pytorch/torch/testing/_internal/common_modules.py
Joel Schlosser a0309f89f4 Initial ModuleInfo implementation (#61935)
Summary:
This PR contains the initial version of `ModuleInfo` for use in testing modules. The design philosophy taken here is to start small and simple and build out / refactor as needed when more test coverage or `ModuleInfo` entries are added. As such, it's not intended for general usage yet. The PR contains the following:

* (new file) `torch/testing/_internal/common_modules.py`
  * `ModuleInfo` definition - metadata for each module to use in testing
  * `module_db` - the actual `ModuleInfo` database; currently contains entries for two modules
  * `ModuleInput` - analogous to `SampleInput` from OpInfo; contains `FunctionInput`s for both constructor and forward pass inputs
      * Constructor and forward pass inputs are tied together within a `ModuleInput` because they are likely correlated
  * `FunctionInput` - just contains args and kwargs to pass to a function (is there a nicer way to do this?)
  * `modules` decorator - analogous to `ops`; specifies a set of modules to run a test over
  * Some constants used to keep track of all modules under torch.nn:
      * `MODULE_NAMESPACES` - list of all namespaces containing modules
      * `MODULE_CLASSES` - list of all module class objects
      * `MODULE_CLASS_NAMES` - dict from module class object to nice name (e.g. torch.nn.Linear -> "nn.Linear")
* (new file) `test/test_modules.py`
    * Uses the above to define tests over modules
    * Currently, there is one test for demonstration, `test_forward`, which instantiates a module, runs its forward pass, and compares it to a reference, if one is defined

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61935

Reviewed By: mruberry

Differential Revision: D29881832

Pulled By: jbschlosser

fbshipit-source-id: cc05c7d85f190a3aa42d55d4c8b01847d1efd57f
2021-07-27 07:42:07 -07:00

209 lines
8.9 KiB
Python

import torch
from copy import deepcopy
from functools import wraps, partial
from itertools import chain
from torch.testing import floating_types
from torch.testing._internal.common_device_type import (
_TestParametrizer, _dtype_test_suffix, _update_param_kwargs, skipIf)
from torch.testing._internal.common_nn import nllloss_reference
from torch.testing._internal.common_utils import make_tensor
from types import ModuleType
from typing import List, Tuple, Type, Set, Dict
# List of all namespaces containing modules to test.
MODULE_NAMESPACES: List[ModuleType] = [
torch.nn.modules,
torch.nn.qat.modules,
torch.nn.quantizable.modules,
torch.nn.quantized.modules,
]
# Modules that shouldn't be tested for one reason or another.
MODULES_TO_SKIP: Set[Type] = {
torch.nn.Module, # abstract base class
torch.nn.Container, # deprecated
torch.nn.NLLLoss2d, # deprecated
torch.nn.quantized.modules._ConvNd, # abstract base class
torch.nn.quantized.MaxPool2d, # aliases to nn.MaxPool2d
}
# List of all module classes to test.
MODULE_CLASSES: List[Type] = list(chain(*[
[getattr(namespace, module_name) for module_name in namespace.__all__] # type: ignore[attr-defined]
for namespace in MODULE_NAMESPACES]))
MODULE_CLASSES = [cls for cls in MODULE_CLASSES if cls not in MODULES_TO_SKIP]
# Dict of module class -> common name. Useful for making test names more intuitive.
# Example: torch.nn.modules.linear.Linear -> "nn.Linear"
MODULE_CLASS_NAMES: Dict[Type, str] = {}
for namespace in MODULE_NAMESPACES:
for module_name in namespace.__all__: # type: ignore[attr-defined]
module_cls = getattr(namespace, module_name)
namespace_name = namespace.__name__.replace('torch.', '').replace('.modules', '')
MODULE_CLASS_NAMES[module_cls] = f'{namespace_name}.{module_name}'
class modules(_TestParametrizer):
""" PROTOTYPE: Decorator for specifying a list of modules over which to run a test. """
def __init__(self, module_info_list):
self.module_info_list = module_info_list
def _parametrize_test(self, test, generic_cls, device_cls):
for module_info in self.module_info_list:
# TODO: Factor some of this out since it's similar to OpInfo.
for dtype in floating_types():
# Construct the test name.
test_name = '{}_{}_{}{}'.format(test.__name__,
module_info.name.replace('.', '_'),
device_cls.device_type,
_dtype_test_suffix(dtype))
# Construct parameter kwargs to pass to the test.
param_kwargs = {'module_info': module_info}
_update_param_kwargs(param_kwargs, 'dtype', dtype)
try:
active_decorators = []
if module_info.should_skip(generic_cls.__name__, test.__name__, device_cls.device_type, dtype):
active_decorators.append(skipIf(True, "Skipped!"))
if module_info.decorators is not None:
for decorator in module_info.decorators:
# Can't use isinstance as it would cause a circular import
if decorator.__class__.__name__ == 'DecorateInfo':
if decorator.is_active(generic_cls.__name__, test.__name__,
device_cls.device_type, dtype):
active_decorators += decorator.decorators
else:
active_decorators.append(decorator)
@wraps(test)
def test_wrapper(*args, **kwargs):
return test(*args, **kwargs)
for decorator in active_decorators:
test_wrapper = decorator(test_wrapper)
yield (test_wrapper, test_name, param_kwargs)
except Exception as ex:
# Provides an error message for debugging before rethrowing the exception
print("Failed to instantiate {0} for module {1}!".format(test_name, module_info.name))
raise ex
def formatted_module_name(module_cls):
""" Returns the common name of the module class formatted for use in test names. """
return MODULE_CLASS_NAMES[module_cls].replace('.', '_')
class FunctionInput(object):
""" Contains args and kwargs to pass as input to a function. """
__slots__ = ['args', 'kwargs']
def __init__(self, *args, **kwargs):
self.args = args
self.kwargs = kwargs
class ModuleInput(object):
""" Contains args / kwargs for module instantiation + forward pass. """
__slots__ = ['constructor_input', 'forward_input', 'desc', 'reference_fn']
def __init__(self, constructor_input, forward_input=None, desc='', reference_fn=None):
self.constructor_input = constructor_input # Inputs to pass during construction
self.forward_input = forward_input # Inputs to pass to forward()
self.desc = desc # Description for this set of inputs
self.reference_fn = reference_fn # Reference with signature: reference_fn(module, parameters, *args, **kwargs)
if reference_fn is not None:
@wraps(reference_fn)
def copy_reference_fn(m, *args, **kwargs):
# Copy inputs to avoid undesired side effects from calling the reference.
args, kwargs = deepcopy(args), deepcopy(kwargs)
# Note that module parameters are passed in for convenience.
return reference_fn(m, list(m.parameters()), *args, **kwargs)
self.reference_fn = copy_reference_fn
class ModuleInfo(object):
""" Module information to be used in testing. """
def __init__(self,
module_cls, # Class object for the module under test
*,
module_inputs_func, # Function to generate module inputs
skips=(), # Indicates which tests to skip
decorators=None, # Additional decorators to apply to generated tests
):
self.module_cls = module_cls
self.module_inputs_func = module_inputs_func
self.skips = skips
self.decorators = decorators
def should_skip(self, cls_name, test_name, device_type, dtype):
return any(si.is_active(cls_name, test_name, device_type, dtype) for si in self.skips)
@property
def name(self):
return formatted_module_name(self.module_cls)
def module_inputs_torch_nn_Linear(module_info, device, dtype, requires_grad, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
module_inputs = [
ModuleInput(constructor_input=FunctionInput(10, 8),
forward_input=FunctionInput(make_input((4, 10))),
reference_fn=lambda m, p, i: torch.mm(i, p[0].t()) + p[1].view(1, -1).expand(4, 8)),
ModuleInput(constructor_input=FunctionInput(10, 8, bias=False),
forward_input=FunctionInput(make_input((4, 10))),
desc='no_bias',
reference_fn=lambda m, p, i: torch.mm(i, p[0].t())),
ModuleInput(constructor_input=FunctionInput(3, 5),
forward_input=FunctionInput(make_input(3)),
desc='no_batch_dim',
reference_fn=lambda m, p, i: torch.mm(i.view(1, -1), p[0].t()).view(-1) + p[1])
]
return module_inputs
def module_inputs_torch_nn_NLLLoss(module_info, device, dtype, requires_grad, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
cases: List[Tuple[str, dict]] = [
('', {}),
('ignore_index', {'ignore_index': 2}),
('weights', {'weight': make_input(10)}),
('weights_ignore_index', {'weight': make_input(10), 'ignore_index': 2}),
('weights_ignore_index_neg', {'weight': make_input(10), 'ignore_index': -1})
]
module_inputs = []
for desc, constructor_kwargs in cases:
def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs):
return nllloss_reference(i, t, **constructor_kwargs)
module_inputs.append(
ModuleInput(constructor_input=FunctionInput(**constructor_kwargs),
forward_input=FunctionInput(make_input((15, 10)).log_softmax(dim=1),
torch.empty(15, device=device).uniform_().mul(10).floor().long()),
desc=desc,
reference_fn=reference_fn)
)
return module_inputs
# Database of ModuleInfo entries in alphabetical order.
module_db: List[ModuleInfo] = [
ModuleInfo(torch.nn.Linear,
module_inputs_func=module_inputs_torch_nn_Linear),
ModuleInfo(torch.nn.NLLLoss,
module_inputs_func=module_inputs_torch_nn_NLLLoss)
]