mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Additionally: - add support for calling functions that are not methods in the Python frontend - add an end-to-end test for the Python frontend - add a capture_stdout helper for checking that `print` actually works
142 lines
5.1 KiB
C++
142 lines
5.1 KiB
C++
#include "torch/csrc/utils/pybind.h"
|
|
|
|
#include "torch/csrc/jit/python_tracer.h"
|
|
#include "torch/csrc/jit/tracer.h"
|
|
#include "torch/csrc/jit/python_ir.h"
|
|
#include "torch/csrc/jit/python_arg_flatten.h"
|
|
#include "torch/csrc/jit/export.h"
|
|
#include "torch/csrc/jit/python_compiled_function.h"
|
|
#include "torch/csrc/jit/passes/graph_fuser.h"
|
|
#include "torch/csrc/jit/passes/onnx.h"
|
|
#include "torch/csrc/jit/passes/dead_code_elimination.h"
|
|
#include "torch/csrc/jit/passes/common_subexpression_elimination.h"
|
|
#include "torch/csrc/jit/passes/peephole.h"
|
|
#include "torch/csrc/jit/passes/canonicalize.h"
|
|
#include "torch/csrc/jit/passes/onnx/peephole.h"
|
|
#include "torch/csrc/jit/graph_executor.h"
|
|
#include "torch/csrc/jit/script/init.h"
|
|
#include "torch/csrc/jit/script/python_tree_views.h"
|
|
|
|
|
|
namespace torch { namespace jit {
|
|
|
|
namespace {
|
|
|
|
bool loadPythonClasses() {
|
|
// Leaving this code here, because it will likely be useful at some point
|
|
//PyObject *jit_module = PyImport_ImportModule("torch.jit");
|
|
//THPUtils_assert(jit_module, "class loader couldn't access "
|
|
//"torch.jit module");
|
|
//PyObject *jit_dict = PyModule_GetDict(jit_module);
|
|
|
|
return true;
|
|
}
|
|
|
|
template<void (*F)(std::shared_ptr<Graph>& graph)>
|
|
void graph_pass(const std::shared_ptr<tracer::TracingState>& state) {
|
|
return F(state->graph);
|
|
}
|
|
|
|
GraphExecutor createExecutorByGraph(
|
|
std::shared_ptr<Graph> graph,
|
|
bool optimize) {
|
|
return GraphExecutor(std::move(graph), optimize);
|
|
}
|
|
|
|
// This is a temporary constructor so that we can write python tests of
|
|
// the executor. It does not have most of the functionality of CompiledFunction
|
|
// such as being able to hold parameters...
|
|
GraphExecutor createExecutorByTracing(py::function func, std::vector<tracer::TraceInput> inputs, bool optimize) {
|
|
auto enter_info = tracer::enter(std::move(inputs), 1);
|
|
py::tuple py_inputs(enter_info.second.size());
|
|
for(size_t i = 0; i < enter_info.second.size(); ++i) {
|
|
py_inputs[i] = py::cast(enter_info.second[i]);
|
|
}
|
|
// Call back into Python function
|
|
auto out = py::reinterpret_steal<py::object>(PyObject_CallObject(func.ptr(), py_inputs.ptr()));
|
|
if (!out)
|
|
throw py::error_already_set();
|
|
std::vector<autograd::Variable> outputs;
|
|
if(PyTuple_Check(out.ptr())) {
|
|
outputs = py::cast<std::vector<autograd::Variable>>(out);
|
|
} else {
|
|
outputs.push_back(py::cast<autograd::Variable>(out));
|
|
}
|
|
tracer::exit(outputs);
|
|
auto graph = enter_info.first->graph;
|
|
EliminateDeadCode(graph);
|
|
return createExecutorByGraph(std::move(graph), optimize);
|
|
}
|
|
|
|
// we cannot use the default py:cast<autograd::Variable> because it currently
|
|
// unwraps the data tensor in the conversion process
|
|
// TODO: replace with bs type
|
|
variable_tensor_list createVariableTensorList(py::tuple tuple) {
|
|
variable_tensor_list result;
|
|
result.reserve(tuple.size());
|
|
for(auto e : tuple) {
|
|
result.push_back(py::cast<autograd::Variable>(e));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
extern std::string runJITCPPTests();
|
|
|
|
void initJITBindings(PyObject *module) {
|
|
auto m = py::handle(module).cast<py::module>();
|
|
|
|
py::class_<python::IODescriptor>(m, "IODescriptor");
|
|
|
|
m.def("_jit_init", loadPythonClasses)
|
|
.def("_jit_pass_onnx", ToONNX)
|
|
.def("_jit_pass_onnx_peephole", graph_pass<PeepholeOptimizeONNX>)
|
|
.def("_jit_pass_fuse", graph_pass<FuseGraph>)
|
|
.def("_jit_pass_dce", graph_pass<EliminateDeadCode>)
|
|
.def("_jit_pass_cse", graph_pass<EliminateCommonSubexpression>)
|
|
.def("_jit_pass_peephole", graph_pass<PeepholeOptimize>)
|
|
.def("_jit_pass_canonicalize", graph_pass<Canonicalize>)
|
|
.def("_jit_pass_lint", graph_pass<LintGraph>)
|
|
.def("_jit_run_cpp_tests", runJITCPPTests)
|
|
.def("_jit_flatten", [](py::handle& obj) {
|
|
auto res = python::flatten(obj);
|
|
return std::make_pair(res.vars, res.desc);
|
|
})
|
|
.def("_jit_unflatten", [](autograd::variable_list vars, python::IODescriptor& desc) {
|
|
return py::reinterpret_steal<py::object>(python::unflatten(vars, desc));
|
|
});
|
|
|
|
py::class_<GraphExecutor>(m, "GraphExecutor")
|
|
.def(
|
|
py::init([](py::function func,
|
|
std::vector<tracer::TraceInput> inputs,
|
|
bool optimize) {
|
|
return createExecutorByTracing(func, std::move(inputs), optimize);
|
|
}),
|
|
py::arg("func"),
|
|
py::arg("inputs"),
|
|
py::arg("optimize") = true)
|
|
.def(
|
|
py::init([](std::shared_ptr<Graph> graph, bool optimize) {
|
|
return createExecutorByGraph(std::move(graph), optimize);
|
|
}),
|
|
py::arg("graph"),
|
|
py::arg("optimize") = true)
|
|
.def("__call__", [](GraphExecutor& ge, py::args args) {
|
|
auto inputs = createVariableTensorList(args);
|
|
auto outputs = ge.run(std::move(inputs));
|
|
// if we don't tell pybind these are variables it chokes on the
|
|
// conversion.
|
|
// TODO: fix conversions to be sane and make sure this works.
|
|
return std::vector<autograd::Variable>(outputs.begin(), outputs.end());
|
|
});
|
|
initPythonIRBindings(module);
|
|
initPythonTracerBindings(module);
|
|
python::initCompilerMixin(module);
|
|
script::initTreeViewBindings(module);
|
|
script::initJitScriptBindings(module);
|
|
}
|
|
|
|
}}
|