mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-08 07:39:33 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39036 Test Plan: Imported from OSS Differential Revision: D21731026 Pulled By: glaringlee fbshipit-source-id: ae678f786f95e3687ed6b3f176fe6736a436c721
2212 lines
68 KiB
C++
2212 lines
68 KiB
C++
#if defined(USE_CUDA)
|
|
#include <test/cpp/jit/test_base.h>
|
|
|
|
#include <torch/csrc/jit/codegen/cuda/arith.h>
|
|
#include <torch/csrc/jit/codegen/cuda/fusion.h>
|
|
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
|
|
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
|
|
#include <torch/csrc/jit/codegen/cuda/kernel.h>
|
|
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
|
|
#include <torch/csrc/jit/codegen/cuda/mutator.h>
|
|
#include <torch/csrc/jit/codegen/cuda/tensor_meta.h>
|
|
#include <torch/csrc/jit/codegen/cuda/transform_replay.h>
|
|
#include <torch/csrc/jit/codegen/cuda/transform_rfactor.h>
|
|
|
|
// fuser and IR parser
|
|
#include <torch/csrc/jit/codegen/cuda/parser.h>
|
|
#include "torch/csrc/jit/ir/irparser.h"
|
|
|
|
#include <iostream>
|
|
|
|
// Tests go in torch::jit
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
using namespace torch::jit::fuser;
|
|
|
|
TensorView* makeDummyTensor(int nDims, DataType dtype = DataType::Float) {
|
|
std::vector<IterDomain*> dom;
|
|
for (int i = 0; i < nDims; i++)
|
|
dom.push_back(new IterDomain(new Int(0), new Int()));
|
|
|
|
return new TensorView(new TensorDomain(dom), dtype);
|
|
}
|
|
|
|
// 1. Test cases are void() functions.
|
|
// 2. They start with the prefix `test`
|
|
|
|
void testGPU_FusionDispatch() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
Float* f = new Float{2.f};
|
|
std::stringstream ss1, ss2, ss3;
|
|
ss1 << f;
|
|
ss2 << static_cast<Val*>(f);
|
|
ss3 << static_cast<Statement*>(f);
|
|
TORCH_CHECK(
|
|
ss1.str().compare(ss2.str()) == 0 && ss1.str().compare(ss3.str()) == 0,
|
|
"Error with dispatch system where results differ by passing Float* vs Val* vs Statement*.");
|
|
}
|
|
|
|
void testGPU_FusionSimpleArith() {
|
|
std::stringstream ss1, ss2;
|
|
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
Float* f1 = new Float(1.f);
|
|
Float* f2 = new Float{2.f};
|
|
Float* f3 = new Float();
|
|
|
|
// Disrupt the fusion to make sure guard works well
|
|
{
|
|
Fusion fusion2;
|
|
FusionGuard fg(&fusion2);
|
|
|
|
Float* f1 = new Float(1.f);
|
|
Float* f2 = new Float(2.f);
|
|
add(f1, f2);
|
|
ss2 << fusion2;
|
|
}
|
|
|
|
new BinaryOp(BinaryOpType::Add, f3, f1, f2);
|
|
ss1 << fusion;
|
|
|
|
TORCH_CHECK(
|
|
ss1.str().compare(ss2.str()) == 0,
|
|
"Error where explicit add nodes don't match implicit add nodes.");
|
|
}
|
|
|
|
void testGPU_FusionSimpleTypePromote() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
Float* f4 = new Float{4.f};
|
|
Int* i1 = new Int{3};
|
|
auto f5 = add(f4, i1);
|
|
|
|
TORCH_CHECK(f5->getDataType() == DataType::Float);
|
|
}
|
|
|
|
class ZeroMutator : public OptOutMutator {
|
|
public:
|
|
Statement* mutate(Float* f) {
|
|
if (f->isConst() && *(f->value()) == 1.0)
|
|
return new Float(0.0);
|
|
return f;
|
|
}
|
|
void mutate(Fusion* f) {
|
|
OptOutMutator::mutate(f);
|
|
}
|
|
};
|
|
|
|
void testGPU_FusionMutator() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
Float* f4 = new Float{1.f};
|
|
Int* i1 = new Int{3};
|
|
Val* f5 = add(f4, i1);
|
|
ZeroMutator mutator;
|
|
mutator.mutate(&fusion);
|
|
Val* lhs = static_cast<BinaryOp*>(fusion.origin(f5))->lhs();
|
|
TORCH_CHECK(
|
|
lhs->getValType().value() == ValType::Scalar &&
|
|
lhs->getDataType().value() == DataType::Float);
|
|
Float* flhs = static_cast<Float*>(lhs);
|
|
|
|
TORCH_CHECK(flhs->value().value() == 0.f);
|
|
}
|
|
|
|
void testGPU_FusionRegister() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
Float* v1 = new Float{1.f};
|
|
Float* v2 = new Float{2.f};
|
|
Val* v3 = binaryOp(BinaryOpType::Add, v1, v2);
|
|
Val* v4 = binaryOp(BinaryOpType::Add, v1, v2);
|
|
TORCH_CHECK(v1->name() + 1 == v2->name());
|
|
TORCH_CHECK(v2->name() + 1 == v3->name());
|
|
TORCH_CHECK(v3->name() + 1 == v4->name());
|
|
TORCH_CHECK(fusion.origin(v3)->name() + 1 == fusion.origin(v4)->name());
|
|
}
|
|
|
|
// dummy expr with 2 outputs only for toposort test.
|
|
struct DummyExpr : public Expr {
|
|
~DummyExpr() = default;
|
|
DummyExpr(Val* _outlhs, Val* _outrhs, Val* _lhs, Val* _rhs)
|
|
: Expr(ExprType::UnaryOp) // Not terribly safe...
|
|
{
|
|
addOutput(_outlhs);
|
|
addOutput(_outrhs);
|
|
addInput(_lhs);
|
|
addInput(_rhs);
|
|
this->name_ = FusionGuard::getCurFusion()->registerExpr(this);
|
|
}
|
|
DummyExpr(const DummyExpr& other) = delete;
|
|
DummyExpr& operator=(const DummyExpr& other) = delete;
|
|
DummyExpr(DummyExpr&& other) = delete;
|
|
DummyExpr& operator=(DummyExpr&& other) = delete;
|
|
};
|
|
|
|
void testGPU_FusionTopoSort() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
// e0: v3, v2 = dummy(v1, v0)
|
|
// e1: v4 = add(v3, v2)
|
|
// e2: v5 = add(v2, v4)
|
|
// e3: v6 = add(v5, v5)
|
|
Float* v0 = new Float{1.f};
|
|
Float* v1 = new Float{2.f};
|
|
Float* v2 = new Float();
|
|
Float* v3 = new Float();
|
|
Float* v4 = new Float();
|
|
Float* v5 = new Float();
|
|
Float* v6 = new Float();
|
|
|
|
Expr* e0 = new DummyExpr(v3, v2, v1, v0);
|
|
Expr* e1 = new BinaryOp(BinaryOpType::Add, v4, v3, v2);
|
|
Expr* e2 = new BinaryOp(BinaryOpType::Add, v5, v2, v4);
|
|
Expr* e3 = new BinaryOp(BinaryOpType::Add, v6, v5, v5);
|
|
|
|
std::vector<Expr*> exprs = fusion.exprs();
|
|
|
|
TORCH_CHECK(exprs.size() == 4);
|
|
TORCH_CHECK(exprs[0] == e0);
|
|
TORCH_CHECK(exprs[1] == e1);
|
|
TORCH_CHECK(exprs[2] == e2);
|
|
TORCH_CHECK(exprs[3] == e3);
|
|
|
|
fusion.addOutput(v2);
|
|
exprs = fusion.exprs(true);
|
|
TORCH_CHECK(exprs.size() == 1);
|
|
TORCH_CHECK(exprs[0] == e0);
|
|
|
|
fusion.addOutput(v5);
|
|
exprs = fusion.exprs(true);
|
|
TORCH_CHECK(exprs[0] == e0);
|
|
TORCH_CHECK(exprs[1] == e1);
|
|
TORCH_CHECK(exprs[2] == e2);
|
|
|
|
fusion.addOutput(v4);
|
|
exprs = fusion.exprs(true);
|
|
TORCH_CHECK(exprs[0] == e0);
|
|
TORCH_CHECK(exprs[1] == e1);
|
|
TORCH_CHECK(exprs[2] == e2);
|
|
|
|
fusion.addOutput(v3);
|
|
exprs = fusion.exprs(true);
|
|
TORCH_CHECK(exprs[0] == e0);
|
|
TORCH_CHECK(exprs[1] == e1);
|
|
TORCH_CHECK(exprs[2] == e2);
|
|
|
|
fusion.addOutput(v6);
|
|
exprs = fusion.exprs(true);
|
|
TORCH_CHECK(exprs.size() == 4);
|
|
TORCH_CHECK(exprs[0] == e0);
|
|
TORCH_CHECK(exprs[1] == e1);
|
|
TORCH_CHECK(exprs[2] == e2);
|
|
TORCH_CHECK(exprs[3] == e3);
|
|
|
|
TORCH_CHECK(fusion.origin(v2)->name() == 0);
|
|
TORCH_CHECK(fusion.origin(v3)->name() == 0);
|
|
TORCH_CHECK(fusion.origin(v4)->name() == 1);
|
|
TORCH_CHECK(fusion.origin(v5)->name() == 2);
|
|
TORCH_CHECK(fusion.origin(v6)->name() == 3);
|
|
}
|
|
|
|
void testGPU_FusionTensor() {
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
|
|
auto tensor = at::randn({2, 3, 4, 5}, options);
|
|
auto sizes = tensor.sizes().vec();
|
|
auto tensor_type = TensorType::create(tensor);
|
|
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
auto fuser_tensor = new TensorView(tensor_type);
|
|
TORCH_CHECK(fuser_tensor->getDataType().value() == DataType::Float);
|
|
TORCH_CHECK(fuser_tensor->domain() != nullptr);
|
|
}
|
|
|
|
void testGPU_FusionTensorContiguity() {
|
|
{
|
|
// NCHW memory layout
|
|
auto tensor = at::randn({2, 3, 4, 5});
|
|
auto sizes = tensor.sizes().vec();
|
|
auto strides = tensor.strides().vec();
|
|
TensorContiguity t_c(sizes, strides);
|
|
TORCH_CHECK(t_c.rank() == 4);
|
|
TORCH_CHECK(t_c.getBroadcastDims().size() == 0);
|
|
for (int i = 0; i < 4; i++) {
|
|
TORCH_CHECK(!t_c.isBroadcastDim(i));
|
|
if (i < 3) {
|
|
TORCH_CHECK(t_c.canCollapseToHigher(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// NHWC memory layout
|
|
TensorContiguity t_c({2, 3, 4, 5}, {60, 1, 15, 3});
|
|
TORCH_CHECK(t_c.rank() == 4);
|
|
TORCH_CHECK(t_c.getBroadcastDims().size() == 0);
|
|
for (int i = 0; i < 4; i++) {
|
|
TORCH_CHECK(!t_c.isBroadcastDim(i));
|
|
if (i < 3) {
|
|
TORCH_CHECK((t_c.canCollapseToHigher(i) ^ (i != 2)));
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// NHWC memory layout with broadcast
|
|
TensorContiguity t_c({2, 3, 4, 5}, {120, 0, 30, 3});
|
|
TORCH_CHECK(t_c.rank() == 4);
|
|
auto b_dims = t_c.getBroadcastDims();
|
|
TORCH_CHECK(b_dims.size() == 1 && b_dims[0] == 1);
|
|
for (int i = 0; i < 4; i++) {
|
|
TORCH_CHECK(!(t_c.isBroadcastDim(i)) ^ (i == 1));
|
|
if (i < 3) {
|
|
TORCH_CHECK(!(t_c.canCollapseToHigher(i)));
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// contiguity across size-1 dimension
|
|
auto tensor = at::randn({4, 1, 4});
|
|
auto sizes = tensor.sizes().vec();
|
|
auto strides = tensor.strides().vec();
|
|
auto dim = sizes.size();
|
|
TensorContiguity t_c(sizes, strides);
|
|
TORCH_CHECK(t_c.rank() == (int)sizes.size());
|
|
auto b_dims = t_c.getBroadcastDims();
|
|
TORCH_CHECK(b_dims.size() == 0);
|
|
TORCH_CHECK(t_c.getFCD() == 2);
|
|
TORCH_CHECK(t_c.hasContiguousFCD());
|
|
for (decltype(dim) i = 0; i < dim; i++) {
|
|
TORCH_CHECK(!t_c.isBroadcastDim(i));
|
|
if (i < dim - 1) {
|
|
TORCH_CHECK(t_c.canCollapseToHigher(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// no contiguity across size-1 dimension
|
|
auto tensor = at::randn({4, 4, 4}).split(1, 1)[0];
|
|
auto sizes = tensor.sizes().vec();
|
|
auto strides = tensor.strides().vec();
|
|
TensorContiguity t_c(sizes, strides);
|
|
TORCH_CHECK(!(t_c.canCollapseToHigher(0)));
|
|
TORCH_CHECK((t_c.canCollapseToHigher(1)));
|
|
}
|
|
|
|
{
|
|
// no contiguity across size-1 dimension
|
|
auto tensor = at::randn({4, 1, 8}).split(4, 2)[0];
|
|
auto sizes = tensor.sizes().vec();
|
|
auto strides = tensor.strides().vec();
|
|
TensorContiguity t_c(sizes, strides);
|
|
TORCH_CHECK((t_c.canCollapseToHigher(0)));
|
|
TORCH_CHECK((!t_c.canCollapseToHigher(1)));
|
|
}
|
|
|
|
{
|
|
// no contiguity across size-1 dimension
|
|
auto tensor = at::randn({8, 1, 4}).split(4, 0)[0];
|
|
auto sizes = tensor.sizes().vec();
|
|
auto strides = tensor.strides().vec();
|
|
TensorContiguity t_c(sizes, strides);
|
|
TORCH_CHECK((t_c.canCollapseToHigher(0)));
|
|
TORCH_CHECK((t_c.canCollapseToHigher(1)));
|
|
}
|
|
|
|
{
|
|
// test merge
|
|
TensorContiguity t_c_l({4, 4, 4}, {16, 4, 1});
|
|
TensorContiguity t_c_r({4, 4, 4}, {16, 4, 1});
|
|
t_c_l.merge(t_c_r);
|
|
TORCH_CHECK((t_c_l.isIdentical(t_c_r)));
|
|
}
|
|
|
|
{
|
|
TensorContiguity t_c_l({4, 4, 4, 4}, {16, 0, 4, 1});
|
|
TensorContiguity t_c_r({4, 4, 4, 4}, {64, 16, 4, 1});
|
|
t_c_l.merge(t_c_r);
|
|
TORCH_CHECK(t_c_l.getFCD() == 3);
|
|
TORCH_CHECK(t_c_l.getAxisByStride(0) == 0);
|
|
}
|
|
|
|
{
|
|
// NHWC + NCHW
|
|
TensorContiguity t_c_l({4, 4, 4, 4}, {64, 16, 4, 1});
|
|
TensorContiguity t_c_r({4, 4, 4, 4}, {64, 1, 16, 4});
|
|
t_c_l.merge(t_c_r);
|
|
TORCH_CHECK(!t_c_l.hasContiguousFCD());
|
|
TORCH_CHECK(t_c_l.getFCD() == -1);
|
|
TORCH_CHECK(t_c_l.getAxisByStride(0) == 0);
|
|
TORCH_CHECK(t_c_l.getAxisByStride(1) == -1);
|
|
TORCH_CHECK(t_c_l.getAxisByStride(2) == -1);
|
|
TORCH_CHECK(t_c_l.getAxisByStride(3) == -1);
|
|
}
|
|
|
|
{
|
|
// NCHW + NCHW with broadcasting
|
|
TensorContiguity t_c_l({4, 4, 4, 4}, {4, 1, 4, 0});
|
|
TensorContiguity t_c_r({4, 4, 4, 4}, {64, 1, 16, 4});
|
|
t_c_l.merge(t_c_r);
|
|
TORCH_CHECK(t_c_l.getFCD() == 1);
|
|
TORCH_CHECK(t_c_l.getAxisByStride(0) == 0);
|
|
}
|
|
}
|
|
|
|
void testGPU_FusionTVSplit() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
TensorView* tv = makeDummyTensor(3);
|
|
|
|
tv = tv->split(2, 2);
|
|
TORCH_CHECK(tv->nDims() == 4);
|
|
Expr* outer = tv->axis(2)->extent()->getOrigin();
|
|
|
|
TORCH_CHECK(
|
|
outer->getExprType().value() == ExprType::BinaryOp &&
|
|
static_cast<BinaryOp*>(outer)->getBinaryOpType() ==
|
|
BinaryOpType::CeilDiv &&
|
|
static_cast<BinaryOp*>(outer)->lhs()->sameAs(
|
|
tv->getRootDomain()->axis(2)->extent()) &&
|
|
static_cast<Int*>(static_cast<BinaryOp*>(outer)->rhs())
|
|
->sameAs(new Int(2)));
|
|
|
|
IterDomain* inner = static_cast<IterDomain*>(tv->axis(3));
|
|
TORCH_CHECK(
|
|
inner->extent()->isScalar() &&
|
|
static_cast<Int*>(inner->extent())->isConst() &&
|
|
static_cast<Int*>(inner->extent())->value().value() == 2);
|
|
}
|
|
|
|
void testGPU_FusionTVMerge() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
TensorView* tv = makeDummyTensor(3);
|
|
|
|
tv = tv->merge(1);
|
|
Expr* axisOp = tv->axis(1)->extent()->getOrigin();
|
|
|
|
TORCH_CHECK(
|
|
tv->nDims() == 2 && axisOp->getExprType() == ExprType::BinaryOp &&
|
|
static_cast<BinaryOp*>(axisOp)->getBinaryOpType() == BinaryOpType::Mul &&
|
|
static_cast<BinaryOp*>(axisOp)->lhs() ==
|
|
tv->getRootDomain()->axis(1)->extent() &&
|
|
static_cast<BinaryOp*>(axisOp)->rhs() ==
|
|
tv->getRootDomain()->axis(2)->extent());
|
|
}
|
|
|
|
void testGPU_FusionTVReorder() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
TensorView* dummyTensor = makeDummyTensor(3);
|
|
|
|
std::unordered_map<int, int> shift_right{{-1, 0}};
|
|
|
|
std::unordered_map<int, int> shift_left{{0, -1}};
|
|
|
|
std::unordered_map<int, int> shift_left_2{{0, -1}, {1, 0}, {2, 1}};
|
|
|
|
std::unordered_map<int, int> swap{{0, 2}, {2, 0}};
|
|
TensorView* ref = dummyTensor->clone();
|
|
TensorView* tv = dummyTensor->clone();
|
|
|
|
TensorView* s_leftl = tv->reorder(shift_left);
|
|
for (int i = 0; i < (int)tv->nDims(); i++)
|
|
TORCH_CHECK(ref->axis(i) == s_leftl->axis(i - 1));
|
|
|
|
tv = dummyTensor->clone();
|
|
TensorView* s_left2 = tv->reorder(shift_left);
|
|
for (int i = 0; i < (int)tv->nDims(); i++)
|
|
TORCH_CHECK(ref->axis(i) == s_left2->axis(i - 1));
|
|
|
|
tv = dummyTensor->clone();
|
|
TensorView* s_right = tv->reorder(shift_right);
|
|
for (int i = 0; i < (int)tv->nDims(); i++)
|
|
TORCH_CHECK(ref->axis(i - 1) == s_right->axis(i));
|
|
|
|
tv = dummyTensor->clone();
|
|
TensorView* rswap = tv->reorder(swap);
|
|
TORCH_CHECK(ref->axis(0) == rswap->axis(2));
|
|
TORCH_CHECK(ref->axis(2) == rswap->axis(0));
|
|
TORCH_CHECK(ref->axis(1) == rswap->axis(1));
|
|
}
|
|
|
|
void testGPU_FusionEquality() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
Float* fval1 = new Float();
|
|
Float* fval1_copy = fval1;
|
|
Float* fval2 = new Float();
|
|
Float* fone = new Float(1.0);
|
|
|
|
TORCH_CHECK(fval1->sameAs(fval1_copy));
|
|
TORCH_CHECK(!fval1->sameAs(fval2));
|
|
TORCH_CHECK(!fone->sameAs(fval1));
|
|
TORCH_CHECK(fone->sameAs(new Float(1.0)));
|
|
|
|
Int* ival1 = new Int();
|
|
Int* ival1_copy = ival1;
|
|
Int* ival2 = new Int();
|
|
Int* ione = new Int(1);
|
|
|
|
TORCH_CHECK(ival1->sameAs(ival1_copy));
|
|
TORCH_CHECK(!ival1->sameAs(ival2));
|
|
TORCH_CHECK(!ione->sameAs(ival1));
|
|
TORCH_CHECK(ione->sameAs(new Int(1)));
|
|
|
|
BinaryOp* add1 = new BinaryOp(BinaryOpType::Add, new Float(), fval1, ival1);
|
|
BinaryOp* add1_copy =
|
|
new BinaryOp(BinaryOpType::Add, new Float(), fval1, ival1);
|
|
BinaryOp* sub1 = new BinaryOp(BinaryOpType::Sub, new Float(), fval1, ival1);
|
|
|
|
UnaryOp* neg1 = new UnaryOp(UnaryOpType::Neg, new Float(), fval1);
|
|
UnaryOp* neg2 = new UnaryOp(UnaryOpType::Neg, new Float(), fval2);
|
|
UnaryOp* neg1_copy = new UnaryOp(UnaryOpType::Neg, new Float(), fval1);
|
|
|
|
TORCH_CHECK(add1->sameAs(add1_copy));
|
|
TORCH_CHECK(!add1->sameAs(sub1));
|
|
|
|
TORCH_CHECK(neg1->sameAs(neg1_copy));
|
|
TORCH_CHECK(!static_cast<Expr*>(neg1)->sameAs(add1));
|
|
TORCH_CHECK(!neg1->sameAs(neg2));
|
|
}
|
|
|
|
void testGPU_FusionReplaceAll() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
Float* f0 = new Float();
|
|
Float* f1 = new Float{1.f};
|
|
Float* f2 = new Float{2.f};
|
|
Float* f3 = new Float();
|
|
Float* f4 = static_cast<Float*>(add(f1, f0));
|
|
|
|
// replace the output f4 with f3
|
|
ReplaceAll::instancesOf(f4, f3);
|
|
// f3 should now have an origin function
|
|
TORCH_CHECK(fusion.origin(f3) != nullptr);
|
|
|
|
// Should have removed f4 completely so we shouldn't have any other expr than
|
|
// f3 construction
|
|
TORCH_CHECK(fusion.exprs().size() == 1);
|
|
|
|
// Replace constant Float's of value 1.f with 2.f
|
|
ReplaceAll::instancesOf(f1, f2);
|
|
BinaryOp* bop = static_cast<BinaryOp*>(fusion.origin(f3));
|
|
// make sure the binary op (origin of f3) actually changed to 2.f
|
|
TORCH_CHECK(static_cast<Float*>(bop->lhs())->sameAs(new Float{2.f}));
|
|
}
|
|
|
|
void testGPU_FusionParser() {
|
|
auto g = std::make_shared<Graph>();
|
|
const auto graph0_string = R"IR(
|
|
graph(%0 : Float(2:1),
|
|
%1 : Float(2:1)):
|
|
%c0 : Float(2:1) = aten::mul(%0, %1)
|
|
%d0 : Float(2:1) = aten::mul(%c0, %0)
|
|
return (%d0))IR";
|
|
torch::jit::parseIR(graph0_string, g.get());
|
|
|
|
// strides are not yet supported in the irparser.
|
|
for (auto val : g->block()->inputs()) {
|
|
if (val->isCompleteTensor())
|
|
val->setType(val->type()->cast<TensorType>()->contiguous());
|
|
}
|
|
for (auto node : g->block()->nodes()) {
|
|
for (auto val : node->outputs()) {
|
|
if (val->isCompleteTensor())
|
|
val->setType(val->type()->cast<TensorType>()->contiguous());
|
|
}
|
|
}
|
|
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
// These can be set to anything as there are no bindings!
|
|
// All CTAS and threads execute the same thing.
|
|
prog.grid(4);
|
|
prog.block(32);
|
|
prog.device_ = 0;
|
|
fuser::cuda::parseJitIR(g, fusion, &prog);
|
|
|
|
std::stringstream ref;
|
|
ref << "__global__ void CUDAGeneratedKernel(Tensor<float, 1> T0, Tensor<float, 1> T1, Tensor<float, 1> T3){\n"
|
|
<< " float T2[4];\n"
|
|
<< " if ( ( ( ( ( ( blockIdx.x * 4 ) + ( 4 - 1 ) ) * 128 ) + threadIdx.x ) < T1.size[0] ) ) { \n"
|
|
<< " for(size_t i108 = 0; i108 < 4; ++i108 ) {\n"
|
|
<< " T2[ i108 ]\n"
|
|
<< " = T0[ ( ( ( ( ( blockIdx.x * 4 ) + i108 ) * 128 ) + threadIdx.x ) * T0.stride[0] ) ]\n"
|
|
<< " * T1[ ( ( ( ( ( blockIdx.x * 4 ) + i108 ) * 128 ) + threadIdx.x ) * T1.stride[0] ) ];\n"
|
|
<< " }\n"
|
|
<< " } else { \n"
|
|
<< " for(size_t i108 = 0; i108 < 4; ++i108 ) {\n"
|
|
<< " if ( ( ( ( ( ( blockIdx.x * 4 ) + i108 ) * 128 ) + threadIdx.x ) < T1.size[0] ) ) { \n"
|
|
<< " T2[ i108 ]\n"
|
|
<< " = T0[ ( ( ( ( ( blockIdx.x * 4 ) + i108 ) * 128 ) + threadIdx.x ) * T0.stride[0] ) ]\n"
|
|
<< " * T1[ ( ( ( ( ( blockIdx.x * 4 ) + i108 ) * 128 ) + threadIdx.x ) * T1.stride[0] ) ];\n"
|
|
<< " }\n"
|
|
<< " }\n"
|
|
<< " }\n"
|
|
<< " if ( ( ( ( ( ( blockIdx.x * 4 ) + ( 4 - 1 ) ) * 128 ) + threadIdx.x ) < T3.size[0] ) ) { \n"
|
|
<< " for(size_t i109 = 0; i109 < 4; ++i109 ) {\n"
|
|
<< " T3[ ( ( ( ( ( blockIdx.x * 4 ) + i109 ) * 128 ) + threadIdx.x ) * T3.stride[0] ) ]\n"
|
|
<< " = T2[ i109 ]\n"
|
|
<< " * T0[ ( ( ( ( ( blockIdx.x * 4 ) + i109 ) * 128 ) + threadIdx.x ) * T0.stride[0] ) ];\n"
|
|
<< " }\n"
|
|
<< " } else { \n"
|
|
<< " for(size_t i109 = 0; i109 < 4; ++i109 ) {\n"
|
|
<< " if ( ( ( ( ( ( blockIdx.x * 4 ) + i109 ) * 128 ) + threadIdx.x ) < T3.size[0] ) ) { \n"
|
|
<< " T3[ ( ( ( ( ( blockIdx.x * 4 ) + i109 ) * 128 ) + threadIdx.x ) * T3.stride[0] ) ]\n"
|
|
<< " = T2[ i109 ]\n"
|
|
<< " * T0[ ( ( ( ( ( blockIdx.x * 4 ) + i109 ) * 128 ) + threadIdx.x ) * T0.stride[0] ) ];\n"
|
|
<< " }\n"
|
|
<< " }\n"
|
|
<< " }\n"
|
|
<< "}\n";
|
|
|
|
GPULower gpulw(&fusion);
|
|
std::stringstream cdg;
|
|
gpulw.printKernel(cdg);
|
|
if (ref.str().size() != cdg.str().size() ||
|
|
ref.str().compare(cdg.str()) != 0) {
|
|
std::cerr
|
|
<< " Codegen mismatch, codegen possibly changed, or is incorrect. "
|
|
<< " \n ========= REF ========= \n"
|
|
<< ref.str() << "\n========= RESULT ========== \n"
|
|
<< cdg.str() << "\n=================" << std::endl;
|
|
TORCH_CHECK(false);
|
|
}
|
|
}
|
|
|
|
void testGPU_FusionDependency() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
Float* f0 = new Float(0.f);
|
|
Float* f1 = new Float(1.f);
|
|
auto f2 = add(f0, f1);
|
|
|
|
auto f3 = add(f2, f2);
|
|
|
|
Float* f4 = new Float(4.f);
|
|
Float* f5 = new Float(5.f);
|
|
auto f6 = add(f4, f5);
|
|
|
|
Float* f7 = new Float(7.f);
|
|
Float* f8 = new Float(8.f);
|
|
auto f9 = add(f7, f8);
|
|
|
|
auto f10 = add(f6, f9);
|
|
|
|
auto f11 = add(f3, f10);
|
|
|
|
TORCH_CHECK(DependencyCheck::isDependencyOf(f0, f11));
|
|
TORCH_CHECK(DependencyCheck::isDependencyOf(f1, f11));
|
|
TORCH_CHECK(DependencyCheck::isDependencyOf(f2, f11));
|
|
TORCH_CHECK(DependencyCheck::isDependencyOf(f3, f11));
|
|
TORCH_CHECK(DependencyCheck::isDependencyOf(f6, f11));
|
|
TORCH_CHECK(DependencyCheck::isDependencyOf(f9, f11));
|
|
TORCH_CHECK(DependencyCheck::isDependencyOf(f0, f2));
|
|
TORCH_CHECK(DependencyCheck::isDependencyOf(f2, f3));
|
|
TORCH_CHECK(DependencyCheck::isDependencyOf(f4, f6));
|
|
TORCH_CHECK(DependencyCheck::isDependencyOf(f8, f10));
|
|
|
|
TORCH_CHECK(!DependencyCheck::isDependencyOf(f11, f0));
|
|
TORCH_CHECK(!DependencyCheck::isDependencyOf(f11, f1));
|
|
TORCH_CHECK(!DependencyCheck::isDependencyOf(f11, f2));
|
|
TORCH_CHECK(!DependencyCheck::isDependencyOf(f11, f3));
|
|
TORCH_CHECK(!DependencyCheck::isDependencyOf(f11, f4));
|
|
TORCH_CHECK(!DependencyCheck::isDependencyOf(f11, f5));
|
|
TORCH_CHECK(!DependencyCheck::isDependencyOf(f2, f0));
|
|
TORCH_CHECK(!DependencyCheck::isDependencyOf(f3, f2));
|
|
TORCH_CHECK(!DependencyCheck::isDependencyOf(f6, f4));
|
|
TORCH_CHECK(!DependencyCheck::isDependencyOf(f10, f8));
|
|
|
|
auto dep_chain = DependencyCheck::getSingleDependencyChain(f0, f11);
|
|
TORCH_CHECK(dep_chain.back() == f11);
|
|
dep_chain.pop_back();
|
|
TORCH_CHECK(dep_chain.back() == f3);
|
|
dep_chain.pop_back();
|
|
TORCH_CHECK(dep_chain.back() == f2);
|
|
dep_chain.pop_back();
|
|
|
|
dep_chain = DependencyCheck::getSingleDependencyChain(f6, f11);
|
|
TORCH_CHECK(dep_chain.back() == f11);
|
|
dep_chain.pop_back();
|
|
TORCH_CHECK(dep_chain.back() == f10);
|
|
dep_chain.pop_back();
|
|
|
|
dep_chain = DependencyCheck::getSingleDependencyChain(f4, f11);
|
|
TORCH_CHECK(dep_chain.back() == f11);
|
|
dep_chain.pop_back();
|
|
TORCH_CHECK(dep_chain.back() == f10);
|
|
dep_chain.pop_back();
|
|
TORCH_CHECK(dep_chain.back() == f6);
|
|
dep_chain.pop_back();
|
|
|
|
dep_chain = DependencyCheck::getSingleDependencyChain(f11, f2);
|
|
TORCH_CHECK(dep_chain.empty());
|
|
}
|
|
|
|
void testGPU_FusionCodeGen() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
TensorView* tv0 = makeDummyTensor(3);
|
|
|
|
new BinaryOp(BinaryOpType::Add, tv0, new Float(0.0), new Float(1.0));
|
|
TensorView* tv1 = static_cast<TensorView*>(add(tv0, new Float(2.0)));
|
|
TensorView* tv2 = static_cast<TensorView*>(add(tv1, new Float(3.0)));
|
|
fusion.addOutput(tv2);
|
|
|
|
//[I0, I1, I2]
|
|
tv2 = tv2->split(0, 4);
|
|
//[I0o, I0i{4}, I1, I2]
|
|
tv2 = tv2->merge(1);
|
|
//[I0o, I0i{4}*I1, I2]
|
|
tv2 = tv2->split(-1, 2);
|
|
//[I0o, I0i{4}*I1, I2o, I2i{2}]
|
|
tv2 = tv2->reorder({{0, 1}, {1, 0}, {3, 2}});
|
|
//[I0i{4}*I1, I0o, I2i{2}, I2o]
|
|
|
|
tv0->computeAt(tv2, -1);
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
// These can be set to anything as there are no bindings!
|
|
// All CTAS and threads execute the same thing.
|
|
prog.grid(4);
|
|
prog.block(32);
|
|
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
|
|
at::Tensor output = at::empty({16, 8, 8}, options);
|
|
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
torch::jit::fuser::cuda::runTestKernel(&prog, {}, {output});
|
|
|
|
at::Tensor output_ref = at::zeros_like(output, options);
|
|
output_ref = output_ref + 0.0 + 1.0 + 2.0 + 3.0;
|
|
|
|
TORCH_CHECK(output_ref.equal(output));
|
|
}
|
|
|
|
void testGPU_FusionCodeGen2() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
TensorView* tv0 = makeDummyTensor(3);
|
|
TensorView* tv1 = makeDummyTensor(3);
|
|
TensorView* tv2 = static_cast<TensorView*>(add(tv1, new Float(2.0)));
|
|
TensorView* tv3 = static_cast<TensorView*>(add(tv0, tv2));
|
|
|
|
fusion.addInput(tv0);
|
|
fusion.addInput(tv1);
|
|
fusion.addOutput(tv3);
|
|
|
|
//[I0, I1, I2]
|
|
tv3->reorder({{0, 2}, {2, 0}});
|
|
//[I2, I1, I0]
|
|
tv3->split(-1, 4);
|
|
//[I2, I1, I0o, I0i{4}]
|
|
tv3->reorder({{2, 0}, {3, 1}, {0, 3}});
|
|
// I0o, I0i{4}, I1, I2]
|
|
|
|
tv0->computeAt(tv3, -1);
|
|
tv1->computeAt(tv3, -1);
|
|
|
|
tv3->axis(0)->parallelize(ParallelType::BIDx);
|
|
tv3->axis(-1)->parallelize(ParallelType::TIDx);
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
prog.grid(4);
|
|
prog.block(8);
|
|
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
|
|
at::Tensor input1 = at::randn({16, 8, 8}, options);
|
|
at::Tensor input2 = at::randn_like(input1);
|
|
;
|
|
at::Tensor output = at::empty_like(input1);
|
|
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
torch::jit::fuser::cuda::runTestKernel(&prog, {input1, input2}, {output});
|
|
|
|
at::Tensor tv2_ref = input2 + 2.0;
|
|
at::Tensor output_ref = input1 + tv2_ref;
|
|
|
|
TORCH_CHECK(output_ref.equal(output));
|
|
}
|
|
|
|
void testGPU_FusionSimplePWise() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
// dimensionality of the problem
|
|
int nDims = 3;
|
|
|
|
// Set up your input tensor views
|
|
TensorView* tv0 = makeDummyTensor(nDims);
|
|
TensorView* tv1 = makeDummyTensor(nDims);
|
|
|
|
// Register your inputs
|
|
fusion.addInput(tv0);
|
|
fusion.addInput(tv1);
|
|
|
|
// Do math with it, it returns a `Val*` but can be static_casted back to
|
|
// TensorView
|
|
TensorView* tv2 = static_cast<TensorView*>(add(tv1, new Float(2.0)));
|
|
TensorView* tv3 = static_cast<TensorView*>(add(tv0, tv2));
|
|
|
|
// Register your outputs
|
|
fusion.addOutput(tv3);
|
|
|
|
// Do transformations, remember, transformations are outputs to inputs
|
|
// This doesn't have to be in this order
|
|
tv3->merge(1);
|
|
tv3->merge(0);
|
|
|
|
// Split by n_threads
|
|
tv3->split(-1, 128 * 2);
|
|
tv3->split(-1, 128);
|
|
|
|
// For all inputs, computeAt the output inline, temporaries should be squeezed
|
|
// between them
|
|
tv0->computeAt(tv3, -1);
|
|
tv1->computeAt(tv3, -1);
|
|
|
|
// Parallelize TV3
|
|
tv3->axis(0)->parallelize(ParallelType::BIDx);
|
|
tv3->axis(-2)->parallelize(ParallelType::TIDy);
|
|
tv3->axis(-1)->parallelize(ParallelType::TIDx);
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
prog.grid(64); // 1 CTA
|
|
prog.block(128, 2); // 256 Threads
|
|
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
|
|
at::Tensor input1 = at::randn({64, 2, 128}, options);
|
|
at::Tensor input2 = at::rand_like(input1);
|
|
at::Tensor output = at::empty_like(input1);
|
|
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
torch::jit::fuser::cuda::runTestKernel(&prog, {input1, input2}, {output});
|
|
|
|
at::Tensor tv2_ref = input2 + 2.0;
|
|
at::Tensor output_ref = input1 + tv2_ref;
|
|
|
|
TORCH_CHECK(output_ref.equal(output));
|
|
}
|
|
|
|
void testGPU_FusionExecKernel() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
// Set up your input tensor views
|
|
TensorView* tv0 = makeDummyTensor(2);
|
|
TensorView* tv1 = makeDummyTensor(2);
|
|
|
|
// Register your inputs
|
|
fusion.addInput(tv0);
|
|
fusion.addInput(tv1);
|
|
|
|
// Do math with it, it returns a `Val*` but can be static_casted back to
|
|
// TensorView
|
|
TensorView* tv2 = static_cast<TensorView*>(add(tv1, new Float(2.0)));
|
|
TensorView* tv3 = static_cast<TensorView*>(add(tv0, tv2));
|
|
|
|
// Register your outputs
|
|
fusion.addOutput(tv3);
|
|
|
|
tv3->merge(0);
|
|
tv3->split(0, 128);
|
|
tv3->split(0, 4);
|
|
|
|
// For all inputs, computeAt the output inline, temporaries should be squeezed
|
|
// between them
|
|
tv0->computeAt(tv3, 1);
|
|
tv1->computeAt(tv3, 1);
|
|
|
|
// Parallelize TV3
|
|
tv3->axis(0)->parallelize(ParallelType::BIDx);
|
|
tv2->axis(1)->parallelize(ParallelType::Unroll);
|
|
tv3->axis(1)->parallelize(ParallelType::Unroll);
|
|
tv2->axis(-1)->parallelize(ParallelType::TIDx);
|
|
tv3->axis(-1)->parallelize(ParallelType::TIDx);
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
prog.grid(1); // 1 CTA
|
|
prog.block(128); // 128 Threads
|
|
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
|
|
at::Tensor input1 = at::ones({1, 128}, options);
|
|
at::Tensor input2 = at::ones_like(input1);
|
|
|
|
at::Tensor output = at::empty_like(input1);
|
|
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
torch::jit::fuser::cuda::runTestKernel(&prog, {input1, input2}, {output});
|
|
|
|
at::Tensor check = at::full({1, 128}, 4, options);
|
|
;
|
|
TORCH_CHECK(output.equal(check));
|
|
}
|
|
|
|
int ceilDiv_(int a, int b) {
|
|
return (a + b - 1) / b;
|
|
}
|
|
|
|
void testGPU_FusionAdvancedComputeAt() {
|
|
// Case 1
|
|
/*
|
|
* tv1 = tv0 * -1
|
|
* tv2 = tv0 + 3
|
|
* tv3 = tv0 * 2
|
|
* tv4 = tv2 + tv1
|
|
* tv5 = tv4 + tv3
|
|
* tv6 = tv0 + tv3
|
|
*/
|
|
{
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
TensorView* tv0 = makeDummyTensor(2);
|
|
fusion.addInput(tv0);
|
|
|
|
TensorView* tv1 = static_cast<TensorView*>(mul(tv0, new Float(-1.0)));
|
|
TensorView* tv2 = static_cast<TensorView*>(add(tv0, new Float(3.0)));
|
|
TensorView* tv3 = static_cast<TensorView*>(mul(tv0, new Float(2.0)));
|
|
TensorView* tv4 = static_cast<TensorView*>(add(tv2, tv1));
|
|
|
|
TensorView* tv5 = static_cast<TensorView*>(add(tv4, tv3));
|
|
TensorView* tv6 = static_cast<TensorView*>(add(tv0, tv3));
|
|
|
|
fusion.addOutput(tv5);
|
|
fusion.addOutput(tv6);
|
|
|
|
tv0->computeAt(tv3, 1);
|
|
|
|
// // Check propagation of this computeAt.
|
|
TORCH_CHECK(tv0->getComputeAtView() == tv3);
|
|
TORCH_CHECK(tv1->getComputeAtView() == tv4);
|
|
TORCH_CHECK(tv2->getComputeAtView() == tv4);
|
|
TORCH_CHECK(tv3->getComputeAtView() == tv6);
|
|
TORCH_CHECK(tv4->getComputeAtView() == tv5);
|
|
TORCH_CHECK(tv5->getComputeAtView() == tv6);
|
|
TORCH_CHECK(!tv6->hasComputeAt());
|
|
|
|
// Lets setup to actually run
|
|
tv6->merge(0);
|
|
tv6->split(0, 128);
|
|
tv6->split(0, 4);
|
|
|
|
tv6->axis(0)->parallelize(ParallelType::BIDx);
|
|
|
|
tv0->computeAt(tv6, 1);
|
|
|
|
TORCH_CHECK(tv0->getComputeAtView() == tv3 && tv0->nDims() == 3);
|
|
TORCH_CHECK(tv1->getComputeAtView() == tv4 && tv1->nDims() == 3);
|
|
TORCH_CHECK(tv2->getComputeAtView() == tv4 && tv2->nDims() == 3);
|
|
TORCH_CHECK(tv3->getComputeAtView() == tv6 && tv3->nDims() == 3);
|
|
TORCH_CHECK(tv4->getComputeAtView() == tv5 && tv4->nDims() == 3);
|
|
TORCH_CHECK(tv5->getComputeAtView() == tv6 && tv5->nDims() == 3);
|
|
TORCH_CHECK(!tv6->hasComputeAt());
|
|
|
|
for (Val* val : fusion.vals()) {
|
|
if (!fusion.hasInput(val) &&
|
|
val->getValType().value() == ValType::TensorView) {
|
|
TensorView* tv = static_cast<TensorView*>(val);
|
|
tv->axis(1)->parallelize(ParallelType::Unroll);
|
|
tv->axis(-1)->parallelize(ParallelType::TIDx);
|
|
}
|
|
}
|
|
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
|
|
at::Tensor t0 = at::randn({129, 127}, options);
|
|
|
|
auto t1 = t0.mul({-1.0});
|
|
auto t2 = t0.add({3.0});
|
|
auto t3 = t0.mul({2.0});
|
|
auto t4 = t2.add(t1);
|
|
auto t5 = t4.add(t3);
|
|
auto t6 = t0.add(t3);
|
|
|
|
at::Tensor kernel_tv5 = at::empty_like(t0, options);
|
|
at::Tensor kernel_tv6 = at::empty_like(t0, options);
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
|
|
int blocks = ceilDiv_(
|
|
ceilDiv_(t0.numel(), 128), 4); // numel / unroll factor / threads
|
|
prog.grid(blocks);
|
|
prog.block(128);
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
torch::jit::fuser::cuda::runTestKernel(
|
|
&prog, {t0}, {kernel_tv5, kernel_tv6});
|
|
|
|
TORCH_CHECK(at::allclose(kernel_tv5, t5));
|
|
TORCH_CHECK(at::allclose(kernel_tv6, t6));
|
|
}
|
|
|
|
// Case 2
|
|
/*
|
|
* tv1 = tv0 * -1
|
|
* tv2 = tv0 + 3
|
|
* tv3 = tv0 * 2
|
|
* tv4 = tv2 + tv1
|
|
* tv5 = tv4 + tv3
|
|
* tv6 = tv5 + tv3
|
|
*/
|
|
{
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
TensorView* tv0 = makeDummyTensor(2);
|
|
fusion.addInput(tv0);
|
|
|
|
TensorView* tv1 = static_cast<TensorView*>(mul(tv0, new Float(-1.0)));
|
|
TensorView* tv2 = static_cast<TensorView*>(add(tv0, new Float(3.0)));
|
|
TensorView* tv3 = static_cast<TensorView*>(mul(tv0, new Float(2.0)));
|
|
TensorView* tv4 = static_cast<TensorView*>(add(tv2, tv1));
|
|
|
|
TensorView* tv5 = static_cast<TensorView*>(add(tv4, tv3));
|
|
TensorView* tv6 = static_cast<TensorView*>(add(tv5, tv3));
|
|
|
|
fusion.addOutput(tv5);
|
|
fusion.addOutput(tv6);
|
|
|
|
tv2->computeAt(tv4, 1);
|
|
TORCH_CHECK(!tv0->hasComputeAt());
|
|
TORCH_CHECK(!tv1->hasComputeAt());
|
|
TORCH_CHECK(tv2->getComputeAtView() == tv4);
|
|
TORCH_CHECK(!tv3->hasComputeAt());
|
|
TORCH_CHECK(!tv4->hasComputeAt());
|
|
TORCH_CHECK(!tv5->hasComputeAt());
|
|
TORCH_CHECK(!tv6->hasComputeAt());
|
|
|
|
// Lets setup to actually run
|
|
tv6->merge(0);
|
|
tv6->split(0, 128);
|
|
tv6->split(0, 4);
|
|
|
|
tv6->axis(0)->parallelize(ParallelType::BIDx);
|
|
|
|
tv0->computeAt(tv6, 1);
|
|
|
|
for (Val* val : fusion.vals()) {
|
|
if (!fusion.hasInput(val) &&
|
|
val->getValType().value() == ValType::TensorView) {
|
|
TensorView* tv = static_cast<TensorView*>(val);
|
|
|
|
tv->axis(1)->parallelize(ParallelType::Unroll);
|
|
tv->axis(-1)->parallelize(ParallelType::TIDx);
|
|
}
|
|
}
|
|
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
at::Tensor t0 = at::randn({129, 127}, options);
|
|
|
|
auto t1 = t0.mul({-1.0});
|
|
auto t2 = t0.add({3.0});
|
|
auto t3 = t0.mul({2.0});
|
|
auto t4 = t2.add(t1);
|
|
auto t5 = t4.add(t3);
|
|
auto t6 = t5.add(t3);
|
|
|
|
at::Tensor kernel_tv5 = at::empty_like(t0, options);
|
|
at::Tensor kernel_tv6 = at::empty_like(t0, options);
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
|
|
int blocks = ceilDiv_(
|
|
ceilDiv_(t0.numel(), 128), 4); // numel / unroll factor / threads
|
|
prog.grid(blocks);
|
|
prog.block(128);
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
torch::jit::fuser::cuda::runTestKernel(
|
|
&prog, {t0}, {kernel_tv5, kernel_tv6});
|
|
|
|
GPULower gpulw(&fusion);
|
|
std::stringstream cdg;
|
|
gpulw.printKernel(cdg);
|
|
|
|
TORCH_CHECK(at::allclose(kernel_tv5, t5), cdg.str());
|
|
TORCH_CHECK(at::allclose(kernel_tv6, t6));
|
|
}
|
|
|
|
// Case 3
|
|
// T2 = T1 * 0.979361
|
|
// T3 = T2 * T0
|
|
{
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
TensorView* tv0 = makeDummyTensor(4);
|
|
fusion.addInput(tv0);
|
|
|
|
TensorView* tv1 = makeDummyTensor(4);
|
|
fusion.addInput(tv1);
|
|
|
|
TensorView* tv2 = static_cast<TensorView*>(mul(tv1, new Float(.979361)));
|
|
TensorView* tv3 = static_cast<TensorView*>(mul(tv2, tv0));
|
|
|
|
fusion.addOutput(tv3);
|
|
|
|
// Lets setup to actually run
|
|
while (tv3->nDims() > 1)
|
|
tv3->merge(0);
|
|
tv3->split(0, 128);
|
|
tv3->split(0, 4);
|
|
|
|
tv0->computeAt(tv3, 1);
|
|
tv1->computeAt(tv3, 1);
|
|
|
|
tv3->axis(0)->parallelize(ParallelType::BIDx);
|
|
|
|
for (Val* val : fusion.vals()) {
|
|
if (!fusion.hasInput(val) &&
|
|
val->getValType().value() == ValType::TensorView) {
|
|
TensorView* tv = static_cast<TensorView*>(val);
|
|
|
|
tv->axis(1)->parallelize(ParallelType::Unroll);
|
|
tv->axis(-1)->parallelize(ParallelType::TIDx);
|
|
}
|
|
}
|
|
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
at::Tensor t0 = at::randn({129, 127, 63, 65}, options);
|
|
at::Tensor t1 = at::rand_like(t0, options);
|
|
|
|
auto t2 = t1.mul({0.979361});
|
|
auto t3 = t2.mul(t0);
|
|
|
|
at::Tensor kernel_tv3 = at::empty_like(t0, options);
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
|
|
int blocks = ceilDiv_(
|
|
ceilDiv_(t0.numel(), 128), 4); // numel / unroll factor / threads
|
|
|
|
prog.grid(blocks);
|
|
prog.block(128);
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
torch::jit::fuser::cuda::runTestKernel(&prog, {t0, t1}, {kernel_tv3});
|
|
|
|
GPULower gpulw(&fusion);
|
|
std::stringstream cdg;
|
|
gpulw.printKernel(cdg);
|
|
|
|
TORCH_CHECK(at::allclose(kernel_tv3, t3), cdg.str());
|
|
}
|
|
|
|
// Case 4
|
|
// T4 = T2 - T3
|
|
// T5 = T1 + T4
|
|
// T6 = T5 - T0
|
|
{
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
TensorView* tv0 = makeDummyTensor(4);
|
|
fusion.addInput(tv0);
|
|
|
|
TensorView* tv1 = makeDummyTensor(4);
|
|
fusion.addInput(tv1);
|
|
|
|
TensorView* tv2 = makeDummyTensor(4);
|
|
fusion.addInput(tv2);
|
|
|
|
TensorView* tv3 = makeDummyTensor(4);
|
|
fusion.addInput(tv3);
|
|
|
|
TensorView* tv4 = static_cast<TensorView*>(sub(tv2, tv3));
|
|
TensorView* tv5 = static_cast<TensorView*>(add(tv1, tv4));
|
|
TensorView* tv6 = static_cast<TensorView*>(sub(tv5, tv0));
|
|
|
|
fusion.addOutput(tv6);
|
|
|
|
// Lets setup to actually run
|
|
while (tv6->nDims() > 1)
|
|
tv6->merge(0);
|
|
tv6->split(0, 128);
|
|
tv6->split(0, 4);
|
|
|
|
tv0->computeAt(tv6, 1);
|
|
tv1->computeAt(tv6, 1);
|
|
tv2->computeAt(tv6, 1);
|
|
tv3->computeAt(tv6, 1);
|
|
|
|
tv6->axis(0)->parallelize(ParallelType::BIDx);
|
|
|
|
for (Val* val : fusion.vals()) {
|
|
if (!fusion.hasInput(val) &&
|
|
val->getValType().value() == ValType::TensorView) {
|
|
TensorView* tv = static_cast<TensorView*>(val);
|
|
|
|
tv->axis(1)->parallelize(ParallelType::Unroll);
|
|
tv->axis(-1)->parallelize(ParallelType::TIDx);
|
|
}
|
|
}
|
|
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
at::Tensor t0 = at::randn({129, 127, 63, 65}, options);
|
|
at::Tensor t1 = at::rand_like(t0, options);
|
|
at::Tensor t2 = at::rand_like(t0, options);
|
|
at::Tensor t3 = at::rand_like(t0, options);
|
|
|
|
auto t4 = t2.sub(t3);
|
|
auto t5 = t1.add(t4);
|
|
auto t6 = t5.sub(t0);
|
|
|
|
at::Tensor kernel_tv6 = at::empty_like(t0, options);
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
|
|
int blocks = ceilDiv_(
|
|
ceilDiv_(t0.numel(), 128), 4); // numel / unroll factor / threads
|
|
|
|
prog.grid(blocks);
|
|
prog.block(128);
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
torch::jit::fuser::cuda::runTestKernel(
|
|
&prog, {t0, t1, t2, t3}, {kernel_tv6});
|
|
|
|
GPULower gpulw(&fusion);
|
|
std::stringstream cdg;
|
|
gpulw.printKernel(cdg);
|
|
|
|
TORCH_CHECK(at::allclose(kernel_tv6, t6), cdg.str());
|
|
}
|
|
}
|
|
|
|
void testGPU_FusionScalarInputs() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
TensorView* tv0 = makeDummyTensor(2);
|
|
fusion.addInput(tv0);
|
|
TensorView* tv1 = makeDummyTensor(2);
|
|
fusion.addInput(tv1);
|
|
|
|
Float* f0 = new Float();
|
|
fusion.addInput(f0);
|
|
Float* f1 = new Float();
|
|
fusion.addInput(f1);
|
|
Float* f2 = new Float();
|
|
fusion.addInput(f2);
|
|
Float* f3 = new Float();
|
|
fusion.addInput(f3);
|
|
Val* f4 = mul(f0, f1);
|
|
Val* f5 = sub(f2, f3);
|
|
|
|
TensorView* tv2 = static_cast<TensorView*>(sub(tv1, f4));
|
|
TensorView* tv3 = static_cast<TensorView*>(add(tv0, f5));
|
|
TensorView* tv4 = static_cast<TensorView*>(mul(tv3, tv2));
|
|
|
|
fusion.addOutput(tv4);
|
|
|
|
// Lets setup to actually run
|
|
while (tv4->nDims() > 1)
|
|
tv4->merge(0);
|
|
tv4->split(0, 128);
|
|
tv4->split(0, 4);
|
|
|
|
tv0->computeAt(tv4, 1);
|
|
tv1->computeAt(tv4, 1);
|
|
|
|
tv4->axis(0)->parallelize(ParallelType::BIDx);
|
|
|
|
for (Val* val : fusion.vals()) {
|
|
if (!fusion.hasInput(val) &&
|
|
val->getValType().value() == ValType::TensorView) {
|
|
TensorView* tv = static_cast<TensorView*>(val);
|
|
|
|
tv->axis(1)->parallelize(ParallelType::Unroll);
|
|
tv->axis(-1)->parallelize(ParallelType::TIDx);
|
|
}
|
|
}
|
|
|
|
// f4 = f0 * f1
|
|
// f5 = f2 - f3
|
|
// t2 = t1 - f4
|
|
// t3 = t0 + f5
|
|
// t4 = t3 * t2
|
|
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
|
|
float fl0 = 0.1;
|
|
float fl1 = -0.2;
|
|
float fl2 = 0.3;
|
|
float fl3 = -0.4;
|
|
float fl4 = fl0 * fl1;
|
|
float fl5 = fl2 - fl3;
|
|
|
|
at::Tensor t0 = at::randn({129, 127}, options);
|
|
at::Tensor t1 = at::rand_like(t0, options);
|
|
|
|
auto t2 = t1.sub(fl4);
|
|
auto t3 = t0.add(fl5);
|
|
auto t4 = t3.mul(t2);
|
|
|
|
at::Tensor kernel_tv4 = at::empty_like(t0, options);
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
|
|
int blocks =
|
|
ceilDiv_(ceilDiv_(t0.numel(), 128), 4); // numel / unroll factor / threads
|
|
|
|
prog.grid(blocks);
|
|
prog.block(128);
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
at::Scalar test(fl0);
|
|
|
|
torch::jit::fuser::cuda::runTestKernel(
|
|
&prog,
|
|
{t0,
|
|
t1,
|
|
at::Scalar(fl0),
|
|
at::Scalar(fl1),
|
|
at::Scalar(fl2),
|
|
at::Scalar(fl3)},
|
|
{kernel_tv4});
|
|
|
|
GPULower gpulw(&fusion);
|
|
std::stringstream cdg;
|
|
gpulw.printKernel(cdg);
|
|
|
|
TORCH_CHECK(at::allclose(kernel_tv4, t4), cdg.str());
|
|
}
|
|
|
|
void testGPU_FusionLoopUnroll() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
// Set up your input tensor views
|
|
TensorView* tv0 = makeDummyTensor(1);
|
|
TensorView* tv1 = makeDummyTensor(1);
|
|
|
|
// Register your inputs
|
|
fusion.addInput(tv0);
|
|
fusion.addInput(tv1);
|
|
|
|
// Do math with it, it returns a `Val*` but can be static_casted back to
|
|
// TensorView
|
|
TensorView* tv2 = static_cast<TensorView*>(add(tv1, new Float(2.0)));
|
|
TensorView* tv3 = static_cast<TensorView*>(add(tv0, tv2));
|
|
|
|
// Register your outputs
|
|
fusion.addOutput(tv3);
|
|
|
|
int block_size = 16;
|
|
|
|
tv3->split(0, block_size);
|
|
tv3->split(0, 4);
|
|
|
|
// For all inputs, computeAt the output inline, temporaries should be squeezed
|
|
// between them
|
|
tv0->computeAt(tv3, 1);
|
|
tv1->computeAt(tv3, 1);
|
|
|
|
// Parallelize
|
|
tv2->axis(1)->parallelize(ParallelType::Unroll);
|
|
tv3->axis(1)->parallelize(ParallelType::Unroll);
|
|
tv2->axis(-1)->parallelize(ParallelType::TIDx);
|
|
tv3->axis(-1)->parallelize(ParallelType::TIDx);
|
|
tv3->axis(0)->parallelize(ParallelType::BIDx);
|
|
|
|
int inp_size = 129;
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
prog.grid((inp_size + 63) / 64);
|
|
prog.block(block_size);
|
|
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
|
|
at::Tensor input1 = at::ones({inp_size}, options);
|
|
at::Tensor input2 = at::ones_like(input1);
|
|
|
|
at::Tensor output = at::empty_like(input1);
|
|
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
torch::jit::fuser::cuda::runTestKernel(&prog, {input1, input2}, {output});
|
|
|
|
at::Tensor check = at::full({inp_size}, 4, options);
|
|
|
|
TORCH_CHECK(output.equal(check));
|
|
}
|
|
|
|
void testGPU_FusionForLoop() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
const auto TV0 = new TensorView(
|
|
new TensorDomain({new IterDomain(new Int(0), new Int(16))}),
|
|
DataType::Float);
|
|
const auto TV1 = new TensorView(
|
|
new TensorDomain({new IterDomain(new Int(0), new Int(16))}),
|
|
DataType::Float);
|
|
|
|
fusion.addInput(TV0);
|
|
fusion.addInput(TV1);
|
|
|
|
auto ID0 = new IterDomain(new Int(0), new Int(8));
|
|
|
|
TensorView* TV2 = static_cast<TensorView*>(add(TV0, TV1));
|
|
BinaryOp* op = static_cast<BinaryOp*>(TV2->getOrigin());
|
|
fusion.addOutput(TV2);
|
|
|
|
ForLoop* fl = new ForLoop(new Int(), ID0, {op});
|
|
std::stringstream result;
|
|
std::stringstream ref;
|
|
result << fl;
|
|
ref << "for(size_t i3{0}; i3 < iS{8}; ++i3 ) {\nT2[ iS{16} ] = T0[ iS{16} ] + T1[ iS{16} ]\n}";
|
|
|
|
if (result.str().compare(ref.str()) == 0) {
|
|
std::stringstream err_msg;
|
|
err_msg << "ForLoop printing has changed or something has gone wrong. "
|
|
<< result.str() << "\n does not match reference: " << ref.str()
|
|
<< std::endl;
|
|
TORCH_CHECK(false, err_msg.str());
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Helper function for single op testing that generates a codegen operand
|
|
*/
|
|
|
|
Val* gen_jit_operand(std::pair<ValType, DataType> desc) {
|
|
if (desc.first == ValType::TensorView) {
|
|
return makeDummyTensor(2, desc.second);
|
|
} else if (desc.first == ValType::Scalar) {
|
|
if (desc.second == DataType::Float)
|
|
return new Float();
|
|
else if (desc.second == DataType::Int)
|
|
return new Int();
|
|
else
|
|
TORCH_CHECK("Not currently supported type", desc.first);
|
|
} else {
|
|
TORCH_CHECK("Not currently supported type", desc.first);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/*
|
|
* Helper function for single op testing that generates an ATen operand
|
|
*/
|
|
|
|
IValue gen_aten_operand(
|
|
std::pair<ValType, DataType> desc,
|
|
int blocks,
|
|
int threads,
|
|
bool rand) {
|
|
if (desc.first == ValType::TensorView) {
|
|
if (desc.second == DataType::Float) {
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
if (rand)
|
|
return IValue(at::rand({blocks, threads}, options));
|
|
else
|
|
return IValue(at::empty({blocks, threads}, options));
|
|
} else if (desc.second == DataType::Half) {
|
|
auto options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA, 0);
|
|
if (rand)
|
|
return IValue(at::rand({blocks, threads}, options));
|
|
else
|
|
return IValue(at::empty({blocks, threads}, options));
|
|
} else if (desc.second == DataType::Bool) {
|
|
if (rand) {
|
|
auto options =
|
|
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
return IValue(at::rand({blocks, threads}, options).to(at::kBool));
|
|
} else {
|
|
auto options =
|
|
at::TensorOptions().dtype(at::kBool).device(at::kCUDA, 0);
|
|
return IValue(at::empty({blocks, threads}, options));
|
|
}
|
|
} else {
|
|
TORCH_CHECK("Not currently supported type", desc.second)
|
|
}
|
|
} else if (desc.first == ValType::Scalar) {
|
|
if (desc.second == DataType::Float)
|
|
return IValue(at::Scalar(1.f));
|
|
else if (desc.second == DataType::Int)
|
|
return IValue(at::Scalar(1));
|
|
else
|
|
TORCH_CHECK("Not currently supported type", desc.first);
|
|
} else {
|
|
TORCH_CHECK("Not currently supported type", desc.first);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/*
|
|
* Templatized Helper Function To generate single Op comparison between the
|
|
* JIT codegen for Cuda and the ATen Library.
|
|
*/
|
|
|
|
using OutputPair = std::pair<ValType, DataType>;
|
|
template <
|
|
typename AtenFunc,
|
|
typename JitFunc,
|
|
typename InputTuple,
|
|
size_t... NumInputs>
|
|
void test_op(
|
|
int blocks,
|
|
int threads,
|
|
std::string op_str,
|
|
AtenFunc af,
|
|
JitFunc jf,
|
|
OutputPair op,
|
|
InputTuple it,
|
|
std::index_sequence<NumInputs...>) {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
// Generate Input JIT function Inputs and add them as Inputs to the Fusion
|
|
// Graph
|
|
std::array<Val*, sizeof...(NumInputs)> jit_inputs = {
|
|
gen_jit_operand(std::get<NumInputs>(it))...};
|
|
std::for_each(jit_inputs.begin(), jit_inputs.end(), [&fusion](Val* v) {
|
|
fusion.addInput(v);
|
|
});
|
|
TensorView* out =
|
|
static_cast<TensorView*>(jf(std::get<NumInputs>(jit_inputs)...));
|
|
fusion.addOutput(out);
|
|
|
|
std::for_each(jit_inputs.begin(), jit_inputs.end(), [out](Val* v) {
|
|
if (v->getValType() == ValType::TensorView)
|
|
static_cast<TensorView*>(v)->computeAt(out, -1);
|
|
});
|
|
out->axis(0)->parallelize(ParallelType::BIDx);
|
|
out->axis(-1)->parallelize(ParallelType::TIDx);
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
prog.grid(blocks);
|
|
prog.block(threads);
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
|
|
std::array<IValue, sizeof...(NumInputs)> aten_inputs = {gen_aten_operand(
|
|
std::get<NumInputs>(it), blocks, threads, /*rand*/ true)...};
|
|
const at::ArrayRef<IValue> aten_inputs_ivalues(aten_inputs);
|
|
|
|
at::Tensor output =
|
|
gen_aten_operand(op, blocks, threads, /*rand*/ false).toTensor();
|
|
std::vector<at::Tensor> output_vect = {output};
|
|
cudaDeviceSynchronize();
|
|
if (fusion.hasRNG())
|
|
at::manual_seed(0);
|
|
torch::jit::fuser::cuda::runTestKernel(
|
|
&prog, aten_inputs_ivalues, output_vect);
|
|
cudaDeviceSynchronize();
|
|
|
|
if (fusion.hasRNG())
|
|
at::manual_seed(0);
|
|
at::Tensor ref_output = af(aten_inputs);
|
|
cudaDeviceSynchronize(); // This sync shouldn't be necessary;
|
|
|
|
std::function<std::string()> aten_inputs_to_str =
|
|
[&aten_inputs]() -> std::string {
|
|
int input_cnt = 1;
|
|
std::stringstream ss;
|
|
std::for_each(
|
|
aten_inputs.begin(), aten_inputs.end(), [&input_cnt, &ss](IValue& iv) {
|
|
ss << "\nINPUT" << input_cnt++ << ": " << iv.toTensor();
|
|
});
|
|
return ss.str();
|
|
};
|
|
|
|
at::Tensor diff;
|
|
if (output.scalar_type() == at::kBool) {
|
|
diff = at::eq(output, ref_output);
|
|
} else {
|
|
diff = at::sub(output, ref_output);
|
|
}
|
|
|
|
TORCH_CHECK(
|
|
(output.scalar_type() == at::kBool
|
|
? output.equal(ref_output)
|
|
:
|
|
// The absolute Tolerance was raised to 1e-07 from 1e-08 to allow
|
|
// allow for the remainder function to pass.
|
|
output.allclose(ref_output, /*rtol*/ 1e-05, /*atol*/ 1e-07)),
|
|
"\nOp Type: -- ",
|
|
op_str,
|
|
" -- had a mismatch.",
|
|
aten_inputs_to_str(),
|
|
"\nJIT: ",
|
|
output,
|
|
"\nREF: ",
|
|
ref_output,
|
|
"\nDIFF: ",
|
|
diff,
|
|
"\n");
|
|
}
|
|
|
|
/*
|
|
* Templatized Helper Function that uses variadic templates to
|
|
* process a variable length Input Tuple of different Operand Type.
|
|
*/
|
|
template <typename AtenFunc, typename JitFunc, typename InputTuple>
|
|
void test_op(
|
|
int blocks,
|
|
int threads,
|
|
std::string op_str,
|
|
AtenFunc af,
|
|
JitFunc jf,
|
|
OutputPair op,
|
|
InputTuple it) {
|
|
static constexpr auto size = std::tuple_size<InputTuple>::value;
|
|
test_op(
|
|
blocks,
|
|
threads,
|
|
op_str,
|
|
af,
|
|
jf,
|
|
op,
|
|
it,
|
|
std::make_index_sequence<size>{});
|
|
}
|
|
|
|
void testGPU_FusionUnaryOps() {
|
|
using OpTuple =
|
|
std::tuple<at::Tensor (*)(const at::Tensor&), UnaryOpType, std::string>;
|
|
|
|
// [Note: explicit tuple type for uniform initialization list]
|
|
// Tuple type must be explicitly specified for each uniform initialization
|
|
// list within the vector to make this code compatible with some old env
|
|
// which we still need to support. eg. gcc 5.4 + cuda 9.2.
|
|
std::vector<OpTuple> ops{
|
|
OpTuple{at::abs, UnaryOpType::Abs, "abs"},
|
|
OpTuple{at::acos, UnaryOpType::Acos, "acos"},
|
|
OpTuple{at::asin, UnaryOpType::Asin, "asin"},
|
|
OpTuple{at::atan, UnaryOpType::Atan, "atan"},
|
|
// There does not appear to be an appropriate ATen function for atanh
|
|
// OpTuple{at::atanh, UnaryOpType::Atanh, "atanh" },
|
|
OpTuple{at::ceil, UnaryOpType::Ceil, "ceil"},
|
|
OpTuple{at::cos, UnaryOpType::Cos, "cos"},
|
|
OpTuple{at::cosh, UnaryOpType::Cosh, "cosh"},
|
|
OpTuple{at::erf, UnaryOpType::Erf, "erf"},
|
|
OpTuple{at::erfc, UnaryOpType::Erfc, "erfc"},
|
|
OpTuple{at::exp, UnaryOpType::Exp, "exp"},
|
|
OpTuple{at::expm1, UnaryOpType::Expm1, "expm1"},
|
|
OpTuple{at::floor, UnaryOpType::Floor, "floor"},
|
|
OpTuple{at::frac, UnaryOpType::Frac, "frac"},
|
|
OpTuple{at::gelu, UnaryOpType::Gelu, "gelu"},
|
|
OpTuple{at::lgamma, UnaryOpType::Lgamma, "lgamma"},
|
|
OpTuple{at::log, UnaryOpType::Log, "log"},
|
|
OpTuple{at::log10, UnaryOpType::Log10, "log10"},
|
|
OpTuple{at::log1p, UnaryOpType::Log1p, "log1p"},
|
|
OpTuple{at::log2, UnaryOpType::Log2, "log2"},
|
|
OpTuple{at::neg, UnaryOpType::Neg, "neg"},
|
|
OpTuple{at::reciprocal, UnaryOpType::Reciprocal, "reciprocal"},
|
|
OpTuple{at::relu, UnaryOpType::Relu, "relu"},
|
|
OpTuple{at::round, UnaryOpType::Round, "round"},
|
|
OpTuple{at::rsqrt, UnaryOpType::Rsqrt, "rsqrt"},
|
|
OpTuple{at::sigmoid, UnaryOpType::Sigmoid, "sigmoid"},
|
|
OpTuple{at::sin, UnaryOpType::Sin, "sin"},
|
|
OpTuple{at::sinh, UnaryOpType::Sinh, "sinh"},
|
|
OpTuple{at::sqrt, UnaryOpType::Sqrt, "sqrt"},
|
|
OpTuple{at::tan, UnaryOpType::Tan, "tan"},
|
|
OpTuple{at::tanh, UnaryOpType::Tanh, "tanh"},
|
|
OpTuple{at::trunc, UnaryOpType::Trunc, "trunc"}};
|
|
|
|
std::for_each(ops.begin(), ops.end(), [](OpTuple& op) {
|
|
test_op(
|
|
/*blocks*/ 640,
|
|
/*threads*/ 64,
|
|
/*name*/ std::get<2>(op),
|
|
/*Aten Func */
|
|
[&op](std::array<IValue, 1>& vals) {
|
|
return std::get<0>(op)(vals[0].toTensor());
|
|
},
|
|
/*JIT Func */
|
|
[&op](Val* in1) -> Val* { return unaryOp(std::get<1>(op), in1); },
|
|
/*Output */ std::make_pair(ValType::TensorView, DataType::Float),
|
|
/*Inputs Tuple*/
|
|
std::make_tuple(std::make_pair(ValType::TensorView, DataType::Float)));
|
|
});
|
|
|
|
test_op(
|
|
/*blocks*/ 128,
|
|
/*threads*/ 64,
|
|
/*name*/ "rand_like",
|
|
/*Aten Func */
|
|
[](std::array<IValue, 1>& vals) {
|
|
return at::rand_like(vals[0].toTensor());
|
|
},
|
|
/*JIT Func */
|
|
[](Val* in1) -> Val* { return unaryOp(UnaryOpType::RandLike, in1); },
|
|
/*Output */ std::make_pair(ValType::TensorView, DataType::Float),
|
|
/*Inputs Tuple*/
|
|
std::make_tuple(std::make_pair(ValType::TensorView, DataType::Float)));
|
|
}
|
|
|
|
void testGPU_FusionBinaryOps() {
|
|
using AtenFuncSig = at::Tensor (*)(const at::Tensor&, const at::Tensor&);
|
|
using OpTuple = std::tuple<AtenFuncSig, BinaryOpType, std::string>;
|
|
|
|
// see [Note: explicit tuple type for uniform initialization list]
|
|
std::vector<OpTuple> logic_ops{OpTuple{at::eq, BinaryOpType::Eq, "eq"},
|
|
OpTuple{at::ge, BinaryOpType::GE, "ge"},
|
|
OpTuple{at::gt, BinaryOpType::GT, "gt"},
|
|
OpTuple{at::le, BinaryOpType::LE, "le"},
|
|
OpTuple{at::lt, BinaryOpType::LT, "lt"},
|
|
OpTuple{at::ne, BinaryOpType::NE, "ne"}};
|
|
|
|
std::for_each(logic_ops.begin(), logic_ops.end(), [](OpTuple& op) {
|
|
test_op(
|
|
/*blocks*/ 640,
|
|
/*threads*/ 64,
|
|
/*name*/ std::get<2>(op),
|
|
/*Aten Func */
|
|
[&op](std::array<IValue, 2>& vals) {
|
|
return std::get<0>(op)(vals[0].toTensor(), vals[1].toTensor());
|
|
},
|
|
/*JIT Func */
|
|
[&op](Val* in1, Val* in2) -> Val* {
|
|
return binaryOp(std::get<1>(op), in1, in2);
|
|
},
|
|
/*Output */ std::make_pair(ValType::TensorView, DataType::Bool),
|
|
/*Inputs Tuple*/
|
|
std::make_tuple(
|
|
std::make_pair(ValType::TensorView, DataType::Float),
|
|
std::make_pair(ValType::TensorView, DataType::Float)));
|
|
});
|
|
|
|
// see [Note: explicit tuple type for uniform initialization list]
|
|
std::vector<OpTuple> math_ops{
|
|
OpTuple{at::atan2, BinaryOpType::Atan2, "atan2"},
|
|
OpTuple{at::div, BinaryOpType::Div, "div"},
|
|
OpTuple{at::fmod, BinaryOpType::Fmod, "fmod"},
|
|
OpTuple{at::max, BinaryOpType::Max, "max"},
|
|
OpTuple{at::min, BinaryOpType::Min, "min"},
|
|
OpTuple{at::mul, BinaryOpType::Mul, "mul"},
|
|
OpTuple{at::pow, BinaryOpType::Pow, "pow"},
|
|
// NOTE: Remainder does not match the Aten impl exactly
|
|
// despite using an identical function.
|
|
OpTuple{at::remainder, BinaryOpType::Remainder, "remainder"},
|
|
};
|
|
|
|
std::for_each(math_ops.begin(), math_ops.end(), [](OpTuple& op) {
|
|
test_op(
|
|
/*blocks*/ 640,
|
|
/*threads*/ 64,
|
|
/*name*/ std::get<2>(op),
|
|
/*Aten Func */
|
|
[&op](std::array<IValue, 2>& vals) {
|
|
return std::get<0>(op)(vals[0].toTensor(), vals[1].toTensor());
|
|
},
|
|
/*JIT Func */
|
|
[&op](Val* in1, Val* in2) -> Val* {
|
|
return binaryOp(std::get<1>(op), in1, in2);
|
|
},
|
|
/*Output */ std::make_pair(ValType::TensorView, DataType::Float),
|
|
/*Inputs Tuple*/
|
|
std::make_tuple(
|
|
std::make_pair(ValType::TensorView, DataType::Float),
|
|
std::make_pair(ValType::TensorView, DataType::Float)));
|
|
});
|
|
|
|
test_op(
|
|
/*blocks*/ 640,
|
|
/*threads*/ 64,
|
|
/*name*/ "add_alpha",
|
|
/*Aten Func */
|
|
[](std::array<IValue, 3>& vals) {
|
|
return at::add(
|
|
vals[0].toTensor(), vals[1].toTensor(), vals[2].toScalar());
|
|
},
|
|
/*JIT Func */ add_alpha,
|
|
/*Output */ std::make_pair(ValType::TensorView, DataType::Float),
|
|
/*Inputs Tuple*/
|
|
std::make_tuple(
|
|
std::make_pair(ValType::TensorView, DataType::Float),
|
|
std::make_pair(ValType::TensorView, DataType::Float),
|
|
std::make_pair(ValType::Scalar, DataType::Float)));
|
|
test_op(
|
|
/*blocks*/ 640,
|
|
/*threads*/ 64,
|
|
/*name*/ "sub_alpha",
|
|
/*Aten Func */
|
|
[](std::array<IValue, 3>& vals) {
|
|
return at::sub(
|
|
vals[0].toTensor(), vals[1].toTensor(), vals[2].toScalar());
|
|
},
|
|
/*JIT Func */ sub_alpha,
|
|
/*Output */ std::make_pair(ValType::TensorView, DataType::Float),
|
|
/*Inputs Tuple*/
|
|
std::make_tuple(
|
|
std::make_pair(ValType::TensorView, DataType::Float),
|
|
std::make_pair(ValType::TensorView, DataType::Float),
|
|
std::make_pair(ValType::Scalar, DataType::Float)));
|
|
}
|
|
|
|
void testGPU_FusionTernaryOps() {
|
|
test_op(
|
|
/*blocks*/ 640,
|
|
/*threads*/ 64,
|
|
/*name*/ "clamp",
|
|
/*Aten Func */
|
|
[](std::array<IValue, 1>& vals) {
|
|
return at::clamp(vals[0].toTensor(), 0.f, 1.f);
|
|
},
|
|
/*JIT Func */
|
|
[](Val* in1) -> Val* {
|
|
return clamp(in1, new Float(0.f), new Float(1.f));
|
|
},
|
|
/*Output */ std::make_pair(ValType::TensorView, DataType::Float),
|
|
/*Inputs Tuple*/
|
|
std::make_tuple(std::make_pair(ValType::TensorView, DataType::Float)));
|
|
test_op(
|
|
/*blocks*/ 640,
|
|
/*threads*/ 64,
|
|
/*name*/ "threshold",
|
|
/*Aten Func */
|
|
[](std::array<IValue, 1>& vals) {
|
|
return at::threshold(vals[0].toTensor(), 0.f, 1.f);
|
|
},
|
|
/*JIT Func */
|
|
[](Val* in1) -> Val* {
|
|
return threshold(in1, new Float(0.f), new Float(1.f));
|
|
},
|
|
/*Output */ std::make_pair(ValType::TensorView, DataType::Float),
|
|
/*Inputs Tuple*/
|
|
std::make_tuple(std::make_pair(ValType::TensorView, DataType::Float)));
|
|
test_op(
|
|
/*blocks*/ 640,
|
|
/*threads*/ 64,
|
|
/*name*/ "where",
|
|
/*Aten Func */
|
|
[](std::array<IValue, 3>& vals) {
|
|
return at::where(
|
|
vals[0].toTensor(), vals[1].toTensor(), vals[2].toTensor());
|
|
},
|
|
/*JIT Func */ where,
|
|
/*Output */ std::make_pair(ValType::TensorView, DataType::Float),
|
|
/*Inputs Tuple*/
|
|
std::make_tuple(
|
|
std::make_pair(ValType::TensorView, DataType::Bool),
|
|
std::make_pair(ValType::TensorView, DataType::Float),
|
|
std::make_pair(ValType::TensorView, DataType::Float)));
|
|
}
|
|
|
|
void testGPU_FusionCompoundOps() {
|
|
test_op(
|
|
/*blocks*/ 640,
|
|
/*threads*/ 64,
|
|
/*name*/ "lerp",
|
|
/*Aten Func */
|
|
[](std::array<IValue, 3>& vals) {
|
|
return at::lerp(
|
|
vals[0].toTensor(), vals[1].toTensor(), vals[2].toTensor());
|
|
},
|
|
/*JIT Func */ lerp,
|
|
/*Output */ std::make_pair(ValType::TensorView, DataType::Float),
|
|
/*Inputs Tuple*/
|
|
std::make_tuple(
|
|
std::make_pair(ValType::TensorView, DataType::Float),
|
|
std::make_pair(ValType::TensorView, DataType::Float),
|
|
std::make_pair(ValType::TensorView, DataType::Float)));
|
|
test_op(
|
|
/*blocks*/ 640,
|
|
/*threads*/ 64,
|
|
/*name*/ "addcmul",
|
|
/*Aten Func */
|
|
[](std::array<IValue, 4>& vals) {
|
|
return at::addcmul(
|
|
vals[0].toTensor(),
|
|
vals[1].toTensor(),
|
|
vals[2].toTensor(),
|
|
vals[3].toScalar());
|
|
},
|
|
/*JIT Func */ addcmul,
|
|
/*Output */ std::make_pair(ValType::TensorView, DataType::Float),
|
|
/*Inputs Tuple*/
|
|
std::make_tuple(
|
|
std::make_pair(ValType::TensorView, DataType::Float),
|
|
std::make_pair(ValType::TensorView, DataType::Float),
|
|
std::make_pair(ValType::TensorView, DataType::Float),
|
|
std::make_pair(ValType::Scalar, DataType::Float)));
|
|
}
|
|
|
|
void testGPU_FusionCastOps() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
TensorView* tv0 = makeDummyTensor(2, DataType::Half);
|
|
|
|
Val* intrm1 = castOp(DataType::Float, tv0);
|
|
TensorView* out = static_cast<TensorView*>(castOp(DataType::Half, intrm1));
|
|
|
|
fusion.addInput(tv0);
|
|
fusion.addOutput(out);
|
|
tv0->computeAt(out, -1);
|
|
|
|
out->axis(0)->parallelize(ParallelType::BIDx);
|
|
out->axis(-1)->parallelize(ParallelType::TIDx);
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
prog.grid(1);
|
|
prog.block(4);
|
|
|
|
auto options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA, 0);
|
|
|
|
at::Tensor input1 = at::rand({1, 4}, options);
|
|
at::Tensor output = at::empty_like(input1);
|
|
at::Tensor ref_output = at::empty_like(input1);
|
|
|
|
std::array<IValue, 1> inputs = {input1};
|
|
const at::ArrayRef<IValue> input_ivalues(inputs);
|
|
std::vector<at::Tensor> outputs{{output}};
|
|
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
torch::jit::fuser::cuda::runTestKernel(&prog, input_ivalues, outputs);
|
|
|
|
ref_output = at::_cast_Half(at::_cast_Float(input1));
|
|
|
|
TORCH_CHECK(
|
|
output.equal(ref_output),
|
|
"\nOp Type: -- ",
|
|
"cast FP16->FP32->FP16",
|
|
" -- had a mismatch.\n",
|
|
"IN1 : ",
|
|
input1,
|
|
"\n",
|
|
"JIT: ",
|
|
output,
|
|
"\n",
|
|
"REF: ",
|
|
ref_output,
|
|
"\n");
|
|
}
|
|
|
|
// We want split/merge/reorder all tested both on and off rfactor domains, also
|
|
// want compute at into the rfactor domain, and into its consumer
|
|
void testGPU_FusionRFactorReplay() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
// Set up your input tensor views
|
|
TensorView* tv0 = makeDummyTensor(2);
|
|
|
|
// Register your inputs
|
|
fusion.addInput(tv0);
|
|
|
|
// Do math with it, it returns a `Val*` but can be static_casted back to
|
|
// TensorView
|
|
TensorView* tv1 = static_cast<TensorView*>(sum(tv0, {1}));
|
|
// tv1[I0, R1]
|
|
tv1->split(0, 32);
|
|
// tv1[I0o, I0i{32}, R1]
|
|
tv1->split(0, 16);
|
|
// tv1[I0oo, I0oi{16}, I0i{32}, R1]
|
|
tv1->split(-1, 8);
|
|
// tv1[I0oo, I0oi{16}, I0i{32}, R1o, R1i{8}]
|
|
tv1->split(-2, 4);
|
|
// tv1[I0oo, I0oi{16}, I0i{32}, R1oo, R1oi{4}, R1i{8}]
|
|
|
|
tv1->reorder({{0, -2}, {2, -1}, {-3, 0}, {-1, 1}});
|
|
// tv1[R1oo, R1i{8}, I0oi{16}, R1oi{4}, I0oo, I0i{32}]
|
|
|
|
tv1->merge(0);
|
|
tv1->merge(-2);
|
|
|
|
// tv1[R1oo*R1i{8}, I0oi{16}, R1oi{4}, I0oo*I0i{32}]
|
|
TensorDomain* new_domain = TransformRFactor::runReplay(tv1->domain(), {0});
|
|
TensorDomain* new_domain2 = TransformRFactor::runReplay2(tv1->domain(), {0});
|
|
// new_domain[R(R1oo*R1i{8})rf, I0oi{16}, ir1oi{4}rf, I0oo*I0i{32}]
|
|
// new_domain2[ I0oi{16}, , I0oo*I0i{32}, R1oi{4}]
|
|
|
|
// Move rfactor axis to end, keep iter rfactor axis
|
|
auto reordered_new_domain = new_domain->reorder({{0, -1}, {2, 2}});
|
|
// reordered_new_domain[I0oi{16}, I0oo*I0i{32}, ir1oi{4}rf, R(R1oo*R1i{8})rf]
|
|
|
|
TensorDomain* casp =
|
|
TransformReplay::replayCasP(new_domain2, reordered_new_domain, 2);
|
|
// new_domain[I0oi{16}, I0oo*I0i{32}, ir1oi{4}rf, R(R1oo*R1i{8})rf]
|
|
// casp[I0oi{16}, I0oo*I0i{32}, R1oi{4}]
|
|
|
|
casp = casp->split(1, 2);
|
|
// casp [I0oi{16}, (I0oo*I0i{32})o, I(Ioo*I0i)i{2}, ir1oi{4}]
|
|
// new_domain[I0oi{16}, I0oo*I0i{32} , ir1oi{4}rf,
|
|
// R(R1oo*R1i{8})rf]
|
|
TensorDomain* pasc = TransformReplay::replayPasC(new_domain, casp, 2);
|
|
// pasc [I0oi{16}, (I0oo*I0i{32})o, I(Ioo*I0i)i{2}, ir1oi{4}rf,
|
|
// R(R1oo*R1i{8})rf]
|
|
|
|
TORCH_CHECK(
|
|
new_domain->nDims() - 1 == new_domain2->nDims(),
|
|
casp->nDims() == new_domain2->nDims() + 1,
|
|
pasc->nDims() == new_domain->nDims() + 1,
|
|
"Error in rfactor, number of dimensions is not correct.");
|
|
|
|
TORCH_CHECK(
|
|
!casp->sameAs(new_domain2) && !pasc->sameAs(new_domain) &&
|
|
!new_domain->sameAs(new_domain2) &&
|
|
!tv1->domain()->sameAs(new_domain) &&
|
|
!tv1->domain()->sameAs(new_domain2),
|
|
"Error in rfactor, number of dimensions is not correct.");
|
|
|
|
auto dom = new_domain->rootDomain()->domain();
|
|
TORCH_CHECK(
|
|
!new_domain->rootDomain()->axis(0)->isReduction() &&
|
|
std::any_of(
|
|
dom.begin(),
|
|
dom.end(),
|
|
[](IterDomain* id) { return id->isReduction(); }) &&
|
|
std::any_of(
|
|
dom.begin(),
|
|
dom.end(),
|
|
[](IterDomain* id) { return id->isRFactorProduct(); }),
|
|
"Error in rFactor, there seems to be something wrong in root domain.");
|
|
|
|
auto dom2 = new_domain2->rootDomain()->domain();
|
|
TORCH_CHECK(
|
|
!new_domain2->rootDomain()->axis(0)->isReduction() &&
|
|
std::any_of(
|
|
dom2.begin(),
|
|
dom2.end(),
|
|
[](IterDomain* id) { return id->isReduction(); }),
|
|
"Error in rFactor, there seems to be something wrong in root domain.");
|
|
}
|
|
|
|
// Start off simple, block on the outer dim
|
|
// block stride + thread all reduce + unrolling on inner dim
|
|
void testGPU_FusionReduction() {
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
// Set up your input tensor views
|
|
TensorView* tv0 = makeDummyTensor(2);
|
|
fusion.addInput(tv0);
|
|
|
|
// tv1[I0, R1] = tv0[I0, I1]
|
|
TensorView* tv1 = static_cast<TensorView*>(
|
|
reductionOp(BinaryOpType::Add, {1}, new Float(0), tv0));
|
|
fusion.addOutput(tv1);
|
|
|
|
TORCH_CHECK(fusion.hasReduction(), "Could not detect reduction in fusion.");
|
|
|
|
tv1->split(1, 128);
|
|
// tv1[I0, R1o, R1i{128}] = tv0[I0, I1]
|
|
tv1->split(1, 4);
|
|
// tv1[I0, R1oo, R1oi{4}, R1i{128}] = tv0[I0, I1]
|
|
|
|
TensorView* tv2 = tv1->rFactor({1});
|
|
// tv2[I0, R1oo, Ir1oi{4}, Ir1i{128}] = tv0[I0, I1]
|
|
// tv1[I0, R1oi{4}, R1i{128}] = tv2[I0, R1oo, Ir1oi{4}, Ir1i{128}]
|
|
|
|
TensorView* tv3 = tv1->rFactor({1});
|
|
// tv2[I0, R1oo, Ir1oi{4}, Ir1i{128}] = tv0[I0, I1]
|
|
// tv3[I0, R1oi{4}, Ir1i{128}] = tv2[I0, R1oo, Ir1oi{4}, Ir1i{128}]
|
|
// tv1[I0, R1i{128}] = tv3[I0, R1oi{4}, Ir1i{128}]
|
|
|
|
// Incrementally, can print in between for debugging
|
|
tv0->computeAt(tv2, 1);
|
|
tv2->computeAt(tv3, 1);
|
|
tv3->computeAt(tv1, 1);
|
|
|
|
// Re do it all at once, because why not.
|
|
tv0->computeAt(tv1, 1);
|
|
|
|
tv2->axis(2)->parallelize(ParallelType::Unroll);
|
|
tv3->axis(0)->parallelize(ParallelType::BIDx);
|
|
|
|
tv1->axis(-1)->parallelize(ParallelType::TIDx);
|
|
tv2->axis(-1)->parallelize(ParallelType::TIDx);
|
|
tv3->axis(-1)->parallelize(ParallelType::TIDx);
|
|
|
|
// for(auto expr : fusion.exprs(true))
|
|
// std::cout<<expr<<std::endl;
|
|
// GPULower lower(&fusion);
|
|
// lower.printKernel(std::cout);
|
|
|
|
int numel_x = 65000;
|
|
int numel_y = 1025;
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
prog.grid(numel_x);
|
|
prog.block(128);
|
|
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
at::Tensor input = at::rand({numel_x, numel_y}, options);
|
|
at::Tensor cg_output = at::empty({numel_x}, options);
|
|
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
torch::jit::fuser::cuda::runTestKernel(&prog, {input}, {cg_output});
|
|
|
|
auto aten_output = input.sum({1});
|
|
TORCH_CHECK(aten_output.allclose(cg_output));
|
|
}
|
|
|
|
void testGPU_FusionReduction2() {
|
|
{
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
// Set up your input tensor views
|
|
TensorView* tv0 = makeDummyTensor(2);
|
|
fusion.addInput(tv0);
|
|
|
|
// tv1[I0, R1] = tv0[I0, I1]
|
|
TensorView* tv1 = static_cast<TensorView*>(
|
|
reductionOp(BinaryOpType::Add, {1}, new Float(0), tv0));
|
|
|
|
fusion.addOutput(tv1);
|
|
|
|
bool bind_bidx = false;
|
|
bool bind_tidx = true;
|
|
bool bind_tidy = true;
|
|
bool bind_unroll = false;
|
|
|
|
int numel_x = 1025; // Cannot exceed block dim max size / tidy
|
|
int numel_y = 129;
|
|
int tidx = 16;
|
|
int tidy = 8;
|
|
int unroll_factor = 4;
|
|
|
|
int bidx = bind_tidy ? ceilDiv_(numel_x, tidy) : numel_x;
|
|
|
|
tv1->split(1, tidx);
|
|
// tv1[I0, R1o, R1i{tidx}] = tv0[I0, I1]
|
|
|
|
tv1->split(1, unroll_factor);
|
|
// tv1[I0, R1oo, R1oi{unroll}, R1i{tidx}] = tv0[I0, I1]
|
|
|
|
tv1->split(0, tidy);
|
|
|
|
TensorView* tv2 = tv1->rFactor({-3});
|
|
// tv2[I0, >R1oo<, Ir1oi{unroll}, Ir1i{tidx}]
|
|
// tv1[I0o, I0i{tidy}, R1oi{unroll}, R1i{tidx}]
|
|
|
|
TensorView* tv3 = tv1->rFactor({-2});
|
|
// tv2[I0, >R1oo<, Ir1oi{unroll}, Ir1i{tidx}]
|
|
// tv3[I0, R1oi{unroll}, Ir1i{tidx}]
|
|
// tv1[I0o, I0i{tidy}, R1i{tidx}]
|
|
|
|
tv0->computeAt(tv1, -2);
|
|
|
|
if (bind_unroll)
|
|
tv2->axis(-2)->parallelize(ParallelType::Unroll);
|
|
if (bind_bidx)
|
|
tv1->axis(0)->parallelize(ParallelType::BIDx);
|
|
if (bind_tidy)
|
|
tv1->axis(1)->parallelize(ParallelType::TIDy);
|
|
|
|
if (bind_tidx) {
|
|
tv2->axis(-1)->parallelize(ParallelType::TIDx);
|
|
tv3->axis(-1)->parallelize(ParallelType::TIDx);
|
|
tv1->axis(-1)->parallelize(ParallelType::TIDx);
|
|
}
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
prog.grid(bind_bidx ? bidx : 1);
|
|
prog.block(bind_tidx ? tidx : 1, bind_tidy ? tidy : 1);
|
|
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
at::Tensor input = at::rand({numel_x, numel_y}, options);
|
|
at::Tensor cg_output = at::empty({numel_x}, options);
|
|
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
torch::jit::fuser::cuda::runTestKernel(&prog, {input}, {cg_output});
|
|
|
|
c10::cuda::CUDAStream stream = c10::cuda::getCurrentCUDAStream();
|
|
AT_CUDA_CHECK(cudaStreamSynchronize(stream));
|
|
|
|
auto aten_output = input.sum({1});
|
|
TORCH_CHECK(aten_output.allclose(cg_output));
|
|
}
|
|
|
|
{
|
|
// What if Z participates in the reduction with X?
|
|
Fusion fusion;
|
|
FusionGuard fg(&fusion);
|
|
|
|
// Set up your input tensor views
|
|
TensorView* tv0 = makeDummyTensor(2);
|
|
fusion.addInput(tv0);
|
|
|
|
// tv1[I0, R1] = tv0[I0, I1]
|
|
TensorView* tv1 = static_cast<TensorView*>(
|
|
reductionOp(BinaryOpType::Add, {1}, new Float(0), tv0));
|
|
|
|
fusion.addOutput(tv1);
|
|
|
|
int numel_x = 1025; // Cannot exceed block dim max size / tidy
|
|
int numel_y = 129;
|
|
int tidx = 16;
|
|
int tidz = 8;
|
|
|
|
tv1->split(1, tidz);
|
|
// tv1[I0, R1o, R1i{tidz}] = tv0[I0, I1]
|
|
|
|
tv1->split(1, tidx);
|
|
// tv1[I0, R1oo, R1oi{tidx}, R1i{tidz}] = tv0[I0, I1]
|
|
|
|
TensorView* tv2 = tv1->rFactor({-3});
|
|
// tv2[I0, >R1oo<, Ir1oi{tidx}, Ir1i{tidz}]
|
|
// tv1[I0o, R1oi{tidx}, R1i{tidz}]
|
|
|
|
tv0->computeAt(tv1, -3);
|
|
|
|
tv1->axis(0)->parallelize(ParallelType::BIDx);
|
|
tv1->axis(-2)->parallelize(ParallelType::TIDx);
|
|
tv1->axis(-1)->parallelize(ParallelType::TIDz);
|
|
|
|
tv2->axis(-2)->parallelize(ParallelType::TIDx);
|
|
tv2->axis(-1)->parallelize(ParallelType::TIDz);
|
|
|
|
torch::jit::fuser::cuda::CudaKernel prog;
|
|
prog.device_ = 0;
|
|
prog.grid(numel_x);
|
|
prog.block(tidx, 1, tidz);
|
|
|
|
auto options = at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
|
|
at::Tensor input = at::rand({numel_x, numel_y}, options);
|
|
at::Tensor cg_output = at::empty({numel_x}, options);
|
|
|
|
torch::jit::fuser::cuda::compileKernel(fusion, &prog);
|
|
torch::jit::fuser::cuda::runTestKernel(&prog, {input}, {cg_output});
|
|
|
|
c10::cuda::CUDAStream stream = c10::cuda::getCurrentCUDAStream();
|
|
AT_CUDA_CHECK(cudaStreamSynchronize(stream));
|
|
|
|
auto aten_output = input.sum({1});
|
|
TORCH_CHECK(aten_output.allclose(cg_output));
|
|
}
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|
|
#endif // #if defined(USE_CUDA)
|