mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: On CPU, no need to replicate parameters. So try using only one copy (cpu_0) for parameters. Made resnet50_trainer use shared model in cpu mode. Reviewed By: wesolwsk Differential Revision: D5812181 fbshipit-source-id: 93254733edbc4a62bd74a629a68f5fa23f7e96ea
1025 lines
38 KiB
Python
1025 lines
38 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from future.utils import viewkeys
|
|
from multiprocessing import Process, Queue
|
|
import numpy as np
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python import core, cnn, data_parallel_model, dyndep, optimizer, \
|
|
rnn_cell, workspace, model_helper, brew
|
|
from caffe2.python.test_util import TestCase
|
|
|
|
|
|
dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:file_store_handler_ops")
|
|
|
|
|
|
class TemporaryDirectory:
|
|
def __enter__(self):
|
|
self.tmpdir = tempfile.mkdtemp()
|
|
return self.tmpdir
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
shutil.rmtree(self.tmpdir)
|
|
|
|
# Note(jiayq): we are yet to find out why Travis gives out an error in gloo
|
|
# like:
|
|
# RuntimeError: [enforce fail at /home/travis/build/caffe2/caffe2/third_party/gloo/gloo/transport/tcp/device.cc:113] ifa != nullptr. Unable to find interface for: [127.0.1.1]
|
|
# See for example https://travis-ci.org/caffe2/caffe2/jobs/262433866
|
|
# As a result, we will check if this is travis, and if yes, disable it.
|
|
@unittest.skipIf(os.environ.get("TRAVIS"), "DPMTest has a known issue with Travis.")
|
|
class DataParallelModelTest(TestCase):
|
|
|
|
def run_model(self, devices, gpu):
|
|
'''
|
|
Helper function for test_equiv
|
|
'''
|
|
def input_builder_fun(model):
|
|
return None
|
|
|
|
def model_build_fun(model, loss_scale):
|
|
fc = model.FC("data", "fc", 16, 1,
|
|
("ConstantFill", {}), ("ConstantFill", {}))
|
|
fc_fl = model.FlattenToVec(fc, "fc_fl")
|
|
sigm = model.Sigmoid(fc_fl, "sigm")
|
|
sq = model.SquaredL2Distance([sigm, "label"], "sq")
|
|
loss = model.AveragedLoss(sq, "loss")
|
|
loss = model.Scale(loss, scale=loss_scale)
|
|
|
|
# For testing explicit sync
|
|
model.param_init_net.UniformFill([], ["sync_num"], shape=[1])
|
|
return [loss]
|
|
|
|
def add_optimizer(model):
|
|
return optimizer.build_sgd(
|
|
model,
|
|
0.1,
|
|
policy="fixed",
|
|
max_gradient_norm=5.0,
|
|
allow_lr_injection=True,
|
|
)
|
|
|
|
workspace.ResetWorkspace()
|
|
model = cnn.CNNModelHelper(
|
|
order="NHWC",
|
|
name="test{}".format(devices),
|
|
)
|
|
data_parallel_model.Parallelize(
|
|
model,
|
|
input_builder_fun=input_builder_fun,
|
|
forward_pass_builder_fun=model_build_fun,
|
|
optimizer_builder_fun=add_optimizer,
|
|
devices=devices,
|
|
cpu_device=not gpu,
|
|
shared_model=not gpu,
|
|
)
|
|
data_parallel_model.AddBlobSync(model, ["sync_num"])
|
|
|
|
np.random.seed(2603)
|
|
|
|
# Each run has same input, independent of number of gpus
|
|
batch_size = 64
|
|
for i in range(0, 10):
|
|
full_data = np.random.rand(batch_size, 16)
|
|
full_labels = np.round(full_data[:, 0])
|
|
batch_per_device = batch_size // len(devices)
|
|
|
|
for (j, g) in enumerate(devices):
|
|
st = j * batch_per_device
|
|
en = st + batch_per_device
|
|
data = full_data[st:en, :].astype(np.float32)
|
|
labels = full_labels[st:en].astype(np.float32)
|
|
with core.DeviceScope(core.DeviceOption(model._device_type, g)):
|
|
workspace.FeedBlob(
|
|
"{}_{}/data".format(model._device_prefix, g), data
|
|
)
|
|
workspace.FeedBlob(
|
|
"{}_{}/label".format(model._device_prefix, g), labels
|
|
)
|
|
|
|
if i == 0:
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
workspace.CreateNet(model.net)
|
|
|
|
workspace.FeedBlob(
|
|
model._device_prefix + "_0/sync_num",
|
|
np.array([i * 2]).astype(np.float32),
|
|
device_option=core.DeviceOption(model._device_type, 0))
|
|
workspace.RunNet(model.net.Proto().name)
|
|
|
|
# Test AddBlobSync
|
|
for j in model._devices:
|
|
sync = workspace.FetchBlob(
|
|
model._device_prefix + "_{}/sync_num".format(j))[0]
|
|
self.assertTrue(abs(sync - i * 2) < 0.01)
|
|
|
|
return workspace.FetchBlob("{}_0/fc_w".format(model._device_prefix))
|
|
|
|
def run_test_locally(self, fn, device_option=None, **kwargs):
|
|
# Queue for assertion errors on subprocesses
|
|
queue = Queue()
|
|
|
|
# Capture any exception thrown by the subprocess
|
|
def run_fn(*args, **kwargs):
|
|
try:
|
|
if device_option is None:
|
|
fn(*args, **kwargs)
|
|
workspace.ResetWorkspace()
|
|
else:
|
|
with core.DeviceScope(device_option):
|
|
fn(*args, **kwargs)
|
|
workspace.ResetWorkspace()
|
|
except Exception as ex:
|
|
queue.put(ex)
|
|
|
|
# Start N processes in the background
|
|
procs = []
|
|
for i in range(kwargs['comm_size']):
|
|
kwargs['comm_rank'] = i
|
|
proc = Process(
|
|
target=run_fn,
|
|
kwargs=kwargs)
|
|
proc.start()
|
|
procs.append(proc)
|
|
|
|
# Test complete, join background processes
|
|
while len(procs) > 0:
|
|
proc = procs.pop(0)
|
|
while proc.is_alive():
|
|
proc.join(1)
|
|
|
|
# Raise exception if we find any.
|
|
# Note that the following is executed ALSO after
|
|
# the last process was joined, so if ANY exception
|
|
# was raised, it will be re-raised here.
|
|
if not queue.empty():
|
|
raise queue.get()
|
|
|
|
def test_equiv(self):
|
|
'''
|
|
Test that the model produces exactly same results given
|
|
total batchsize, independent of number of GPUs.
|
|
'''
|
|
for gpu in [True, False]:
|
|
if gpu and (not workspace.has_gpu_support or
|
|
workspace.NumCudaDevices() < 2):
|
|
continue
|
|
result_2gpus = self.run_model([0, 1], gpu=gpu)
|
|
result_1gpus = self.run_model([0], gpu=gpu)
|
|
|
|
self.assertTrue(np.allclose(result_1gpus, result_2gpus))
|
|
|
|
if not gpu or workspace.NumCudaDevices() >= 4:
|
|
result_4gpus = self.run_model(list(range(4)), gpu=gpu)
|
|
self.assertTrue(np.allclose(result_1gpus, result_4gpus))
|
|
|
|
if not gpu or workspace.NumCudaDevices() >= 8:
|
|
result_8gpus = self.run_model(list(range(8)), gpu=gpu)
|
|
self.assertTrue(np.allclose(result_1gpus, result_8gpus))
|
|
|
|
if not gpu or workspace.NumCudaDevices() >= 16:
|
|
result_16gpus = self.run_model(list(range(16)), gpu=gpu)
|
|
self.assertTrue(np.allclose(result_1gpus, result_16gpus))
|
|
|
|
def test_checkpoint_params(self):
|
|
def add_input_ops(model):
|
|
pass
|
|
|
|
def add_model_ops(model, loss_scale):
|
|
model.NHWC2NCHW("data", "data_nchw")
|
|
model.Conv("data_nchw", 'conv1', 3, 64,
|
|
weight_init=("MSRAFill", {}), kernel=7,
|
|
stride=2, pad=3, no_bias=0)
|
|
model.SpatialBN('conv1', 'conv1_spatbn_relu', 64, epsilon=1e-3)
|
|
model.Relu('conv1_spatbn_relu', 'conv1_spatbn_relu')
|
|
model.MaxPool('conv1_spatbn_relu', 'pool1', kernel=3, stride=2)
|
|
model.FC('pool1', 'fc', dim_in=(64 * 56 * 56), dim_out=100)
|
|
model.Sigmoid('fc', 'fc_sigm')
|
|
model.Softmax('fc_sigm', 'softmax')
|
|
model.LabelCrossEntropy(['softmax', 'label'], 'xent')
|
|
loss = model.AveragedLoss('xent', 'loss')
|
|
|
|
# Add a duplicate param init to ensure it does not cause issues
|
|
model.param_init_net.ConstantFill(
|
|
[], ["fc_w"], shape=((64 * 56 * 56), 1000)
|
|
)
|
|
return [loss]
|
|
|
|
def add_optimizer(model):
|
|
optimizer.build_sgd(model, 0.1, policy="fixed", momentum=0.9)
|
|
|
|
model = cnn.CNNModelHelper(
|
|
order="NHWC",
|
|
name="test",
|
|
)
|
|
data_parallel_model.Parallelize_CPU(
|
|
model,
|
|
input_builder_fun=add_input_ops,
|
|
forward_pass_builder_fun=add_model_ops,
|
|
optimizer_builder_fun=add_optimizer,
|
|
devices=[1, 2, 3],
|
|
)
|
|
|
|
# Only gpu_1 params should be returned (gpu_1 is the first gpu)
|
|
checkpoint_params = data_parallel_model.GetCheckpointParams(model)
|
|
for p in model.GetParams("cpu_1/"):
|
|
self.assertTrue(p in checkpoint_params)
|
|
self.assertTrue(p + "_momentum" in checkpoint_params)
|
|
for p in model.GetParams("cpu_2/"):
|
|
self.assertFalse(p in checkpoint_params)
|
|
self.assertTrue(
|
|
core.BlobReference("cpu_1/fc_w_momentum") in checkpoint_params)
|
|
for c in model.GetComputedParams("cpu_1/"):
|
|
self.assertTrue(c in checkpoint_params)
|
|
for c in model.GetComputedParams("cpu_2/"):
|
|
self.assertFalse(c in checkpoint_params)
|
|
self.assertFalse(core.BlobReference("cpu_1/data") in checkpoint_params)
|
|
self.assertTrue(core.BlobReference("optimizer_iteration") in checkpoint_params)
|
|
|
|
def test_net_conversion_and_append_net(self):
|
|
other = model_helper.ModelHelper()
|
|
fc1 = brew.fc(other, "data", "other_fc1", dim_in=3*227*227, dim_out=10)
|
|
fc2 = brew.fc(other, fc1, "other_fc2", dim_in=10, dim_out=10)
|
|
brew.fc(other, fc2, "other_fc3", dim_in=10, dim_out=10)
|
|
|
|
def add_input_ops(model):
|
|
model.net.UniformFill([], ["data"], shape=[4, 227, 227, 3])
|
|
model.net.UniformFill([], ["label"], shape=[4])
|
|
|
|
def add_model_ops(model, loss_scale):
|
|
model.NHWC2NCHW("data", "data_nchw")
|
|
model.Conv("data_nchw", 'conv1', 3, 64,
|
|
weight_init=("MSRAFill", {}), kernel=7,
|
|
stride=2, pad=3, no_bias=0)
|
|
model.SpatialBN('conv1', 'conv1_spatbn_relu', 64, epsilon=1e-3)
|
|
model.Relu('conv1_spatbn_relu', 'conv1_spatbn_relu')
|
|
model.MaxPool('conv1_spatbn_relu', 'pool1', kernel=3, stride=2)
|
|
model.FC('pool1', 'fc', dim_in=(64 * 56 * 56), dim_out=10)
|
|
|
|
# Append the net and param_init_net of the other model
|
|
appendnet = data_parallel_model.ConvertNetForDevice(other.net)
|
|
model.net.AppendNet(appendnet)
|
|
|
|
model.param_init_net.AppendNet(
|
|
data_parallel_model.ConvertNetForDevice(other.param_init_net))
|
|
|
|
model.Sigmoid('fc', 'fc_sigm')
|
|
model.Softmax('fc_sigm', 'softmax')
|
|
loss = model.AveragedLoss('softmax', 'loss')
|
|
return [loss]
|
|
|
|
def add_optimizer(model):
|
|
optimizer.build_sgd(model, 0.1, policy="fixed", momentum=0.9)
|
|
|
|
model = cnn.CNNModelHelper(
|
|
order="NCHW",
|
|
name="test",
|
|
)
|
|
data_parallel_model.Parallelize_CPU(
|
|
model,
|
|
input_builder_fun=add_input_ops,
|
|
forward_pass_builder_fun=add_model_ops,
|
|
optimizer_builder_fun=add_optimizer,
|
|
devices=range(4)
|
|
)
|
|
|
|
# Just create and run net and confirm no exception is thrown
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
workspace.CreateNet(model.net)
|
|
workspace.RunNet(model.net)
|
|
|
|
|
|
def test_synchronization_barrier(self):
|
|
|
|
def run(comm_rank, comm_size, tmpdir):
|
|
def add_input_ops(model):
|
|
pass
|
|
|
|
def add_model_ops(model, loss_scale):
|
|
return []
|
|
|
|
def add_optimizer(model):
|
|
pass
|
|
|
|
store_handler = "store_handler"
|
|
workspace.RunOperatorOnce(
|
|
core.CreateOperator(
|
|
"FileStoreHandlerCreate",
|
|
[],
|
|
[store_handler],
|
|
path=tmpdir))
|
|
rendezvous = dict(
|
|
kv_handler=store_handler,
|
|
shard_id=comm_rank,
|
|
num_shards=comm_size,
|
|
engine='GLOO',
|
|
)
|
|
|
|
model = cnn.CNNModelHelper(
|
|
order="NHWC",
|
|
name="test",
|
|
)
|
|
data_parallel_model.Parallelize_CPU(
|
|
model,
|
|
input_builder_fun=add_input_ops,
|
|
forward_pass_builder_fun=add_model_ops,
|
|
optimizer_builder_fun=add_optimizer,
|
|
devices=[1, 2, 3],
|
|
rendezvous=rendezvous
|
|
)
|
|
data_parallel_model.RunInitNet(model)
|
|
|
|
for _ in range(2):
|
|
data_parallel_model.Synchronize(model)
|
|
|
|
with TemporaryDirectory() as tmpdir:
|
|
self.run_test_locally(
|
|
run,
|
|
comm_size=2,
|
|
device_option=None,
|
|
tmpdir=tmpdir)
|
|
|
|
def test_device_scope_check(self):
|
|
with self.assertRaises(AssertionError):
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
|
|
data_parallel_model.Parallelize_GPU(None, None, None)
|
|
|
|
|
|
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
|
|
@unittest.skipIf(workspace.NumCudaDevices() < 2, "Need at least 2 GPUs.")
|
|
class RecurrentNetworkParallelTest(TestCase):
|
|
|
|
def run_model(self, devices, gpu):
|
|
|
|
'''
|
|
Helper function for test_equiv
|
|
'''
|
|
def input_builder_fun(model):
|
|
return None
|
|
|
|
def model_build_fun(model, loss_scale):
|
|
workspace.FeedBlob(
|
|
core.ScopedBlobReference("seq_lengths"),
|
|
np.array([self.T] * self.batch_per_device, dtype=np.int32)
|
|
)
|
|
model.param_init_net.ConstantFill(
|
|
[],
|
|
"hidden_init",
|
|
value=0.0,
|
|
shape=[1, self.batch_per_device, self.hidden_dim]
|
|
)
|
|
model.param_init_net.ConstantFill(
|
|
[],
|
|
"cell_init",
|
|
value=0.0,
|
|
shape=[1, self.batch_per_device, self.hidden_dim]
|
|
)
|
|
|
|
output, _last_hidden, _, _last_state, = rnn_cell.LSTM(
|
|
model=model,
|
|
input_blob="data",
|
|
seq_lengths="seq_lengths",
|
|
initial_states=("hidden_init", "cell_init"),
|
|
dim_in=self.input_dim,
|
|
dim_out=self.hidden_dim,
|
|
scope="partest",
|
|
)
|
|
|
|
# A silly loss function
|
|
loss = model.AveragedLoss(
|
|
model.Sub([output, "target"], "dist"),
|
|
"loss",
|
|
)
|
|
loss = model.Scale(loss, "loss_scaled", scale=loss_scale)
|
|
return [loss]
|
|
|
|
def param_update_fun(model):
|
|
ITER = model.Iter("ITER")
|
|
LR = model.net.LearningRate(
|
|
[ITER],
|
|
"LR",
|
|
base_lr=(-0.1),
|
|
policy="fixed",
|
|
)
|
|
ONE = model.param_init_net.ConstantFill(
|
|
[], "ONE", shape=[1], value=1.0,
|
|
)
|
|
for param in model.GetParams():
|
|
param_grad = model.param_to_grad[param]
|
|
model.WeightedSum([param, ONE, param_grad, LR], param)
|
|
|
|
assert len(model.GetParams()) == len(model.params) // len(model._devices)
|
|
|
|
workspace.ResetWorkspace()
|
|
model = cnn.CNNModelHelper(
|
|
name="recurrent_test{}".format(devices),
|
|
)
|
|
|
|
self.T = 8
|
|
self.batch_size = 64
|
|
self.input_dim = 8
|
|
self.hidden_dim = 31
|
|
self.batch_per_device = self.batch_size // len(devices)
|
|
|
|
data_parallel_model.Parallelize(
|
|
model,
|
|
input_builder_fun=input_builder_fun,
|
|
forward_pass_builder_fun=model_build_fun,
|
|
param_update_builder_fun=param_update_fun,
|
|
devices=devices,
|
|
optimize_gradient_memory=True,
|
|
cpu_device=not gpu,
|
|
)
|
|
|
|
# Change all initialization to be ConstantFills so that
|
|
# the everything is deterministic
|
|
for op in model.param_init_net.Proto().op:
|
|
if op.type.endswith('Fill'):
|
|
op.type = 'ConstantFill'
|
|
|
|
# Each run has same input, independent of number of gpus
|
|
np.random.seed(20150210)
|
|
for i in range(0, 10):
|
|
full_data = np.random.rand(self.T, self.batch_size, self.input_dim)
|
|
full_target = np.random.rand(
|
|
self.T, self.batch_size, self.hidden_dim
|
|
)
|
|
|
|
for (j, g) in enumerate(devices):
|
|
st = j * self.batch_per_device
|
|
en = st + self.batch_per_device
|
|
data = full_data[:, st:en, :].astype(np.float32)
|
|
targets = full_target[:, st:en, :].astype(np.float32)
|
|
with core.DeviceScope(core.DeviceOption(model._device_type, g)):
|
|
workspace.FeedBlob(
|
|
"{}_{}/data".format(model._device_prefix, g), data
|
|
)
|
|
workspace.FeedBlob(
|
|
"{}_{}/target".format(model._device_prefix, g), targets
|
|
)
|
|
|
|
if i == 0:
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
workspace.CreateNet(model.net)
|
|
|
|
workspace.RunNet(model.net.Proto().name)
|
|
|
|
return workspace.FetchBlob("{}_0/partest/i2h_w".format(model._device_prefix))
|
|
|
|
def test_equiv_recurrent(self):
|
|
'''
|
|
Test that the model produces exactly same results given
|
|
total batchsize, independent of number of GPUs/CPUs.
|
|
'''
|
|
for gpu in [True, False]:
|
|
if gpu and not workspace.has_gpu_support:
|
|
continue
|
|
result_2gpus = self.run_model([0, 1], gpu)
|
|
result_1gpus = self.run_model([0], gpu)
|
|
|
|
self.assertTrue(np.allclose(result_1gpus, result_2gpus))
|
|
|
|
if not gpu or workspace.NumCudaDevices() >= 4:
|
|
result_4gpus = self.run_model(list(range(4)), gpu)
|
|
self.assertTrue(np.allclose(result_1gpus, result_4gpus))
|
|
|
|
if not gpu or workspace.NumCudaDevices() >= 8:
|
|
result_8gpus = self.run_model(list(range(8)), gpu)
|
|
self.assertTrue(np.allclose(result_1gpus, result_8gpus))
|
|
|
|
|
|
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
|
|
@unittest.skipIf(workspace.NumCudaDevices() < 2, "Need at least 2 GPUs.")
|
|
class SparseDataParallelModelTest(TestCase):
|
|
|
|
'''
|
|
Create and run the model. We try with both storing indices for gather
|
|
on CPU and on GPU
|
|
'''
|
|
def run_model(self, V, gpu_devices, cpu_indices):
|
|
|
|
def input_builder_fun(model):
|
|
return None
|
|
|
|
def model_build_fun(model, loss_scale):
|
|
if cpu_indices:
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
|
|
gathered_cpu = model.net.Gather(
|
|
[self.vecs, 'indices'], 'gathered_cpu')
|
|
|
|
gathered = model.CopyCPUToGPU(gathered_cpu, "gathered")
|
|
else:
|
|
gpu_vecs = model.param_init_net.CopyCPUToGPU(
|
|
self.vecs, "gpuvecs",
|
|
)
|
|
model.params.append(gpu_vecs)
|
|
gathered = model.net.Gather([gpu_vecs, 'indices'], 'gathered')
|
|
flattened = model.Flatten(gathered, "flattened")
|
|
fc = model.FC(flattened, "fc", 16 * 16, 1,
|
|
("ConstantFill", {}), ("ConstantFill", {}))
|
|
fc_fl = model.FlattenToVec(fc, "fc_fl")
|
|
sigm = model.Sigmoid(fc_fl, "sigm")
|
|
sq = model.SquaredL2Distance([sigm, "label"], "sq")
|
|
loss = model.AveragedLoss(sq, "loss")
|
|
loss = model.Scale(loss, scale=loss_scale)
|
|
return [loss]
|
|
|
|
def param_update_fun(model):
|
|
ONE = model.param_init_net.ConstantFill(
|
|
[], "ONE", shape=[1], value=1.0,
|
|
)
|
|
LR = model.CopyCPUToGPU(self.LR, "LR")
|
|
for param in model.GetParams():
|
|
param_grad = model.param_to_grad[param]
|
|
if not isinstance(param_grad, core.GradientSlice):
|
|
model.WeightedSum([param, ONE, param_grad, LR], param)
|
|
else:
|
|
param_momentum = model.param_init_net.ConstantFill(
|
|
[param],
|
|
param + '_momentum',
|
|
value=0.0,
|
|
)
|
|
model.net.SparseMomentumSGDUpdate(
|
|
[
|
|
param_grad.values,
|
|
param_momentum,
|
|
LR,
|
|
param,
|
|
param_grad.indices,
|
|
],
|
|
[
|
|
param_grad.values, param_momentum, param
|
|
],
|
|
momentum=0.1,
|
|
nesterov=0,
|
|
)
|
|
|
|
workspace.ResetWorkspace()
|
|
model = cnn.CNNModelHelper(
|
|
order="NHWC",
|
|
name="sparse_test{}".format(gpu_devices),
|
|
)
|
|
|
|
with core.NameScope("cpu"):
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
|
|
self.ITER = model.Iter("ITER")
|
|
self.LR = model.net.LearningRate(
|
|
[self.ITER],
|
|
"LR",
|
|
base_lr=(-0.1),
|
|
policy="fixed",
|
|
)
|
|
self.vecs = model.param_init_net.UniformFill(
|
|
[], "vecs", shape=[V, 16])
|
|
if cpu_indices:
|
|
model.params.append(self.vecs)
|
|
self.ONE_CPU = model.param_init_net.ConstantFill(
|
|
[], "ONE_CPU", shape=[1], value=1.0,
|
|
)
|
|
|
|
data_parallel_model.Parallelize_GPU(
|
|
model,
|
|
input_builder_fun=input_builder_fun,
|
|
forward_pass_builder_fun=model_build_fun,
|
|
param_update_builder_fun=param_update_fun,
|
|
devices=gpu_devices,
|
|
)
|
|
|
|
# Update the vecs
|
|
if cpu_indices:
|
|
with core.NameScope("cpu"):
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
|
|
for param in model.GetParams():
|
|
param_grad = model.param_to_grad[param]
|
|
model.ScatterWeightedSum([param, self.ONE_CPU,
|
|
param_grad.indices,
|
|
param_grad.values,
|
|
self.LR],
|
|
self.vecs)
|
|
else:
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
|
|
model.CopyGPUToCPU("gpu_0/gpuvecs", self.vecs)
|
|
|
|
np.random.seed(2603)
|
|
|
|
# Each run has same input, independent of number of gpus
|
|
batch_size = 64
|
|
for i in range(0, 10):
|
|
full_indices = np.random.permutation(V)[:batch_size * 16].reshape(
|
|
batch_size, 16
|
|
)
|
|
full_labels = full_indices[:, 0] % 2
|
|
batch_per_device = batch_size // len(gpu_devices)
|
|
|
|
for (j, g) in enumerate(gpu_devices):
|
|
st = j * batch_per_device
|
|
en = st + batch_per_device
|
|
indices = full_indices[st:en, :].astype(np.int32)
|
|
labels = full_labels[st:en].astype(np.float32)
|
|
|
|
device_for_indices = core.DeviceOption(caffe2_pb2.CPU)
|
|
if not cpu_indices:
|
|
device_for_indices = core.DeviceOption(caffe2_pb2.CUDA, g)
|
|
|
|
with core.DeviceScope(device_for_indices):
|
|
workspace.FeedBlob("gpu_{}/indices".format(g), indices)
|
|
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, g)):
|
|
workspace.FeedBlob("gpu_{}/label".format(g), labels)
|
|
|
|
if i == 0:
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
# Force vecs to be same on all runs
|
|
orig_vecs = np.random.rand(V, 16).astype(np.float32)
|
|
workspace.FeedBlob(
|
|
self.vecs,
|
|
orig_vecs
|
|
)
|
|
if not cpu_indices:
|
|
for g in gpu_devices:
|
|
workspace.FeedBlob(
|
|
"gpu_{}/gpuvecs".format(g),
|
|
orig_vecs,
|
|
device_option=core.DeviceOption(caffe2_pb2.CUDA, g),
|
|
)
|
|
workspace.CreateNet(model.net)
|
|
|
|
workspace.RunNet(model.net.Proto().name)
|
|
if len(gpu_devices) == 2:
|
|
if not cpu_indices:
|
|
idx = workspace.FetchBlob("gpu_0/indices")
|
|
idx = list(idx.flatten())
|
|
n = len(idx)
|
|
nu = len(set(idx))
|
|
assert n == nu, "We cannot have duplicate indices"
|
|
|
|
# Sanity check to see the vecs were updated
|
|
self.assertFalse(
|
|
np.allclose(workspace.FetchBlob(self.vecs), orig_vecs))
|
|
return [workspace.FetchBlob(self.vecs if cpu_indices else "gpu_0/gpuvecs"),
|
|
workspace.FetchBlob("gpu_0/fc_w")]
|
|
|
|
def _test_equiv_sparse(self, cpu_indices):
|
|
'''
|
|
Test that the model produces exactly same results given
|
|
total batchsize, independent of number of GPUs.
|
|
'''
|
|
V = 10000
|
|
result_2gpus = self.run_model(V, [0, 1], cpu_indices)
|
|
result_1gpus = self.run_model(V, [0], cpu_indices)
|
|
|
|
self.assertTrue(np.allclose(result_1gpus[0], result_2gpus[0]))
|
|
self.assertTrue(np.allclose(result_1gpus[1], result_2gpus[1]))
|
|
|
|
if workspace.NumCudaDevices() >= 4:
|
|
result_4gpus = self.run_model(V, list(range(4)), cpu_indices)
|
|
self.assertTrue(np.allclose(result_1gpus[0], result_4gpus[0]))
|
|
self.assertTrue(np.allclose(result_1gpus[1], result_4gpus[1]))
|
|
|
|
if workspace.NumCudaDevices() >= 8:
|
|
result_8gpus = self.run_model(V, list(range(8)), cpu_indices)
|
|
self.assertTrue(np.allclose(result_1gpus[0], result_8gpus[0]))
|
|
self.assertTrue(np.allclose(result_1gpus[1], result_8gpus[1]))
|
|
|
|
def test_equiv_sparse(self):
|
|
self._test_equiv_sparse(True)
|
|
self._test_equiv_sparse(False)
|
|
|
|
|
|
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
|
|
@unittest.skipIf(workspace.NumCudaDevices() < 2, "Need at least 2 GPUs.")
|
|
class ParallelizeGPUBMUFTest(TestCase):
|
|
|
|
def _run_model(self, gpu_devices):
|
|
'''
|
|
Helper function for test_equiv
|
|
'''
|
|
def input_builder_fun(model):
|
|
return None
|
|
|
|
def _model_build_fun(self, model, loss_scale):
|
|
fc = model.FC(
|
|
"data", "fc", 16, 1, ("ConstantFill", {}), ("ConstantFill", {})
|
|
)
|
|
fc_fl = model.FlattenToVec(fc, "fc_fl")
|
|
sigm = model.Sigmoid(fc_fl, "sigm")
|
|
sq = model.SquaredL2Distance([sigm, "label"], "sq")
|
|
loss = model.AveragedLoss(sq, "loss")
|
|
loss = model.Scale(loss, scale=loss_scale)
|
|
|
|
return [loss]
|
|
|
|
def _param_update_fun(self, model):
|
|
ITER = model.Iter("ITER")
|
|
LR = model.net.LearningRate(
|
|
[ITER],
|
|
"LR",
|
|
base_lr=(-0.1),
|
|
policy="fixed",
|
|
)
|
|
ONE = model.param_init_net.ConstantFill(
|
|
[], "ONE", shape=[1], value=1.0,
|
|
)
|
|
for param in model.GetParams():
|
|
grad = model.param_to_grad[param]
|
|
model.WeightedSum([param, ONE, grad, LR], param)
|
|
|
|
def _generate_data(self, gpu_devices):
|
|
np.random.seed(26)
|
|
# Each run has same input, independent of number of gpus
|
|
batch_size = 64
|
|
for _ in range(0, 10):
|
|
full_data = np.random.rand(batch_size, 16)
|
|
full_labels = np.round(full_data[:, 0])
|
|
batch_per_device = batch_size // len(gpu_devices)
|
|
|
|
for (j, g) in enumerate(gpu_devices):
|
|
st = j * batch_per_device
|
|
en = st + batch_per_device
|
|
data = full_data[st:en, :].astype(np.float32)
|
|
labels = full_labels[st:en].astype(np.float32)
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, g)):
|
|
workspace.FeedBlob("gpu_{}/data".format(g), data)
|
|
workspace.FeedBlob("gpu_{}/label".format(g), labels)
|
|
|
|
def test_parallelize_gpu_bmuf(self):
|
|
model = cnn.CNNModelHelper(
|
|
order="NHWC",
|
|
name="test"
|
|
)
|
|
gpu_ids = [0, 1]
|
|
|
|
def input_builder_fun(model):
|
|
return None
|
|
|
|
self._generate_data(gpu_ids)
|
|
|
|
data_parallel_model.Parallelize_GPU_BMUF(
|
|
model,
|
|
input_builder_fun,
|
|
self._model_build_fun,
|
|
self._param_update_fun,
|
|
devices=gpu_ids,
|
|
)
|
|
|
|
data_parallel_model.RunInitNet(model)
|
|
|
|
# Check initial momentum params are zeros
|
|
self.assertEqual(
|
|
list(viewkeys(model._device_grouped_blobs)), ['fc_w', 'fc_b']
|
|
)
|
|
self.assertEqual(workspace.FetchBlob('gpu_0/fc_b_v'), 0)
|
|
np.testing.assert_equal(
|
|
workspace.FetchBlob('gpu_0/fc_w_v'),
|
|
np.zeros(16).astype(np.float32).reshape(1, 16)
|
|
)
|
|
|
|
# Run the algorithm for one iteration to have non-zero params.
|
|
data_parallel_model.RunNet(model, 1)
|
|
|
|
# Save iteration momentum and post local update params
|
|
v_b_ = workspace.FetchBlob('gpu_0/fc_b_v')
|
|
v_w_ = workspace.FetchBlob('gpu_0/fc_w_v')
|
|
|
|
workspace.RunNetOnce(model.net)
|
|
|
|
b_0_ = workspace.FetchBlob('gpu_0/fc_b')
|
|
w_0_ = workspace.FetchBlob('gpu_0/fc_w')
|
|
b_1_ = workspace.FetchBlob('gpu_1/fc_b')
|
|
w_1_ = workspace.FetchBlob('gpu_1/fc_w')
|
|
|
|
# Compute block gradients.
|
|
b_g_ = workspace.FetchBlob('gpu_0/fc_b_g')
|
|
w_g_ = workspace.FetchBlob('gpu_0/fc_w_g')
|
|
workspace.RunNetOnce(model._global_model_param_updates_net)
|
|
|
|
g_b = (b_0_ + b_1_) / 2 - b_g_
|
|
g_w = (w_0_ + w_1_) / 2 - w_g_
|
|
v_b = workspace.FetchBlob('gpu_0/fc_b_v')
|
|
v_w = workspace.FetchBlob('gpu_0/fc_w_v')
|
|
|
|
w_g = workspace.FetchBlob('gpu_0/fc_w_g')
|
|
b_g = workspace.FetchBlob('gpu_0/fc_b_g')
|
|
w_0 = workspace.FetchBlob('gpu_0/fc_w')
|
|
b_0 = workspace.FetchBlob('gpu_0/fc_b')
|
|
w_1 = workspace.FetchBlob('gpu_1/fc_w')
|
|
b_1 = workspace.FetchBlob('gpu_1/fc_b')
|
|
|
|
# Check momentum update step
|
|
np.testing.assert_equal(v_b, 0.5 * v_b_ + g_b)
|
|
np.testing.assert_equal(v_w, 0.5 * v_w_ + g_w)
|
|
|
|
np.testing.assert_equal(w_g, w_0)
|
|
np.testing.assert_equal(w_g, w_1)
|
|
np.testing.assert_equal(b_g, b_0)
|
|
np.testing.assert_equal(b_g, b_1)
|
|
|
|
# Check params update step
|
|
np.testing.assert_equal(w_0, w_g_ + v_w)
|
|
np.testing.assert_equal(b_0, b_g_ + v_b)
|
|
|
|
|
|
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
|
|
@unittest.skipIf(workspace.NumCudaDevices() < 2, "Need at least 2 GPUs.")
|
|
class SparseDataParallelModelTestWithSharedIndices(TestCase):
|
|
|
|
'''
|
|
Create and run the model. We try with both storing indices for gather
|
|
on CPU and on GPU
|
|
'''
|
|
def run_model(self, V, gpu_devices):
|
|
|
|
def input_builder_fun(model):
|
|
return None
|
|
|
|
def model_build_fun(model, loss_scale):
|
|
gpu_vecs_gathered = []
|
|
gpu_vecs = []
|
|
for num, vec in enumerate(self.vecs):
|
|
gpu_vec = model.param_init_net.CopyCPUToGPU(
|
|
vec, 'gpuvec_{}'.format(num),
|
|
)
|
|
if num != 2:
|
|
model.params.append(gpu_vec)
|
|
gpu_vecs.append(gpu_vec)
|
|
for num, gpu_vec in enumerate(gpu_vecs):
|
|
gpu_vec_gathered = model.net.Gather(
|
|
[gpu_vec, 'indices'],
|
|
['gpu_vec_gathered_{}'.format(num)]
|
|
)
|
|
gpu_vecs_gathered.append(gpu_vec_gathered)
|
|
|
|
assert len(gpu_vecs_gathered) == 3
|
|
|
|
fc = model.net.FC(
|
|
[
|
|
gpu_vecs_gathered[2],
|
|
gpu_vecs_gathered[0],
|
|
gpu_vecs_gathered[1],
|
|
],
|
|
['fc'],
|
|
)
|
|
_, loss = model.net.SoftmaxWithLoss(
|
|
[fc, 'label'],
|
|
['ce_loss', 'avg_loss'],
|
|
only_loss=True,
|
|
)
|
|
loss = model.Scale(loss, scale=loss_scale)
|
|
model.net.Print(loss, [], limit=10)
|
|
return [loss]
|
|
|
|
def param_update_fun(model):
|
|
ONE = model.param_init_net.ConstantFill(
|
|
[], "ONE", shape=[1], value=1.0,
|
|
)
|
|
LR = model.CopyCPUToGPU(self.LR, "LR")
|
|
for param in model.GetParams():
|
|
param_grad = model.param_to_grad[param]
|
|
if not isinstance(param_grad, core.GradientSlice):
|
|
model.WeightedSum([param, ONE, param_grad, LR], param)
|
|
else:
|
|
model.net.ScatterWeightedSum(
|
|
[
|
|
param,
|
|
ONE,
|
|
param_grad.indices,
|
|
param_grad.values,
|
|
ONE,
|
|
],
|
|
param,
|
|
)
|
|
|
|
workspace.ResetWorkspace()
|
|
model = cnn.CNNModelHelper(
|
|
order="NHWC",
|
|
name="sparse_test{}".format(gpu_devices),
|
|
)
|
|
batch_size = 32
|
|
batch_per_device = batch_size // len(gpu_devices)
|
|
|
|
with core.NameScope("cpu"):
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
|
|
self.ITER = model.Iter("ITER")
|
|
self.LR = model.net.LearningRate(
|
|
[self.ITER],
|
|
"LR",
|
|
base_lr=(-0.1),
|
|
policy="fixed",
|
|
)
|
|
'''
|
|
self.vecs consists of 3 big blobs on which we call Gather:
|
|
1) FC weights, shape=(V, 16)
|
|
2) FC bias, shape=(V)
|
|
3) FC input, shape=(batch_per_device, 16)
|
|
'''
|
|
self.vecs = [
|
|
model.param_init_net.UniformFill(
|
|
[], "vec_{}".format(num), shape=[V, 16])
|
|
for num in range(2)
|
|
]
|
|
self.vecs.append(
|
|
model.param_init_net.UniformFill(
|
|
[],
|
|
"vec_2", shape=[batch_per_device, 16]
|
|
)
|
|
)
|
|
self.ONE_CPU = model.param_init_net.ConstantFill(
|
|
[], "ONE_CPU", shape=[1], value=1.0,
|
|
)
|
|
|
|
data_parallel_model.Parallelize_GPU(
|
|
model,
|
|
input_builder_fun=input_builder_fun,
|
|
forward_pass_builder_fun=model_build_fun,
|
|
param_update_builder_fun=param_update_fun,
|
|
devices=gpu_devices,
|
|
)
|
|
|
|
# Update the vecs
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, 0)):
|
|
for num, vec in enumerate(self.vecs[:-1]):
|
|
model.CopyGPUToCPU("gpu_0/gpuvec_{}".format(num), vec)
|
|
|
|
# Each run has same input, independent of number of gpus
|
|
for i in range(0, 10):
|
|
np.random.seed(2603)
|
|
full_indices = np.random.permutation(V)[:batch_size].reshape(
|
|
batch_size
|
|
)
|
|
full_labels = full_indices[:] % batch_per_device
|
|
|
|
for (j, g) in enumerate(gpu_devices):
|
|
st = j * batch_per_device
|
|
en = st + batch_per_device
|
|
indices = full_indices[st:en].astype(np.int32)
|
|
labels = full_labels[st:en].astype(np.int32)
|
|
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CUDA, g)):
|
|
workspace.FeedBlob("gpu_{}/indices".format(g), indices)
|
|
workspace.FeedBlob("gpu_{}/label".format(g), labels)
|
|
|
|
if i == 0:
|
|
workspace.RunNetOnce(model.param_init_net)
|
|
# Force vecs to be same on all runs
|
|
orig_vecs = [
|
|
np.random.rand(V, 16).astype(np.float32),
|
|
np.random.rand(V).astype(np.float32),
|
|
np.random.rand(V, 16).astype(np.float32),
|
|
]
|
|
for vec, orig_vec in zip(self.vecs, orig_vecs):
|
|
workspace.FeedBlob(
|
|
vec,
|
|
orig_vec
|
|
)
|
|
for g in gpu_devices:
|
|
for num, orig_vec in enumerate(orig_vecs):
|
|
workspace.FeedBlob(
|
|
"gpu_{}/gpuvec_{}".format(g, num),
|
|
orig_vec,
|
|
device_option=core.DeviceOption(
|
|
caffe2_pb2.CUDA, g),
|
|
)
|
|
workspace.CreateNet(model.net)
|
|
|
|
workspace.RunNet(model.net.Proto().name)
|
|
|
|
idx = workspace.FetchBlob('gpu_0/indices')
|
|
grad_slices = [
|
|
workspace.FetchBlob(
|
|
'gpu_{}/gpu_vec_gathered_{}_grad'.format(g, num))
|
|
for g in gpu_devices for num in range(2)
|
|
]
|
|
for grad_slice in grad_slices:
|
|
# print (len(idx), len(grad_slice))
|
|
assert len(idx) == len(grad_slice), (
|
|
'Number of indices {} is not same as number of gradient '
|
|
'slices {}. This might lead to illegal memory access'.format(
|
|
len(idx), len(grad_slice)
|
|
)
|
|
)
|
|
|
|
def test_sparse_shared_indices_gpu(self):
|
|
'''
|
|
Test that the model has same number of indices and gradient rows
|
|
given total batchsize, independent of number of GPUs.
|
|
'''
|
|
V = 10000
|
|
self.run_model(V, [0, 1])
|
|
self.run_model(V, [0])
|
|
|
|
if workspace.NumCudaDevices() >= 4:
|
|
self.run_model(V, list(range(4)))
|
|
|
|
if workspace.NumCudaDevices() >= 8:
|
|
self.run_model(V, list(range(8)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import unittest
|
|
unittest.main()
|