dp"]
ref_pg_count = _world.group_count
# When we call the "dp" slice second time, it should not create any new pg.
# As we are just using the cached result so the pg count should be the same.
dp_mesh_2 = mesh["dp"]
self.assertEqual(ref_pg_count, _world.group_count)
# When we call the "tp" slice, it should not create a new pg, as the "tp" slice would
# just reuse the parent mesh pg.
tp_mesh = mesh["tp"]
self.assertEqual(_world.group_count, ref_pg_count)
@with_comms
def test_get_item_3d_noncontiguous_slicing(self):
mesh_shape = (2, 2, 2)
mesh_dim_names = ("dp", "pp", "cp")
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
# Slice order simply decides which mesh_dim sits on which mesh_dim.
# For dp_cp_mesh, cp mesh is the innermost dimension.
dp_cp_mesh = mesh_3d["dp", "cp"]
expected_mesh_tensor = (
torch.tensor([[0, 1], [4, 5]], dtype=torch.int)
if self.rank in (0, 1, 4, 5)
else torch.tensor([[2, 3], [6, 7]], dtype=torch.int)
)
dp_local_rank = dp_cp_mesh.get_local_rank("dp")
self.assertEqual(dp_cp_mesh.mesh, expected_mesh_tensor)
cp_mesh = mesh_3d["cp"]
# Check on the current dp_local_rank, whether the cp mesh tensor is the same.
self.assertEqual(dp_cp_mesh.mesh[dp_local_rank], cp_mesh.mesh)
with self.assertRaisesRegex(
KeyError,
"Invalid mesh_dim_names",
):
cp_dp_mesh = mesh_3d["cp", "dp"]
@with_comms
def test_flatten_mesh(self):
mesh_shape = (2, 2, 2)
mesh_dim_names = ("dp", "cp", "tp")
mesh_3d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
# Test flatten contiguous dims
dp_cp_mesh = mesh_3d["dp", "cp"]
flattened_dp_cp_mesh = dp_cp_mesh._flatten()
self.assertEqual(dp_cp_mesh.mesh.flatten(), flattened_dp_cp_mesh.mesh)
self.assertEqual(flattened_dp_cp_mesh.mesh_dim_names[0], "dp_cp")
root_mesh = _mesh_resources.get_root_mesh(dp_cp_mesh)
self.assertEqual(root_mesh, mesh_3d)
flatten_mesh_root_dims = _mesh_resources.flatten_name_to_root_dims[root_mesh][
"dp_cp"
]
self.assertEqual(flatten_mesh_root_dims, (0, 1))
ref_pg_count = _world.group_count
# Calling flatten again should not create a new pg.
flattened_dp_cp_mesh_2 = dp_cp_mesh._flatten()
self.assertEqual(flattened_dp_cp_mesh, flattened_dp_cp_mesh_2)
self.assertEqual(ref_pg_count, _world.group_count)
# Test flatten non-contiguous dims
dp_tp_mesh = mesh_3d["dp", "tp"]
flattened_dp_tp_mesh = dp_tp_mesh._flatten()
self.assertEqual(dp_tp_mesh.mesh.flatten(), flattened_dp_tp_mesh.mesh)
self.assertEqual(flattened_dp_tp_mesh.mesh_dim_names[0], "dp_tp")
root_mesh = _mesh_resources.get_root_mesh(dp_tp_mesh)
self.assertEqual(root_mesh, mesh_3d)
flatten_mesh_root_dims = _mesh_resources.flatten_name_to_root_dims[root_mesh][
"dp_tp"
]
self.assertEqual(flatten_mesh_root_dims, (0, 2))
# Test flatten with a flattened mesh_dim_name
cp_tp_mesh = mesh_3d["cp", "tp"]
cp_tp_mesh._flatten("dummy")
self.assertEqual(mesh_3d["dummy"].mesh_dim_names[0], "dummy")
@with_comms
def test_reconstruct_mesh_with_flatten_dim(self):
mesh_3d = init_device_mesh(
self.device_type, (2, 2, 2), mesh_dim_names=("replicate", "shard", "cp")
)
shard_cp_mesh = mesh_3d["shard", "cp"]._flatten()
hsdp_mesh = mesh_3d["replicate", "shard_cp"]
expected_mesh_tensor = torch.tensor(
[[0, 1, 2, 3], [4, 5, 6, 7]], dtype=torch.int
)
self.assertEqual(hsdp_mesh.mesh, expected_mesh_tensor)
self.assertEqual(shard_cp_mesh.get_group(), mesh_3d["shard_cp"].get_group())
self.assertEqual(
shard_cp_mesh.get_group(), mesh_3d.get_group(mesh_dim="shard_cp")
)
mesh_3d = init_device_mesh(
self.device_type, (2, 2, 2), mesh_dim_names=("dp", "cp", "tp")
)
dp_cp_mesh = mesh_3d["dp", "cp"]._flatten()
spmd_mesh = mesh_3d["dp_cp", "tp"]
expected_mesh_tensor = torch.tensor(
[[0, 1], [2, 3], [4, 5], [6, 7]], dtype=torch.int
)
self.assertEqual(spmd_mesh.mesh, expected_mesh_tensor)
self.assertEqual(dp_cp_mesh.get_group(), mesh_3d["dp_cp"].get_group())
self.assertEqual(dp_cp_mesh.get_group(), mesh_3d.get_group(mesh_dim="dp_cp"))
class TestMeshEnv(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_get_root_mesh(self):
mesh_3d = init_device_mesh(
self.device_type, (2, 2, 2), mesh_dim_names=("dp", "cp", "tp")
)
dp_cp_mesh = mesh_3d["dp", "cp"]
dp_tp_mesh = mesh_3d["dp", "tp"]
cp_tp_mesh = mesh_3d["cp", "tp"]
dp_mesh = mesh_3d["dp"]
cp_mesh = mesh_3d["cp"]
tp_mesh = mesh_3d["tp"]
self.assertEqual(_mesh_resources.get_root_mesh(dp_cp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(dp_tp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(cp_tp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(dp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(cp_mesh), mesh_3d)
self.assertEqual(_mesh_resources.get_root_mesh(tp_mesh), mesh_3d)
@with_comms
def test_get_root_mesh_dim_exist(self):
mesh_shape = (2, self.world_size // 2)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
self.assertEqual(_mesh_resources.get_root_mesh_dim(mesh_2d["DP"]), 0)
self.assertEqual(_mesh_resources.get_root_mesh_dim(mesh_2d["TP"]), 1)
@with_comms
def test_get_root_mesh_dim_not_exist(self):
mesh_shape = (self.world_size,)
mesh = init_device_mesh(self.device_type, mesh_shape)
self.assertEqual(_mesh_resources.get_root_mesh_dim(mesh), None)
@with_comms
def test_get_mesh_dim_by_name(self):
mesh_shape = (2, self.world_size // 2)
mesh_dim_names = ("DP", "TP")
mesh_2d = init_device_mesh(
self.device_type, mesh_shape, mesh_dim_names=mesh_dim_names
)
self.assertEqual(_mesh_resources.get_mesh_dim_by_name(mesh_2d, "DP"), 0)
self.assertEqual(_mesh_resources.get_mesh_dim_by_name(mesh_2d, "TP"), 1)
@with_comms
def test_get_all_submeshes(self):
mesh_2d = init_device_mesh(
self.device_type, (2, 4), mesh_dim_names=("replicate", "shard")
)
all_submeshes = _mesh_resources._get_all_submeshes(mesh_2d, "replicate")
self.assertEqual(len(all_submeshes), 4)
self.assertEqual(
all(submesh.mesh.numel() == 2 for submesh in all_submeshes), True
)
class DeviceMeshCollectiveTest(DTensorTestBase):
@property
def world_size(self):
return 8
@with_comms
def test_broadcast_1d(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
mesh_broadcast(local_tensor, mesh, mesh_dim=0)
self.assertEqual(local_tensor, torch.zeros(3, 3))
@with_comms
def test_scatter_1d(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size))
scatter_tensor_shape = [3, 3, 3]
for scatter_dim in range(len(scatter_tensor_shape)):
shard_placement = Shard(scatter_dim)
scatter_tensor_shape[scatter_dim] *= self.world_size
# make the random seed same across rank
torch.manual_seed(0)
global_tensor = torch.randn(scatter_tensor_shape, device=self.device_type)
splitted_list, _ = shard_placement._split_tensor(
global_tensor, mesh.size(), with_padding=True, contiguous=True
)
recv_tensor = torch.empty_like(splitted_list[mesh.get_rank()])
# scatter on dim > 0 would generate non-contiguous tensor, verify that works
mesh_scatter(recv_tensor, splitted_list, mesh, mesh_dim=0)
self.assertEqual(recv_tensor, splitted_list[mesh.get_rank()])
@with_comms
def test_scatter_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = torch.randn(
device_mesh.size() + 3, device_mesh.size() + 1, device=self.device_type
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_to_scatter = tensor_to_split.clone()
tensor_splitted_list = list(
torch.chunk(tensor_to_split, self.world_size, dim=shard_dim)
)
for _ in range(self.world_size - len(tensor_splitted_list)):
tensor_splitted_list.append(torch.tensor([], device=self.device_type))
padded_tensor_list, pad_sizes = shard_placement._split_tensor(
tensor_to_scatter,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
scattered_tensor = torch.empty_like(padded_tensor_list[my_rank])
mesh_scatter(scattered_tensor, padded_tensor_list, device_mesh, mesh_dim=0)
if pad_sizes[my_rank] != 0:
scattered_tensor = unpad_tensor(
scattered_tensor, shard_dim, pad_sizes[my_rank]
)
if scattered_tensor.numel() == 0:
# We need to check numel() instead of size if a tensor is ([]) after unpadding,
# since the size could be ([0, 8]) after unpadding.
self.assertEqual(
scattered_tensor.numel(), tensor_splitted_list[my_rank].numel()
)
else:
self.assertEqual(
scattered_tensor.size(), tensor_splitted_list[my_rank].size()
)
self.assertEqual(scattered_tensor, tensor_splitted_list[my_rank])
@with_comms
def test_all_gather_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = torch.ones(
device_mesh.size() + 3,
device_mesh.size() + 1,
device=self.device_type,
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_padded_list, pad_sizes = shard_placement._split_tensor(
tensor_to_split,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
local_tensor = tensor_padded_list[my_rank]
big_tensor = funcol.all_gather_tensor(
local_tensor, gather_dim=shard_dim, group=(device_mesh, 0)
)
big_tensor_chunks = list(
torch.chunk(big_tensor, device_mesh.size(), dim=shard_dim)
)
unpadded_list = [
(
unpad_tensor(big_tensor, shard_dim, pad_sizes[i])
if pad_sizes[i] > 0
else big_tensor
)
for i, big_tensor in enumerate(big_tensor_chunks)
]
all_gathered_tensor = torch.cat(unpadded_list, dim=shard_dim)
self.assertEqual(all_gathered_tensor.size(), tensor_to_split.size())
self.assertEqual(all_gathered_tensor, tensor_to_split)
@with_comms
def test_reduce_scatter_contiguous(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
# Init the tensor
step = self.world_size * 2
total_elem = step**2
tensor = torch.arange(0, total_elem).view(step, -1).to(device=self.device_type)
tensor = tensor * (my_rank + 1)
# Get non-contiguous tensor by slicing
tensor_to_reduce = tensor[::2, :2]
tensor_contiguous = tensor_to_reduce.clone().contiguous()
# Partial to Shard to trigger reduce_scatter
tensor_to_reduce = DTensor.from_local(
tensor_to_reduce, device_mesh, [_Partial()]
)
tensor_contiguous = DTensor.from_local(
tensor_contiguous, device_mesh, [_Partial()]
)
new_tensor = tensor_to_reduce.redistribute(device_mesh, [Shard(0)])
new_tensor_contiguous = tensor_contiguous.redistribute(device_mesh, [Shard(0)])
# The output for contiguous and non-contiguous tensors of the same value
# should return the same reducescatter value.
new_tensor_local = new_tensor._local_tensor
new_tensor_contiguous_local = new_tensor_contiguous._local_tensor
self.assertEqual(new_tensor_local, new_tensor_contiguous_local)
self.assertEqual(list(new_tensor_local.size()), [1, 2])
# Check the reduce numerical value
sum_base = (1 + self.world_size) * self.world_size / 2
first_elem = my_rank * sum_base * step * 2
expected_tensor = torch.tensor(
[[first_elem, first_elem + sum_base]],
dtype=new_tensor_local.dtype,
device=self.device_type,
)
self.assertEqual(new_tensor_local, expected_tensor)
@with_comms
def test_reduce_scatter_uneven(self):
device_mesh = DeviceMesh(self.device_type, list(range(self.world_size)))
my_rank = device_mesh.get_rank()
tensor_to_split = (
torch.ones(
device_mesh.size() + 3,
device_mesh.size() + 1,
device=self.device_type,
)
* self.rank
)
for shard_dim in range(tensor_to_split.ndim):
shard_placement = Shard(shard_dim)
tensor_to_scatter = tensor_to_split.clone()
tensor_splitted_list = list(
torch.chunk(tensor_to_split, self.world_size, dim=shard_dim)
)
for _ in range(self.world_size - len(tensor_splitted_list)):
tensor_splitted_list.append(torch.tensor([], device=self.device_type))
padded_tensor_list, pad_sizes = shard_placement._split_tensor(
tensor_to_scatter,
device_mesh.size(),
with_padding=True,
contiguous=True,
)
tensor_to_reduce = torch.cat(padded_tensor_list, shard_dim)
res_num = ((0 + self.world_size - 1) * self.world_size) / 2
scattered_tensor = funcol.reduce_scatter_tensor(
tensor_to_reduce,
reduceOp="sum",
scatter_dim=shard_dim,
group=(device_mesh, 0),
)
# unpad scattered_tensor
if pad_sizes[my_rank] > 0:
scattered_tensor = unpad_tensor(
scattered_tensor, shard_dim, pad_sizes[my_rank]
)
if scattered_tensor.numel() == 0:
# We need to check numel() instead of size if a tensor is ([]) after unpadding,
# since the size could be ([0, 8]) after unpadding.
self.assertEqual(
scattered_tensor.numel(), tensor_splitted_list[my_rank].numel()
)
else:
self.assertEqual(
scattered_tensor.size(), tensor_splitted_list[my_rank].size()
)
self.assertEqual(
scattered_tensor,
torch.ones_like(tensor_splitted_list[my_rank]) * res_num,
)
@with_comms
def test_broadcast_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
local_tensor = torch.ones(3, 3, device=self.device_type) * self.rank
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
cloned_local_tensor = local_tensor.clone()
mesh_broadcast(cloned_local_tensor, mesh, mesh_dim=dim)
res_num = global_ranks[0]
self.assertEqual(cloned_local_tensor, torch.ones(3, 3) * res_num)
@with_comms
def test_scatter_nd(self):
mesh_tensor = torch.arange(8).reshape(2, 2, 2)
mesh = DeviceMesh(self.device_type, mesh_tensor)
# check all dim groups
dim_to_subgroups = mesh.get_all_groups()
for dim, dim_group in enumerate(dim_to_subgroups):
dim_group_size = get_world_size(dim_group)
global_ranks = [
get_global_rank(dim_group, i) for i in range(dim_group_size)
]
scattered_tensors = [
torch.ones(3, 3, device=self.device_type) * global_rank
for global_rank in global_ranks
]
received_tensor = torch.empty_like(
scattered_tensors[mesh.get_coordinate()[dim]]
)
mesh_scatter(received_tensor, scattered_tensors, mesh, mesh_dim=dim)
self.assertEqual(received_tensor, torch.ones(3, 3) * self.rank)
if __name__ == "__main__":
run_tests()