mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
The C/C++ unary negation operator is well defined for unsigned types. We should use that behavior. This also implements neg for CharTensor. That behavior currently depends on whether char is signed or unsigned. Fixes #4066, #3225
5045 lines
190 KiB
Python
5045 lines
190 KiB
Python
import sys
|
|
import os
|
|
import math
|
|
import random
|
|
import copy
|
|
import torch
|
|
import torch.cuda
|
|
import tempfile
|
|
import unittest
|
|
import warnings
|
|
import pickle
|
|
from torch.utils.dlpack import from_dlpack, to_dlpack
|
|
from itertools import product, combinations
|
|
from common import TestCase, iter_indices, TEST_NUMPY, run_tests, download_file, skipIfNoLapack, \
|
|
suppress_warnings
|
|
|
|
if TEST_NUMPY:
|
|
import numpy as np
|
|
|
|
SIZE = 100
|
|
|
|
|
|
class TestTorch(TestCase):
|
|
|
|
def test_dot(self):
|
|
types = {
|
|
'torch.DoubleTensor': 1e-8,
|
|
'torch.FloatTensor': 1e-4,
|
|
}
|
|
for tname, _prec in types.items():
|
|
v1 = torch.randn(100).type(tname)
|
|
v2 = torch.randn(100).type(tname)
|
|
res1 = torch.dot(v1, v2)
|
|
res2 = 0
|
|
for i, j in zip(v1, v2):
|
|
res2 += i * j
|
|
self.assertEqual(res1, res2)
|
|
|
|
# Test 0-strided
|
|
for tname, _prec in types.items():
|
|
v1 = torch.randn(1).type(tname).expand(100)
|
|
v2 = torch.randn(100).type(tname)
|
|
res1 = torch.dot(v1, v2)
|
|
res2 = 0
|
|
for i, j in zip(v1, v2):
|
|
res2 += i * j
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_ger(self):
|
|
types = {
|
|
'torch.DoubleTensor': 1e-8,
|
|
'torch.FloatTensor': 1e-4,
|
|
}
|
|
for tname, _prec in types.items():
|
|
v1 = torch.randn(100).type(tname)
|
|
v2 = torch.randn(100).type(tname)
|
|
res1 = torch.ger(v1, v2)
|
|
res2 = torch.zeros(100, 100).type(tname)
|
|
for i in range(100):
|
|
for j in range(100):
|
|
res2[i, j] = v1[i] * v2[j]
|
|
self.assertEqual(res1, res2)
|
|
|
|
# Test 0-strided
|
|
for tname, _prec in types.items():
|
|
v1 = torch.randn(1).type(tname).expand(100)
|
|
v2 = torch.randn(100).type(tname)
|
|
res1 = torch.ger(v1, v2)
|
|
res2 = torch.zeros(100, 100).type(tname)
|
|
for i in range(100):
|
|
for j in range(100):
|
|
res2[i, j] = v1[i] * v2[j]
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_addr(self):
|
|
types = {
|
|
'torch.DoubleTensor': 1e-8,
|
|
'torch.FloatTensor': 1e-4,
|
|
}
|
|
|
|
def run_test(m, v1, v2, m_transform=lambda x: x):
|
|
m = m_transform(m.clone())
|
|
ref = m.clone()
|
|
torch.addr(m, v1, v2, out=m)
|
|
for i in range(m.size(0)):
|
|
for j in range(m.size(1)):
|
|
ref[i, j] += v1[i] * v2[j]
|
|
self.assertEqual(m, ref)
|
|
|
|
for tname, _prec in types.items():
|
|
for h, w in [(100, 110), (1, 20), (200, 2)]:
|
|
m = torch.randn(h, w).type(tname)
|
|
v1 = torch.randn(h).type(tname)
|
|
v2 = torch.randn(w).type(tname)
|
|
run_test(m, v1, v2)
|
|
# test transpose
|
|
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
|
|
# test 0 strided
|
|
v1 = torch.randn(1).type(tname).expand(h)
|
|
run_test(m, v1, v2)
|
|
run_test(m, v2, v1, lambda x: x.transpose(0, 1))
|
|
|
|
def test_addmv(self):
|
|
types = {
|
|
'torch.DoubleTensor': 1e-8,
|
|
'torch.FloatTensor': 1e-4,
|
|
}
|
|
for tname, _prec in types.items():
|
|
t = torch.randn(10).type(tname)
|
|
m = torch.randn(10, 100).type(tname)
|
|
v = torch.randn(100).type(tname)
|
|
res1 = torch.addmv(t, m, v)
|
|
res2 = torch.zeros(10).type(tname)
|
|
res2 += t
|
|
for i in range(10):
|
|
for j in range(100):
|
|
res2[i] += m[i, j] * v[j]
|
|
self.assertEqual(res1, res2)
|
|
|
|
# Test 0-strided
|
|
for tname, _prec in types.items():
|
|
t = torch.randn(1).type(tname).expand(10)
|
|
m = torch.randn(10, 1).type(tname).expand(10, 100)
|
|
v = torch.randn(100).type(tname)
|
|
res1 = torch.addmv(t, m, v)
|
|
res2 = torch.zeros(10).type(tname)
|
|
res2 += t
|
|
for i in range(10):
|
|
for j in range(100):
|
|
res2[i] += m[i, j] * v[j]
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_addmm(self):
|
|
types = {
|
|
'torch.DoubleTensor': 1e-8,
|
|
'torch.FloatTensor': 1e-4,
|
|
}
|
|
for tname, _prec in types.items():
|
|
M = torch.randn(10, 25).type(tname)
|
|
m1 = torch.randn(10, 50).type(tname)
|
|
m2 = torch.randn(50, 25).type(tname)
|
|
res1 = torch.addmm(M, m1, m2)
|
|
res2 = torch.zeros(10, 25).type(tname)
|
|
res2 += M
|
|
for i in range(10):
|
|
for j in range(25):
|
|
for k in range(50):
|
|
res2[i, j] += m1[i, k] * m2[k, j]
|
|
self.assertEqual(res1, res2)
|
|
|
|
# Test 0-strided
|
|
for tname, _prec in types.items():
|
|
M = torch.randn(10, 1).type(tname).expand(10, 25)
|
|
m1 = torch.randn(10, 1).type(tname).expand(10, 50)
|
|
m2 = torch.randn(50, 25).type(tname)
|
|
res1 = torch.addmm(M, m1, m2)
|
|
res2 = torch.zeros(10, 25).type(tname)
|
|
res2 += M
|
|
for i in range(10):
|
|
for j in range(25):
|
|
for k in range(50):
|
|
res2[i, j] += m1[i, k] * m2[k, j]
|
|
self.assertEqual(res1, res2)
|
|
|
|
def _testMath(self, torchfn, mathfn):
|
|
size = (10, 5)
|
|
# contiguous
|
|
m1 = torch.randn(*size)
|
|
res1 = torchfn(m1[4])
|
|
res2 = res1.clone().zero_()
|
|
for i, v in enumerate(m1[4]):
|
|
res2[i] = mathfn(v)
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.randn(*size)
|
|
res1 = torchfn(m1[:, 4])
|
|
res2 = res1.clone().zero_()
|
|
for i, v in enumerate(m1[:, 4]):
|
|
res2[i] = mathfn(v)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def _testMathByName(self, function_name):
|
|
torchfn = getattr(torch, function_name)
|
|
mathfn = getattr(math, function_name)
|
|
self._testMath(torchfn, mathfn)
|
|
|
|
def test_sin(self):
|
|
self._testMathByName('sin')
|
|
|
|
def test_sinh(self):
|
|
self._testMathByName('sinh')
|
|
|
|
def test_lgamma(self):
|
|
self._testMathByName('lgamma')
|
|
|
|
def test_asin(self):
|
|
self._testMath(torch.asin, lambda x: math.asin(x) if abs(x) <= 1 else float('nan'))
|
|
|
|
def test_cos(self):
|
|
self._testMathByName('cos')
|
|
|
|
def test_cosh(self):
|
|
self._testMathByName('cosh')
|
|
|
|
def test_acos(self):
|
|
self._testMath(torch.acos, lambda x: math.acos(x) if abs(x) <= 1 else float('nan'))
|
|
|
|
def test_tan(self):
|
|
self._testMathByName('tan')
|
|
|
|
def test_tanh(self):
|
|
self._testMathByName('tanh')
|
|
|
|
def test_atan(self):
|
|
self._testMathByName('atan')
|
|
|
|
def test_log(self):
|
|
self._testMath(torch.log, lambda x: math.log(x) if x > 0 else float('nan'))
|
|
|
|
def test_sqrt(self):
|
|
self._testMath(torch.sqrt, lambda x: math.sqrt(x) if x > 0 else float('nan'))
|
|
|
|
def test_erf(self):
|
|
self._testMathByName('erf')
|
|
|
|
def test_erfinv(self):
|
|
def checkType(tensor):
|
|
inputValues = torch.randn(4, 4, out=tensor()).clamp(-2., 2.)
|
|
self.assertEqual(tensor(inputValues).erf().erfinv(), tensor(inputValues))
|
|
# test inf
|
|
self.assertTrue(torch.equal(tensor([-1, 1]).erfinv(), tensor([float('-inf'), float('inf')])))
|
|
# test nan
|
|
self.assertEqual(tensor([-2, 2]).erfinv(), tensor([float('nan'), float('nan')]))
|
|
|
|
checkType(torch.FloatTensor)
|
|
checkType(torch.DoubleTensor)
|
|
|
|
def test_exp(self):
|
|
self._testMathByName('exp')
|
|
|
|
def test_floor(self):
|
|
self._testMathByName('floor')
|
|
|
|
def test_ceil(self):
|
|
self._testMathByName('ceil')
|
|
|
|
def test_rsqrt(self):
|
|
self._testMath(torch.rsqrt, lambda x: 1 / math.sqrt(x) if x > 0 else float('nan'))
|
|
|
|
def test_sigmoid(self):
|
|
# TODO: why not simulate math.sigmoid like with rsqrt?
|
|
inputValues = [-1000, -1, 0, 0.5, 1, 2, 1000]
|
|
expectedOutput = [0.0000, 0.2689, 0.5, 0.6225, 0.7311, 0.8808, 1.000]
|
|
precision_4dps = 0.0002
|
|
|
|
def checkType(tensor):
|
|
self.assertEqual(tensor(inputValues).sigmoid(), tensor(expectedOutput), precision_4dps)
|
|
|
|
checkType(torch.FloatTensor)
|
|
checkType(torch.DoubleTensor)
|
|
|
|
def test_frac(self):
|
|
self._testMath(torch.frac, lambda x: math.fmod(x, 1))
|
|
|
|
def test_trunc(self):
|
|
self._testMath(torch.trunc, lambda x: x - math.fmod(x, 1))
|
|
|
|
def test_round(self):
|
|
self._testMath(torch.round, round)
|
|
|
|
def test_has_storage(self):
|
|
self.assertIsNotNone(torch.Tensor().storage())
|
|
self.assertIsNotNone(torch.Tensor(0).storage())
|
|
self.assertIsNotNone(torch.Tensor([]).storage())
|
|
self.assertIsNotNone(torch.Tensor().clone().storage())
|
|
self.assertIsNotNone(torch.Tensor([0, 0, 0]).nonzero().storage())
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_has_storage_numpy(self):
|
|
for dtype in [np.float32, np.float64, np.int64,
|
|
np.int32, np.int16, np.uint8]:
|
|
arr = np.array([1], dtype=dtype)
|
|
self.assertIsNotNone(torch.FloatTensor(arr).storage())
|
|
self.assertIsNotNone(torch.DoubleTensor(arr).storage())
|
|
self.assertIsNotNone(torch.IntTensor(arr).storage())
|
|
self.assertIsNotNone(torch.LongTensor(arr).storage())
|
|
self.assertIsNotNone(torch.ByteTensor(arr).storage())
|
|
if torch.cuda.is_available():
|
|
self.assertIsNotNone(torch.cuda.FloatTensor(arr).storage())
|
|
self.assertIsNotNone(torch.cuda.DoubleTensor(arr).storage())
|
|
self.assertIsNotNone(torch.cuda.IntTensor(arr).storage())
|
|
self.assertIsNotNone(torch.cuda.LongTensor(arr).storage())
|
|
self.assertIsNotNone(torch.cuda.ByteTensor(arr).storage())
|
|
|
|
def _testSelection(self, torchfn, mathfn):
|
|
# contiguous
|
|
m1 = torch.randn(100, 100)
|
|
res1 = torchfn(m1)
|
|
res2 = m1[0, 0]
|
|
for i, j in iter_indices(m1):
|
|
res2 = mathfn(res2, m1[i, j])
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.randn(10, 10, 10)
|
|
m2 = m1[:, 4]
|
|
res1 = torchfn(m2)
|
|
res2 = m2[0, 0]
|
|
for i, j in iter_indices(m2):
|
|
res2 = mathfn(res2, m2[i][j])
|
|
self.assertEqual(res1, res2)
|
|
|
|
# with indices
|
|
m1 = torch.randn(100, 100)
|
|
res1val, res1ind = torchfn(m1, 1, False)
|
|
res2val = m1[:, 0:1].clone().squeeze()
|
|
res2ind = res1ind.clone().fill_(0)
|
|
for i, j in iter_indices(m1):
|
|
if mathfn(res2val[i], m1[i, j]) != res2val[i]:
|
|
res2val[i] = m1[i, j]
|
|
res2ind[i] = j
|
|
|
|
maxerr = 0
|
|
for i in range(res1val.size(0)):
|
|
maxerr = max(maxerr, abs(res1val[i] - res2val[i]))
|
|
self.assertEqual(res1ind[i], res2ind[i])
|
|
self.assertLessEqual(abs(maxerr), 1e-5)
|
|
|
|
# NaNs
|
|
for index in (0, 4, 99):
|
|
m1 = torch.randn(100)
|
|
m1[index] = float('nan')
|
|
res1val, res1ind = torch.max(m1, 0)
|
|
self.assertNotEqual(res1val[0], res1val[0])
|
|
self.assertEqual(res1ind[0], index)
|
|
res1val = torchfn(m1)
|
|
self.assertNotEqual(res1val, res1val)
|
|
|
|
def test_max(self):
|
|
self._testSelection(torch.max, max)
|
|
|
|
def test_min(self):
|
|
self._testSelection(torch.min, min)
|
|
|
|
@staticmethod
|
|
def _test_dim_reduction(self, cast):
|
|
dim_red_fns = [
|
|
"mean", "median", "mode", "norm", "prod",
|
|
"std", "sum", "var", "max", "min"]
|
|
|
|
def normfn_attr(t, dim, keepdim=False):
|
|
attr = getattr(torch, "norm")
|
|
return attr(t, 2, dim, keepdim)
|
|
|
|
for fn_name in dim_red_fns:
|
|
fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr
|
|
|
|
def fn(x, dim, keepdim=False):
|
|
ans = fn_attr(x, dim, keepdim=keepdim)
|
|
return ans if not isinstance(ans, tuple) else ans[0]
|
|
|
|
def test_multidim(x, dim):
|
|
self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True))
|
|
self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension())
|
|
self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())
|
|
|
|
# general case
|
|
x = cast(torch.randn(3, 4, 5))
|
|
dim = random.randint(0, 2)
|
|
test_multidim(x, dim)
|
|
|
|
# check 1-d behavior
|
|
x = cast(torch.randn(1))
|
|
dim = 0
|
|
self.assertEqual(fn(x, dim), fn(x, dim, keepdim=True))
|
|
self.assertEqual(x.ndimension(), fn(x, dim).ndimension())
|
|
self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())
|
|
|
|
# check reducing of a singleton dimension
|
|
dims = [3, 4, 5]
|
|
singleton_dim = random.randint(0, 2)
|
|
dims[singleton_dim] = 1
|
|
x = cast(torch.randn(dims))
|
|
test_multidim(x, singleton_dim)
|
|
|
|
def test_dim_reduction(self):
|
|
self._test_dim_reduction(self, lambda t: t)
|
|
|
|
def _testCSelection(self, torchfn, mathfn):
|
|
# Two tensors
|
|
size = (100, 100)
|
|
a = torch.rand(*size)
|
|
b = torch.rand(*size)
|
|
c = torchfn(a, b)
|
|
expected_c = torch.zeros(*size)
|
|
expected_c.map2_(a, b, lambda _, a, b: mathfn(a, b))
|
|
self.assertEqual(expected_c, c, 0)
|
|
|
|
def test_max_elementwise(self):
|
|
self._testCSelection(torch.max, max)
|
|
|
|
def test_min_elementwise(self):
|
|
self._testCSelection(torch.min, min)
|
|
|
|
def test_lerp(self):
|
|
def TH_lerp(a, b, weight):
|
|
return a + weight * (b - a)
|
|
|
|
size = (100, 100)
|
|
a = torch.rand(*size)
|
|
b = torch.rand(*size)
|
|
w = random.random()
|
|
result = torch.lerp(a, b, w)
|
|
expected = a.clone()
|
|
expected.map2_(a, b, lambda _, a, b: TH_lerp(a, b, w))
|
|
self.assertEqual(result, expected)
|
|
|
|
def test_all_any(self):
|
|
def test(size):
|
|
x = torch.ones(*size).byte()
|
|
self.assertTrue(x.all())
|
|
self.assertTrue(x.any())
|
|
|
|
x[3] = 0
|
|
self.assertFalse(x.all())
|
|
self.assertTrue(x.any())
|
|
|
|
x.zero_()
|
|
self.assertFalse(x.all())
|
|
self.assertFalse(x.any())
|
|
|
|
x.fill_(2)
|
|
self.assertTrue(x.all())
|
|
self.assertTrue(x.any())
|
|
|
|
test((10,))
|
|
test((5, 5))
|
|
|
|
def test_all_any_empty(self):
|
|
x = torch.ByteTensor()
|
|
self.assertTrue(x.all())
|
|
self.assertFalse(x.any())
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_all_any_empty_cuda(self):
|
|
x = torch.cuda.ByteTensor()
|
|
self.assertTrue(x.all())
|
|
self.assertFalse(x.any())
|
|
|
|
def test_mv(self):
|
|
m1 = torch.randn(100, 100)
|
|
v1 = torch.randn(100)
|
|
|
|
res1 = torch.mv(m1, v1)
|
|
res2 = res1.clone().zero_()
|
|
for i, j in iter_indices(m1):
|
|
res2[i] += m1[i][j] * v1[j]
|
|
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_add(self):
|
|
# [res] torch.add([res,] tensor1, tensor2)
|
|
m1 = torch.randn(100, 100)
|
|
v1 = torch.randn(100)
|
|
|
|
# contiguous
|
|
res1 = torch.add(m1[4], v1)
|
|
res2 = res1.clone().zero_()
|
|
for i in range(m1.size(1)):
|
|
res2[i] = m1[4, i] + v1[i]
|
|
self.assertEqual(res1, res2)
|
|
|
|
m1 = torch.randn(100, 100)
|
|
v1 = torch.randn(100)
|
|
|
|
# non-contiguous
|
|
res1 = torch.add(m1[:, 4], v1)
|
|
res2 = res1.clone().zero_()
|
|
for i in range(m1.size(0)):
|
|
res2[i] = m1[i, 4] + v1[i]
|
|
self.assertEqual(res1, res2)
|
|
|
|
# [res] torch.add([res,] tensor, value)
|
|
m1 = torch.randn(10, 10)
|
|
|
|
# contiguous
|
|
res1 = m1.clone()
|
|
res1[3].add_(2)
|
|
res2 = m1.clone()
|
|
for i in range(m1.size(1)):
|
|
res2[3, i] = res2[3, i] + 2
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.randn(10, 10)
|
|
res1 = m1.clone()
|
|
res1[:, 3].add_(2)
|
|
res2 = m1.clone()
|
|
for i in range(m1.size(0)):
|
|
res2[i, 3] = res2[i, 3] + 2
|
|
self.assertEqual(res1, res2)
|
|
|
|
# [res] torch.add([res,] tensor1, value, tensor2)
|
|
|
|
def test_csub(self):
|
|
# with a tensor
|
|
a = torch.randn(100, 90)
|
|
b = a.clone().normal_()
|
|
|
|
res_add = torch.add(a, -1, b)
|
|
res_csub = a.clone()
|
|
res_csub.sub_(b)
|
|
self.assertEqual(res_add, res_csub)
|
|
|
|
# with a scalar
|
|
a = torch.randn(100, 100)
|
|
|
|
scalar = 123.5
|
|
res_add = torch.add(a, -scalar)
|
|
res_csub = a.clone()
|
|
res_csub.sub_(scalar)
|
|
self.assertEqual(res_add, res_csub)
|
|
|
|
@staticmethod
|
|
def _test_neg(self, cast):
|
|
float_types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor']
|
|
int_types = ['torch.IntTensor', 'torch.ShortTensor', 'torch.ByteTensor',
|
|
'torch.CharTensor']
|
|
|
|
for t in float_types + int_types:
|
|
if t in float_types:
|
|
a = cast(torch.randn(100, 90).type(t))
|
|
else:
|
|
a = cast(torch.Tensor(100, 90).type(t).random_())
|
|
zeros = cast(torch.Tensor().type(t)).resize_as_(a).zero_()
|
|
|
|
res_add = torch.add(zeros, -1, a)
|
|
res_neg = a.clone()
|
|
res_neg.neg_()
|
|
self.assertEqual(res_neg, res_add)
|
|
|
|
# test out of place as well
|
|
res_neg_out_place = a.clone().neg()
|
|
self.assertEqual(res_neg_out_place, res_add)
|
|
|
|
# test via __neg__ operator
|
|
res_neg_op = -a.clone()
|
|
self.assertEqual(res_neg_op, res_add)
|
|
|
|
def test_neg(self):
|
|
self._test_neg(self, lambda t: t)
|
|
|
|
def test_reciprocal(self):
|
|
a = torch.randn(100, 89)
|
|
res_div = 1 / a
|
|
res_reciprocal = a.clone()
|
|
res_reciprocal.reciprocal_()
|
|
self.assertEqual(res_reciprocal, res_div)
|
|
|
|
def test_mul(self):
|
|
m1 = torch.randn(10, 10)
|
|
res1 = m1.clone()
|
|
res1[:, 3].mul_(2)
|
|
res2 = m1.clone()
|
|
for i in range(res1.size(0)):
|
|
res2[i, 3] = res2[i, 3] * 2
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_div(self):
|
|
m1 = torch.randn(10, 10)
|
|
res1 = m1.clone()
|
|
res1[:, 3].div_(2)
|
|
res2 = m1.clone()
|
|
for i in range(m1.size(0)):
|
|
res2[i, 3] = res2[i, 3] / 2
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_fmod(self):
|
|
m1 = torch.Tensor(10, 10).uniform_(-10., 10.)
|
|
res1 = m1.clone()
|
|
q = 2.1
|
|
res1[:, 3].fmod_(q)
|
|
res2 = m1.clone()
|
|
for i in range(m1.size(1)):
|
|
res2[i, 3] = math.fmod(res2[i, 3], q)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_remainder(self):
|
|
# Check the Floating point case
|
|
m1 = torch.Tensor(10, 10).uniform_(-10., 10.)
|
|
res1 = m1.clone()
|
|
res2 = m1.clone()
|
|
qs = torch.arange(-5.1, 4.1)
|
|
# Check the case where the divisor is a simple float
|
|
for col_idx, q in enumerate(qs):
|
|
# Reference
|
|
for i in range(m1.size(0)):
|
|
res2[i, col_idx] = res2[i, col_idx] % q
|
|
# To test
|
|
res1[:, col_idx].remainder_(q)
|
|
self.assertEqual(res1, res2)
|
|
# Check the case where the divisor is a tensor
|
|
res1 = m1.clone()
|
|
res1.remainder_(qs.unsqueeze(0).expand_as(res1))
|
|
self.assertEqual(res1, res2)
|
|
|
|
# Check the LongTensor case
|
|
long_m1 = torch.LongTensor(10, 10).random_(-10, 10)
|
|
long_res1 = long_m1.clone()
|
|
long_res2 = long_m1.clone()
|
|
long_qs = torch.arange(-5, 5).long()
|
|
long_qs[5] = 5 # Can't handle the divisor=0 case
|
|
for col_idx, long_q in enumerate(long_qs):
|
|
# Reference
|
|
for i in range(long_m1.size(0)):
|
|
long_res2[i, col_idx] = long_res2[i, col_idx] % long_q
|
|
# To test
|
|
long_res1[:, col_idx].remainder_(long_q)
|
|
self.assertEqual(long_res1, long_res2)
|
|
# Divisor is a tensor case
|
|
long_res1 = long_m1.clone()
|
|
long_res1.remainder_(long_qs.unsqueeze(0).expand_as(long_res1))
|
|
|
|
def test_mm(self):
|
|
# helper function
|
|
def matrixmultiply(mat1, mat2):
|
|
n = mat1.size(0)
|
|
m = mat1.size(1)
|
|
p = mat2.size(1)
|
|
res = torch.zeros(n, p)
|
|
for i, j in iter_indices(res):
|
|
res[i, j] = sum(mat1[i, k] * mat2[k, j] for k in range(m))
|
|
return res
|
|
|
|
# contiguous case
|
|
n, m, p = 10, 10, 5
|
|
mat1 = torch.randn(n, m)
|
|
mat2 = torch.randn(m, p)
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# non contiguous case 1
|
|
n, m, p = 10, 10, 5
|
|
mat1 = torch.randn(n, m)
|
|
mat2 = torch.randn(p, m).t()
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# non contiguous case 2
|
|
n, m, p = 10, 10, 5
|
|
mat1 = torch.randn(m, n).t()
|
|
mat2 = torch.randn(m, p)
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# non contiguous case 3
|
|
n, m, p = 10, 10, 5
|
|
mat1 = torch.randn(m, n).t()
|
|
mat2 = torch.randn(p, m).t()
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
# test with zero stride
|
|
n, m, p = 10, 10, 5
|
|
mat1 = torch.randn(n, m)
|
|
mat2 = torch.randn(m, 1).expand(m, p)
|
|
res = torch.mm(mat1, mat2)
|
|
|
|
res2 = matrixmultiply(mat1, mat2)
|
|
self.assertEqual(res, res2)
|
|
|
|
@staticmethod
|
|
def _test_btrifact(self, cast):
|
|
a = torch.FloatTensor((((1.3722, -0.9020),
|
|
(1.8849, 1.9169)),
|
|
((0.7187, -1.1695),
|
|
(-0.0139, 1.3572)),
|
|
((-1.6181, 0.7148),
|
|
(1.3728, 0.1319))))
|
|
a = cast(a)
|
|
info = cast(torch.IntTensor())
|
|
a_LU = a.btrifact(info=info)
|
|
self.assertEqual(info.abs().sum(), 0)
|
|
P, a_L, a_U = torch.btriunpack(*a_LU)
|
|
a_ = torch.bmm(P, torch.bmm(a_L, a_U))
|
|
self.assertEqual(a_, a)
|
|
|
|
@skipIfNoLapack
|
|
def test_btrifact(self):
|
|
self._test_btrifact(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_btrisolve(self, cast):
|
|
a = torch.FloatTensor((((1.3722, -0.9020),
|
|
(1.8849, 1.9169)),
|
|
((0.7187, -1.1695),
|
|
(-0.0139, 1.3572)),
|
|
((-1.6181, 0.7148),
|
|
(1.3728, 0.1319))))
|
|
b = torch.FloatTensor(((4.02, 6.19),
|
|
(-1.56, 4.00),
|
|
(9.81, -4.09)))
|
|
a, b = cast(a), cast(b)
|
|
info = cast(torch.IntTensor())
|
|
LU_data, pivots = a.btrifact(info=info)
|
|
self.assertEqual(info.abs().sum(), 0)
|
|
x = torch.btrisolve(b, LU_data, pivots)
|
|
b_ = torch.bmm(a, x.unsqueeze(2)).squeeze()
|
|
self.assertEqual(b_, b)
|
|
|
|
@skipIfNoLapack
|
|
def test_btrisolve(self):
|
|
self._test_btrisolve(self, lambda t: t)
|
|
|
|
def test_bmm(self):
|
|
num_batches = 10
|
|
M, N, O = 23, 8, 12
|
|
b1 = torch.randn(num_batches, M, N)
|
|
b2 = torch.randn(num_batches, N, O)
|
|
res = torch.bmm(b1, b2)
|
|
for i in range(num_batches):
|
|
r = torch.mm(b1[i], b2[i])
|
|
self.assertEqual(r, res[i])
|
|
|
|
def test_addbmm(self):
|
|
# num_batches = 10
|
|
# M, N, O = 12, 8, 5
|
|
num_batches = 2
|
|
M, N, O = 2, 3, 4
|
|
b1 = torch.randn(num_batches, M, N)
|
|
b2 = torch.randn(num_batches, N, O)
|
|
res = torch.bmm(b1, b2)
|
|
res2 = torch.Tensor().resize_as_(res[0]).zero_()
|
|
|
|
res2.addbmm_(b1, b2)
|
|
self.assertEqual(res2, res.sum(0, False))
|
|
|
|
res2.addbmm_(1, b1, b2)
|
|
self.assertEqual(res2, res.sum(0, False) * 2)
|
|
|
|
res2.addbmm_(1., .5, b1, b2)
|
|
self.assertEqual(res2, res.sum(0, False) * 2.5)
|
|
|
|
res3 = torch.addbmm(1, res2, 0, b1, b2)
|
|
self.assertEqual(res3, res2)
|
|
|
|
res4 = torch.addbmm(1, res2, .5, b1, b2)
|
|
self.assertEqual(res4, res.sum(0, False) * 3)
|
|
|
|
res5 = torch.addbmm(0, res2, 1, b1, b2)
|
|
self.assertEqual(res5, res.sum(0, False))
|
|
|
|
res6 = torch.addbmm(.1, res2, .5, b1, b2)
|
|
self.assertEqual(res6, res2 * .1 + (res.sum(0) * .5))
|
|
|
|
def test_baddbmm(self):
|
|
num_batches = 10
|
|
M, N, O = 12, 8, 5
|
|
b1 = torch.randn(num_batches, M, N)
|
|
b2 = torch.randn(num_batches, N, O)
|
|
res = torch.bmm(b1, b2)
|
|
res2 = torch.Tensor().resize_as_(res).zero_()
|
|
|
|
res2.baddbmm_(b1, b2)
|
|
self.assertEqual(res2, res)
|
|
|
|
res2.baddbmm_(1, b1, b2)
|
|
self.assertEqual(res2, res * 2)
|
|
|
|
res2.baddbmm_(1, .5, b1, b2)
|
|
self.assertEqual(res2, res * 2.5)
|
|
|
|
res3 = torch.baddbmm(1, res2, 0, b1, b2)
|
|
self.assertEqual(res3, res2)
|
|
|
|
res4 = torch.baddbmm(1, res2, .5, b1, b2)
|
|
self.assertEqual(res4, res * 3)
|
|
|
|
res5 = torch.baddbmm(0, res2, 1, b1, b2)
|
|
self.assertEqual(res5, res)
|
|
|
|
res6 = torch.baddbmm(.1, res2, .5, b1, b2)
|
|
self.assertEqual(res6, res2 * .1 + res * .5)
|
|
|
|
def test_clamp(self):
|
|
m1 = torch.rand(100).mul(5).add(-2.5) # uniform in [-2.5, 2.5]
|
|
# just in case we're extremely lucky.
|
|
min_val = -1
|
|
max_val = 1
|
|
m1[1] = min_val
|
|
m1[2] = max_val
|
|
|
|
res1 = m1.clone()
|
|
res1.clamp_(min_val, max_val)
|
|
res2 = m1.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = max(min_val, min(max_val, res2[i]))
|
|
self.assertEqual(res1, res2)
|
|
|
|
res1 = torch.clamp(m1, min=min_val)
|
|
res2 = m1.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = max(min_val, res2[i])
|
|
self.assertEqual(res1, res2)
|
|
|
|
res1 = torch.clamp(m1, max=max_val)
|
|
res2 = m1.clone()
|
|
for i in iter_indices(res2):
|
|
res2[i] = min(max_val, res2[i])
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_pow(self):
|
|
# [res] torch.pow([res,] x)
|
|
|
|
# pow has dedicated implementation for different exponents
|
|
for exponent in [-2, -1, -0.5, 0.5, 1, 2, 3, 4]:
|
|
# base - tensor, exponent - number
|
|
# contiguous
|
|
m1 = torch.rand(100, 100) + 0.5
|
|
res1 = torch.pow(m1[4], exponent)
|
|
res2 = res1.clone().zero_()
|
|
for i in range(res2.size(0)):
|
|
res2[i] = math.pow(m1[4][i], exponent)
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.rand(100, 100) + 0.5
|
|
res1 = torch.pow(m1[:, 4], exponent)
|
|
res2 = res1.clone().zero_()
|
|
for i in range(res2.size(0)):
|
|
res2[i] = math.pow(m1[i, 4], exponent)
|
|
self.assertEqual(res1, res2)
|
|
|
|
# base - number, exponent - tensor
|
|
# contiguous
|
|
m1 = torch.randn(100, 100)
|
|
res1 = torch.pow(3, m1[4])
|
|
res2 = res1.clone().zero_()
|
|
for i in range(res2.size(0)):
|
|
res2[i] = math.pow(3, m1[4, i])
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.randn(100, 100)
|
|
res1 = torch.pow(3, m1[:, 4])
|
|
res2 = res1.clone().zero_()
|
|
for i in range(res2.size(0)):
|
|
res2[i] = math.pow(3, m1[i][4])
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_rpow(self):
|
|
m = torch.randn(10, 10)
|
|
self.assertEqual(torch.pow(2, m), 2**m)
|
|
|
|
def _test_cop(self, torchfn, mathfn):
|
|
def reference_implementation(res2):
|
|
for i, j in iter_indices(sm1):
|
|
idx1d = i * sm1.size(0) + j
|
|
res2[i, j] = mathfn(sm1[i, j], sm2[idx1d])
|
|
return res2
|
|
|
|
# contiguous
|
|
m1 = torch.randn(10, 10, 10)
|
|
m2 = torch.randn(10, 10 * 10)
|
|
sm1 = m1[4]
|
|
sm2 = m2[4]
|
|
|
|
res1 = torchfn(sm1, sm2.view(10, 10))
|
|
res2 = reference_implementation(res1.clone())
|
|
self.assertEqual(res1, res2)
|
|
|
|
# non-contiguous
|
|
m1 = torch.randn(10, 10, 10)
|
|
m2 = torch.randn(10 * 10, 10 * 10)
|
|
sm1 = m1[:, 4]
|
|
sm2 = m2[:, 4]
|
|
# view as sm1.size()
|
|
sm2.set_(sm2.storage(), sm2.storage_offset(), sm1.size(), (sm2.stride()[0] * 10, sm2.stride()[0]))
|
|
res1 = torchfn(sm1, sm2)
|
|
# reference_implementation assumes 1-d sm2
|
|
sm2.set_(sm2.storage(), sm2.storage_offset(), m2[:, 4].size(), m2[:, 4].stride())
|
|
res2 = reference_implementation(res1.clone())
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_cdiv(self):
|
|
self._test_cop(torch.div, lambda x, y: x / y)
|
|
|
|
def test_cfmod(self):
|
|
self._test_cop(torch.fmod, math.fmod)
|
|
|
|
def test_cremainder(self):
|
|
self._test_cop(torch.remainder, lambda x, y: x % y)
|
|
|
|
def test_cmul(self):
|
|
self._test_cop(torch.mul, lambda x, y: x * y)
|
|
|
|
def test_cpow(self):
|
|
self._test_cop(torch.pow, lambda x, y: float('nan') if x < 0 else math.pow(x, y))
|
|
|
|
# TODO: these tests only check if it's possible to pass a return value
|
|
# it'd be good to expand them
|
|
def test_sum(self):
|
|
x = torch.rand(100, 100)
|
|
res1 = torch.sum(x, 1)
|
|
res2 = torch.Tensor()
|
|
torch.sum(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_prod(self):
|
|
x = torch.rand(100, 100)
|
|
res1 = torch.prod(x, 1)
|
|
res2 = torch.Tensor()
|
|
torch.prod(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_cumsum(self):
|
|
x = torch.rand(100, 100)
|
|
res1 = torch.cumsum(x, 1)
|
|
res2 = torch.Tensor()
|
|
torch.cumsum(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_cumprod(self):
|
|
x = torch.rand(100, 100)
|
|
res1 = torch.cumprod(x, 1)
|
|
res2 = torch.Tensor()
|
|
torch.cumprod(x, 1, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_cross(self):
|
|
x = torch.rand(100, 3, 100)
|
|
y = torch.rand(100, 3, 100)
|
|
res1 = torch.cross(x, y)
|
|
res2 = torch.Tensor()
|
|
torch.cross(x, y, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_zeros(self):
|
|
res1 = torch.zeros(100, 100)
|
|
res2 = torch.Tensor()
|
|
torch.zeros(100, 100, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_zeros_like(self):
|
|
expected = torch.zeros(100, 100)
|
|
|
|
res1 = torch.zeros_like(expected)
|
|
self.assertEqual(res1, expected)
|
|
|
|
res2 = torch.Tensor()
|
|
torch.zeros_like(expected, out=res2)
|
|
self.assertEqual(res2, expected)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_zeros_like_cuda(self):
|
|
expected = torch.zeros(100, 100).cuda()
|
|
|
|
res1 = torch.zeros_like(expected)
|
|
self.assertEqual(res1, expected)
|
|
|
|
res2 = torch.Tensor().cuda()
|
|
torch.zeros_like(expected, out=res2)
|
|
self.assertEqual(res2, expected)
|
|
|
|
@unittest.skipIf(torch.cuda.device_count() < 2, 'only one GPU detected')
|
|
def test_zeros_like_multiple_device(self):
|
|
expected = torch.zeros(100, 100).cuda()
|
|
x = torch.cuda.FloatTensor(100, 100, device=1)
|
|
output = torch.zeros_like(x)
|
|
self.assertEqual(output, expected)
|
|
|
|
def test_histc(self):
|
|
x = torch.Tensor((2, 4, 2, 2, 5, 4))
|
|
y = torch.histc(x, 5, 1, 5) # nbins, min, max
|
|
z = torch.Tensor((0, 3, 0, 2, 1))
|
|
self.assertEqual(y, z)
|
|
|
|
def test_ones(self):
|
|
res1 = torch.ones(100, 100)
|
|
res2 = torch.Tensor()
|
|
torch.ones(100, 100, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_ones_like(self):
|
|
expected = torch.ones(100, 100)
|
|
|
|
res1 = torch.ones_like(expected)
|
|
self.assertEqual(res1, expected)
|
|
|
|
res2 = torch.Tensor()
|
|
torch.ones_like(expected, out=res2)
|
|
self.assertEqual(res2, expected)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_ones_like_cuda(self):
|
|
expected = torch.ones(100, 100).cuda()
|
|
|
|
res1 = torch.ones_like(expected)
|
|
self.assertEqual(res1, expected)
|
|
|
|
res2 = torch.Tensor().cuda()
|
|
torch.ones_like(expected, out=res2)
|
|
self.assertEqual(res2, expected)
|
|
|
|
@unittest.skipIf(torch.cuda.device_count() < 2, 'only one GPU detected')
|
|
def test_ones_like_multiple_device(self):
|
|
expected = torch.ones(100, 100).cuda()
|
|
x = torch.cuda.FloatTensor(100, 100, device=1)
|
|
output = torch.ones_like(x)
|
|
self.assertEqual(output, expected)
|
|
|
|
def test_diag(self):
|
|
x = torch.rand(100, 100)
|
|
res1 = torch.diag(x)
|
|
res2 = torch.Tensor()
|
|
torch.diag(x, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_eye(self):
|
|
res1 = torch.eye(100, 100)
|
|
res2 = torch.Tensor()
|
|
torch.eye(100, 100, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_renorm(self):
|
|
m1 = torch.randn(10, 5)
|
|
res1 = torch.Tensor()
|
|
|
|
def renorm(matrix, value, dim, max_norm):
|
|
m1 = matrix.transpose(dim, 0).contiguous()
|
|
# collapse non-dim dimensions.
|
|
m2 = m1.clone().resize_(m1.size(0), int(math.floor(m1.nelement() / m1.size(0))))
|
|
norms = m2.norm(value, 1, True)
|
|
# clip
|
|
new_norms = norms.clone()
|
|
new_norms[torch.gt(norms, max_norm)] = max_norm
|
|
new_norms.div_(norms.add_(1e-7))
|
|
# renormalize
|
|
m1.mul_(new_norms.expand_as(m1))
|
|
return m1.transpose(dim, 0)
|
|
|
|
# note that the axis fed to torch.renorm is different (2~=1)
|
|
maxnorm = m1.norm(2, 1).mean()
|
|
m2 = renorm(m1, 2, 1, maxnorm)
|
|
m1.renorm_(2, 1, maxnorm)
|
|
self.assertEqual(m1, m2, 1e-5)
|
|
self.assertEqual(m1.norm(2, 0), m2.norm(2, 0), 1e-5)
|
|
|
|
m1 = torch.randn(3, 4, 5)
|
|
m2 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
|
|
maxnorm = m2.norm(2, 0).mean()
|
|
m2 = renorm(m2, 2, 1, maxnorm)
|
|
m1.renorm_(2, 1, maxnorm)
|
|
m3 = m1.transpose(1, 2).contiguous().clone().resize_(15, 4)
|
|
self.assertEqual(m3, m2)
|
|
self.assertEqual(m3.norm(2, 0), m2.norm(2, 0))
|
|
|
|
def test_multinomial(self):
|
|
# with replacement
|
|
n_row = 3
|
|
for n_col in range(4, 5 + 1):
|
|
prob_dist = torch.rand(n_row, n_col)
|
|
prob_dist.select(1, n_col - 1).fill_(0) # index n_col shouldn't be sampled
|
|
n_sample = n_col
|
|
sample_indices = torch.multinomial(prob_dist, n_sample, True)
|
|
self.assertEqual(prob_dist.dim(), 2)
|
|
self.assertEqual(sample_indices.size(1), n_sample)
|
|
for index in product(range(n_row), range(n_sample)):
|
|
self.assertNotEqual(sample_indices[index], n_col, "sampled an index with zero probability")
|
|
|
|
# without replacement
|
|
n_row = 3
|
|
for n_col in range(4, 5 + 1):
|
|
prob_dist = torch.rand(n_row, n_col)
|
|
prob_dist.select(1, n_col - 1).fill_(0) # index n_col shouldn't be sampled
|
|
n_sample = 3
|
|
sample_indices = torch.multinomial(prob_dist, n_sample, False)
|
|
self.assertEqual(prob_dist.dim(), 2)
|
|
self.assertEqual(sample_indices.size(1), n_sample)
|
|
for i in range(n_row):
|
|
row_samples = {}
|
|
for j in range(n_sample):
|
|
sample_idx = sample_indices[i, j]
|
|
self.assertNotEqual(sample_idx, n_col - 1,
|
|
"sampled an index with zero probability")
|
|
self.assertNotIn(sample_idx, row_samples, "sampled an index twice")
|
|
row_samples[sample_idx] = True
|
|
|
|
# vector
|
|
n_col = 4
|
|
prob_dist = torch.rand(n_col)
|
|
n_sample = n_col
|
|
sample_indices = torch.multinomial(prob_dist, n_sample, True)
|
|
s_dim = sample_indices.dim()
|
|
self.assertEqual(sample_indices.dim(), 1, "wrong number of dimensions")
|
|
self.assertEqual(prob_dist.dim(), 1, "wrong number of prob_dist dimensions")
|
|
self.assertEqual(sample_indices.size(0), n_sample, "wrong number of samples")
|
|
|
|
@suppress_warnings
|
|
def test_range(self):
|
|
res1 = torch.range(0, 1)
|
|
res2 = torch.Tensor()
|
|
torch.range(0, 1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# Check range for non-contiguous tensors.
|
|
x = torch.zeros(2, 3)
|
|
torch.range(0, 3, out=x.narrow(1, 1, 2))
|
|
res2 = torch.Tensor(((0, 0, 1), (0, 2, 3)))
|
|
self.assertEqual(x, res2, 1e-16)
|
|
|
|
# Check negative
|
|
res1 = torch.Tensor((1, 0))
|
|
res2 = torch.Tensor()
|
|
torch.range(1, 0, -1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# Equal bounds
|
|
res1 = torch.ones(1)
|
|
res2 = torch.Tensor()
|
|
torch.range(1, 1, -1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
torch.range(1, 1, 1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# FloatTensor
|
|
res1 = torch.range(0.6, 0.9, 0.1, out=torch.FloatTensor())
|
|
self.assertEqual(res1.size(0), 4)
|
|
res1 = torch.range(1, 10, 0.3, out=torch.FloatTensor())
|
|
self.assertEqual(res1.size(0), 31)
|
|
|
|
# DoubleTensor
|
|
res1 = torch.range(0.6, 0.9, 0.1, out=torch.DoubleTensor())
|
|
self.assertEqual(res1.size(0), 4)
|
|
res1 = torch.range(1, 10, 0.3, out=torch.DoubleTensor())
|
|
self.assertEqual(res1.size(0), 31)
|
|
|
|
def test_arange(self):
|
|
res1 = torch.arange(0, 1)
|
|
res2 = torch.Tensor()
|
|
torch.arange(0, 1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# Check arange with only one argument
|
|
res1 = torch.arange(10)
|
|
res2 = torch.arange(0, 10)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# Check arange for non-contiguous tensors.
|
|
x = torch.zeros(2, 3)
|
|
torch.arange(0, 4, out=x.narrow(1, 1, 2))
|
|
res2 = torch.Tensor(((0, 0, 1), (0, 2, 3)))
|
|
self.assertEqual(x, res2, 1e-16)
|
|
|
|
# Check negative
|
|
res1 = torch.Tensor((1, 0))
|
|
res2 = torch.Tensor()
|
|
torch.arange(1, -1, -1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# Equal bounds
|
|
res1 = torch.ones(1)
|
|
res2 = torch.Tensor()
|
|
torch.arange(1, 0, -1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
torch.arange(1, 2, 1, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# FloatTensor
|
|
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.FloatTensor())
|
|
self.assertEqual(res1.size(0), 3)
|
|
res1 = torch.arange(1, 10, 0.3, out=torch.FloatTensor())
|
|
self.assertEqual(res1.size(0), 31)
|
|
|
|
# DoubleTensor
|
|
res1 = torch.arange(0.6, 0.89, 0.1, out=torch.DoubleTensor())
|
|
self.assertEqual(res1.size(0), 3)
|
|
res1 = torch.arange(1, 10, 0.3, out=torch.DoubleTensor())
|
|
self.assertEqual(res1.size(0), 31)
|
|
|
|
# Check that it's exclusive
|
|
r = torch.arange(0, 5)
|
|
self.assertEqual(r.min(), 0)
|
|
self.assertEqual(r.max(), 4)
|
|
self.assertEqual(r.numel(), 5)
|
|
|
|
r = torch.arange(0, 5, 2)
|
|
self.assertEqual(r.min(), 0)
|
|
self.assertEqual(r.max(), 4)
|
|
self.assertEqual(r.numel(), 3)
|
|
|
|
r1 = torch.arange(0, 5 + 1e-6)
|
|
r2 = torch.arange(0, 5)
|
|
r3 = torch.arange(0, 5 - 1e-6)
|
|
self.assertEqual(r1[:-1], r2, 0)
|
|
self.assertEqual(r2, r3, 0)
|
|
|
|
r1 = torch.arange(10, -1 + 1e-6, -1)
|
|
r2 = torch.arange(10, -1, -1)
|
|
r3 = torch.arange(10, -1 - 1e-6, -1)
|
|
self.assertEqual(r1, r2, 0)
|
|
self.assertEqual(r2, r3[:-1], 0)
|
|
|
|
@staticmethod
|
|
def _select_broadcastable_dims(dims_full=None):
|
|
# select full dimensionality
|
|
if dims_full is None:
|
|
dims_full = []
|
|
ndims = random.randint(1, 4)
|
|
dims_full = [random.randint(1, 8) for _ in range(ndims)]
|
|
else:
|
|
ndims = len(dims_full)
|
|
|
|
# select actual dimensions for ops:
|
|
# larger: full ndims, individual sizes may be reduced
|
|
# smaller: possibly reduced ndims, sizes may be reduced
|
|
smaller_ndims = random.randint(1, ndims)
|
|
dims_small = []
|
|
dims_large = []
|
|
for i in range(ndims - 1, -1, -1):
|
|
j = random.randint(1, 3)
|
|
if j == 1: # no reduced singleton dimension
|
|
ds = dims_full[i]
|
|
dl = dims_full[i]
|
|
elif j == 2: # larger may have reduced singleton dimension
|
|
ds = dims_full[i]
|
|
dl = 1 if len(dims_small) < smaller_ndims else dims_full[i]
|
|
elif j == 3: # smaller may have reduced singleton dimension
|
|
ds = 1
|
|
dl = dims_full[i]
|
|
dims_large = [dl] + dims_large
|
|
if len(dims_small) < smaller_ndims:
|
|
dims_small = [ds] + dims_small
|
|
return (dims_small, dims_large, dims_full)
|
|
|
|
@staticmethod
|
|
def _test_broadcast(self, cast):
|
|
|
|
# all functions
|
|
fns = {
|
|
"dist", "atan2", "pow", "lerp", "add",
|
|
"sub", "mul", "div", "fmod", "remainder",
|
|
"eq", "ge", "gt", "le", "lt", "max", "min", "ne",
|
|
"addcdiv", "addcmul", "masked_scatter", "masked_select", "masked_fill",
|
|
"map", "map2", "copy"
|
|
}
|
|
# functions with three tensor arguments
|
|
fns_3_args = {"addcdiv", "addcmul", "map2"}
|
|
|
|
for fn in fns:
|
|
(dims_small, dims_large, dims_full) = self._select_broadcastable_dims()
|
|
small = cast(torch.randn(*dims_small).float())
|
|
large = cast(torch.randn(*dims_large).float())
|
|
small_expanded = small.expand(*dims_full)
|
|
large_expanded = large.expand(*dims_full)
|
|
small2 = None
|
|
small2_expanded = None
|
|
if fn in fns_3_args:
|
|
# create another smaller tensor
|
|
(dims_small2, _, _) = self._select_broadcastable_dims(dims_full)
|
|
small2 = cast(torch.randn(*dims_small2).float())
|
|
small2_expanded = small2.expand(*dims_full)
|
|
|
|
if hasattr(large_expanded, fn):
|
|
# run through tensor versions of functions
|
|
# and verify fully expanded inputs give same results
|
|
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
|
|
|
|
def tensorfn(myfn, t1, t2):
|
|
if fn == "lerp":
|
|
return myfn(t1, 0.5)
|
|
elif fn == "masked_select":
|
|
return myfn(t1 < 0)
|
|
elif fn in fns_3_args:
|
|
return myfn(1, t1, t2)
|
|
else:
|
|
return myfn(t1)
|
|
|
|
# test various orders
|
|
for first, second, third in [(large, small, small2), (small, large, small2),
|
|
(small2, small, large), (small2, large, small)]:
|
|
if first is None:
|
|
break # ignore last iter when small2 is None
|
|
method_expanded = getattr(expanded[first], fn)
|
|
method = getattr(first, fn)
|
|
r1 = tensorfn(method_expanded, expanded[second], expanded[third])
|
|
r2 = tensorfn(method, second, third)
|
|
self.assertEqual(r1, r2)
|
|
|
|
# now for torch. versions of functions
|
|
if hasattr(torch, fn):
|
|
fntorch = getattr(torch, fn)
|
|
expanded = {large: large_expanded, small: small_expanded, small2: small2_expanded}
|
|
|
|
def torchfn(t1, t2, t3):
|
|
if fn == "lerp":
|
|
return fntorch(t1, t2, 0.5)
|
|
elif fn == "masked_select":
|
|
return fntorch(t1, t2 < 0)
|
|
elif fn in fns_3_args:
|
|
return fntorch(t1, 1.0, t2, t3)
|
|
else:
|
|
return fntorch(t1, t2)
|
|
|
|
# test various orders
|
|
for first, second, third in [(large, small, small2), (small, large, small2),
|
|
(small2, small, large), (small2, large, small)]:
|
|
if first is None:
|
|
break # ignore last iter when small2 is None
|
|
r1 = torchfn(expanded[first], expanded[second], expanded[third])
|
|
r2 = torchfn(first, second, third)
|
|
self.assertEqual(r1, r2)
|
|
|
|
# now for in place functions
|
|
# in-place tensor is not broadcastable; test only guaranteed
|
|
# to work by broadcasting other argument(s)
|
|
if not hasattr(large_expanded, fn + "_"):
|
|
continue
|
|
|
|
# need to clone largeExpanded so we can reuse, since functions are in-place
|
|
large_expanded_clone = large_expanded.clone()
|
|
|
|
def tensorfn_inplace(t0, t1, t2=None):
|
|
t0_fn = getattr(t0, fn + "_")
|
|
if fn == "lerp":
|
|
return t0_fn(t1, 0.5)
|
|
elif fn == "masked_scatter":
|
|
return t0_fn(t1 < 0.5, cast(torch.arange(1, t0.nelement() + 1).float()))
|
|
elif fn == "masked_fill":
|
|
return t0_fn(t1 < 0.5, 1.0)
|
|
elif fn == "map":
|
|
return t0_fn(t1, lambda x, y: x + y)
|
|
elif fn == "map2":
|
|
return t0_fn(t1, t2, lambda x, y, z: x + y + z)
|
|
elif fn in fns_3_args:
|
|
return t0_fn(1.0, t1, t2)
|
|
else:
|
|
return t0_fn(t1)
|
|
r1 = tensorfn_inplace(large_expanded, small_expanded, small2_expanded)
|
|
r2 = tensorfn_inplace(large_expanded_clone, small, small2)
|
|
# in-place pointwise operations don't actually work if the in-place
|
|
# tensor is 0-strided (numpy has the same issue)
|
|
if (0 not in large_expanded.stride() and 0 not in large_expanded_clone.stride()):
|
|
self.assertEqual(r1, r2)
|
|
|
|
def broadcastable(t0, t1, t2=None):
|
|
try:
|
|
t1.expand_as(t0)
|
|
if t2 is not None:
|
|
t2.expand_as(t0)
|
|
except RuntimeError:
|
|
return False
|
|
return True
|
|
|
|
def _test_in_place_broadcastable(t0, t1, t2=None):
|
|
if not broadcastable(t0, t1, t2):
|
|
same_size = t0.numel() == t1.numel() and (t0.numel() == t2.numel() if t2 is not None else True)
|
|
if not same_size:
|
|
self.assertRaises(RuntimeError, lambda: tensorfn_inplace(t0, t1, t2))
|
|
else:
|
|
tensorfn_inplace(t0, t1, t2)
|
|
|
|
if fn not in fns_3_args:
|
|
_test_in_place_broadcastable(small, large_expanded)
|
|
_test_in_place_broadcastable(small, large)
|
|
else:
|
|
_test_in_place_broadcastable(small2, small_expanded, large_expanded)
|
|
_test_in_place_broadcastable(small2, small, large)
|
|
|
|
def test_broadcast(self):
|
|
self._test_broadcast(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_contiguous(self, cast):
|
|
x = cast(torch.randn(1, 16, 5, 5))
|
|
self.assertTrue(x.is_contiguous())
|
|
stride = list(x.stride())
|
|
stride[0] = 20
|
|
# change the stride in dimension 0. the tensor is still contiguous because size[0] is 1
|
|
x.set_(x.storage(), 0, x.size(), stride)
|
|
self.assertTrue(x.is_contiguous())
|
|
|
|
def test_contiguous(self):
|
|
return self._test_contiguous(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_broadcast_fallback(self, cast):
|
|
# functions that should fallback to pointwise behavior
|
|
fns_fallback = {"add", "sub", "div", "mul", "pow", "fmod", "remainder",
|
|
"eq", "ge", "gt", "le", "lt", "max", "min", "ne",
|
|
"addcdiv", "addcmul", "masked_scatter", "masked_select", "masked_fill",
|
|
"map", "map2", "copy", "dist", "atan2", "lerp"}
|
|
# functions with three tensor arguments
|
|
fns_3_args = {"addcdiv", "addcmul", "map2"}
|
|
# functions that don't broadcast result size_ -- don't check result shape but
|
|
# still run functions to verify that broadcastable arguments don't error out
|
|
fns_no_result_broadcast = {"masked_select"}
|
|
|
|
for fn in fns_fallback:
|
|
# case 1: both broadcastable and nElems equal -- verify that we broadcast
|
|
t0 = cast(torch.randn(1, 4).float())
|
|
t1 = cast(torch.randn(4, 1).float())
|
|
t2 = cast(torch.randn(4).float())
|
|
broadcast_size = torch.Size([4, 4])
|
|
if not hasattr(t0, fn):
|
|
continue
|
|
t0_fn = getattr(t0, fn)
|
|
t1_fn = getattr(t1, fn)
|
|
|
|
def tensorfn(myfn, t1, t2):
|
|
if fn == "lerp":
|
|
return myfn(t1, 0.5)
|
|
elif fn == "masked_scatter":
|
|
return myfn(t1 < 0.5, cast(torch.randn(4 * 4).float()))
|
|
elif fn == "masked_fill":
|
|
return myfn(t1 < 0.5, 1.0)
|
|
elif fn == "masked_select":
|
|
return myfn(t1 < 0.5)
|
|
elif fn == "map":
|
|
return myfn(t1, lambda x, y: x + y)
|
|
elif fn == "map2":
|
|
return myfn(t1, t2, lambda x, y, z: x + y + z)
|
|
elif fn in fns_3_args:
|
|
return myfn(1.0, t1, t2)
|
|
else:
|
|
return myfn(t1)
|
|
r0 = tensorfn(t0_fn, t1, t2)
|
|
r1 = tensorfn(t1_fn, t0, t2)
|
|
if torch.is_tensor(r0) and fn not in fns_no_result_broadcast:
|
|
self.assertEqual(broadcast_size, r0.size())
|
|
self.assertEqual(broadcast_size, r1.size())
|
|
|
|
# case 2: broadcastable and not nElemes equal -- tested by test_fallback
|
|
|
|
# case 3: not broadcastable nElems equal -- verify we fallback
|
|
for inplace in False, True:
|
|
t0 = cast(torch.randn(1, 6).float())
|
|
t1 = cast(torch.randn(2, 3).float())
|
|
t2 = cast(torch.randn(3, 2).float())
|
|
if not hasattr(t0, fn if not inplace else fn + "_"):
|
|
continue
|
|
t0_fn = getattr(t0, fn if not inplace else fn + "_")
|
|
t1_fn = getattr(t1, fn if not inplace else fn + "_")
|
|
t2_fn = getattr(t2, fn if not inplace else fn + "_")
|
|
|
|
def verify_fallback_warnings(w):
|
|
self.assertEqual(len(w), 1)
|
|
self.assertTrue(issubclass(w[0].category, UserWarning))
|
|
self.assertTrue("Falling back" in str(w[0].message))
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter('always', UserWarning)
|
|
r0 = tensorfn(t0_fn, t1, t2)
|
|
verify_fallback_warnings(w)
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter('always', UserWarning)
|
|
r1 = tensorfn(t1_fn, t0, t2)
|
|
verify_fallback_warnings(w)
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter('always', UserWarning)
|
|
r2 = tensorfn(t2_fn, t0, t1)
|
|
verify_fallback_warnings(w)
|
|
if torch.is_tensor(r0) and fn not in fns_no_result_broadcast:
|
|
self.assertEqual(t0.size(), r0.size())
|
|
self.assertEqual(t1.size(), r1.size())
|
|
self.assertEqual(t2.size(), r2.size())
|
|
|
|
# case 4: not broadcastable and not nEleme equal -- tested by test_fallback
|
|
|
|
def test_broadcast_fallback(self):
|
|
self._test_broadcast_fallback(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_broadcast_fused_matmul(self, cast):
|
|
fns = ["baddbmm", "addbmm", "addmm", "addmv", "addr"]
|
|
|
|
for fn in fns:
|
|
batch_dim = random.randint(1, 8)
|
|
n_dim = random.randint(1, 8)
|
|
m_dim = random.randint(1, 8)
|
|
p_dim = random.randint(1, 8)
|
|
|
|
def dims_full_for_fn():
|
|
if fn == "baddbmm":
|
|
return ([batch_dim, n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
|
|
elif fn == "addbmm":
|
|
return ([n_dim, p_dim], [batch_dim, n_dim, m_dim], [batch_dim, m_dim, p_dim])
|
|
elif fn == "addmm":
|
|
return ([n_dim, p_dim], [n_dim, m_dim], [m_dim, p_dim])
|
|
elif fn == "addmv":
|
|
return ([n_dim], [n_dim, m_dim], [m_dim])
|
|
elif fn == "addr":
|
|
return ([n_dim, m_dim], [n_dim], [m_dim])
|
|
else:
|
|
raise AssertionError("unknown function")
|
|
|
|
(t0_dims_full, t1_dims, t2_dims) = dims_full_for_fn()
|
|
(t0_dims_small, _, _) = self._select_broadcastable_dims(t0_dims_full)
|
|
|
|
t0_small = cast(torch.randn(*t0_dims_small).float())
|
|
t1 = cast(torch.randn(*t1_dims).float())
|
|
t2 = cast(torch.randn(*t2_dims).float())
|
|
|
|
t0_full = cast(t0_small.expand(*t0_dims_full))
|
|
|
|
fntorch = getattr(torch, fn)
|
|
r0 = fntorch(t0_small, t1, t2)
|
|
r1 = fntorch(t0_full, t1, t2)
|
|
self.assertEqual(r0, r1)
|
|
|
|
def test_broadcast_fused_matmul(self):
|
|
self._test_broadcast_fused_matmul(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_broadcast_batched_matmul(self, cast):
|
|
n_dim = random.randint(1, 8)
|
|
m_dim = random.randint(1, 8)
|
|
p_dim = random.randint(1, 8)
|
|
full_batch_dims = [random.randint(1, 3) for i in range(random.randint(1, 3))]
|
|
(batch_dims_small, _, _) = self._select_broadcastable_dims(full_batch_dims)
|
|
|
|
def verify_batched_matmul(full_lhs, one_dimensional):
|
|
if not one_dimensional:
|
|
lhs_dims = [n_dim, m_dim]
|
|
rhs_dims = [m_dim, p_dim]
|
|
result_dims = [n_dim, p_dim]
|
|
else:
|
|
lhs_dims = [n_dim, m_dim] if full_lhs else [m_dim]
|
|
rhs_dims = [m_dim, p_dim] if not full_lhs else [m_dim]
|
|
result_dims = [n_dim] if full_lhs else [p_dim]
|
|
|
|
lhs_mat_dims = lhs_dims if len(lhs_dims) != 1 else [1, m_dim]
|
|
rhs_mat_dims = rhs_dims if len(rhs_dims) != 1 else [m_dim, 1]
|
|
full_mat_dims = lhs_mat_dims if full_lhs else rhs_mat_dims
|
|
dim0_dims = rhs_dims if full_lhs else lhs_dims
|
|
small_dims = batch_dims_small + (rhs_mat_dims if full_lhs else lhs_mat_dims)
|
|
|
|
small = cast(torch.randn(*(small_dims)).float())
|
|
dim0 = cast(torch.randn(*(dim0_dims)).float())
|
|
full = cast(torch.randn(*(full_batch_dims + full_mat_dims)).float())
|
|
if not one_dimensional:
|
|
(lhsTensors, rhsTensors) = ((full,), (small, dim0)) if full_lhs else ((small, dim0), (full,))
|
|
else:
|
|
(lhsTensors, rhsTensors) = ((full,), (dim0,)) if full_lhs else ((dim0,), (full,))
|
|
|
|
def maybe_squeeze_result(l, r, result):
|
|
if len(lhs_dims) == 1 and l.dim() != 1:
|
|
return result.squeeze(-2)
|
|
elif len(rhs_dims) == 1 and r.dim() != 1:
|
|
return result.squeeze(-1)
|
|
else:
|
|
return result
|
|
|
|
for lhs in lhsTensors:
|
|
lhs_expanded = lhs.expand(*(torch.Size(full_batch_dims) + torch.Size(lhs_mat_dims)))
|
|
lhs_expanded_matmul_fn = getattr(lhs_expanded, "matmul")
|
|
for rhs in rhsTensors:
|
|
rhs_expanded = ((rhs if len(rhs_dims) != 1 else rhs.unsqueeze(-1)).
|
|
expand(*(torch.Size(full_batch_dims) + torch.Size(rhs_mat_dims))))
|
|
truth = maybe_squeeze_result(lhs_expanded, rhs_expanded, lhs_expanded_matmul_fn(rhs_expanded))
|
|
for l in (lhs, lhs_expanded):
|
|
for r in (rhs, rhs_expanded):
|
|
l_matmul_fn = getattr(l, "matmul")
|
|
result = maybe_squeeze_result(l, r, l_matmul_fn(r))
|
|
self.assertEqual(truth, result)
|
|
# test torch.matmul function as well
|
|
torch_result = maybe_squeeze_result(l, r, torch.matmul(l, r))
|
|
self.assertEqual(truth, torch_result)
|
|
|
|
# compare to bmm
|
|
bmm_result = (torch.bmm(lhs_expanded.contiguous().view(-1, *lhs_mat_dims),
|
|
rhs_expanded.contiguous().view(-1, *rhs_mat_dims)))
|
|
self.assertEqual(truth.view(-1, *result_dims), bmm_result.view(-1, *result_dims))
|
|
|
|
for indices in product((True, False), repeat=2):
|
|
verify_batched_matmul(*indices)
|
|
|
|
def test_broadcast_batched_matmul(self):
|
|
self._test_broadcast_batched_matmul(self, lambda t: t)
|
|
|
|
def test_matmul_out(self):
|
|
|
|
def check_matmul(size1, size2):
|
|
a = torch.randn(size1)
|
|
b = torch.randn(size2)
|
|
expected = torch.matmul(a, b)
|
|
|
|
out = torch.Tensor(expected.size()).zero_()
|
|
# make output non-contiguous
|
|
out = out.transpose(-1, -2).contiguous().transpose(-1, -2)
|
|
self.assertFalse(out.is_contiguous())
|
|
|
|
torch.matmul(a, b, out=out)
|
|
self.assertEqual(expected, out)
|
|
|
|
check_matmul((2, 3, 4), (2, 4, 5))
|
|
check_matmul((2, 3, 4), (4, 5))
|
|
|
|
def test_broadcast_copy_fn(self):
|
|
torch.zeros(5, 6).copy_(torch.zeros(6))
|
|
|
|
def verify_fallback_warnings(w):
|
|
self.assertEqual(len(w), 1)
|
|
self.assertTrue(issubclass(w[0].category, UserWarning))
|
|
self.assertTrue("Falling back" in str(w[0].message))
|
|
|
|
# suppress broadcastable warning
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.simplefilter('always', UserWarning)
|
|
torch.zeros(5, 6).copy_(torch.zeros(30), broadcast=True)
|
|
verify_fallback_warnings(w)
|
|
|
|
def test_randperm(self):
|
|
_RNGState = torch.get_rng_state()
|
|
res1 = torch.randperm(100)
|
|
res2 = torch.LongTensor()
|
|
torch.set_rng_state(_RNGState)
|
|
torch.randperm(100, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
def test_random(self):
|
|
# This test is flaky with p<=(2/(ub-lb))^200=6e-36
|
|
t = torch.FloatTensor(200)
|
|
lb = 1
|
|
ub = 4
|
|
|
|
t.fill_(-1)
|
|
t.random_(lb, ub)
|
|
self.assertEqual(t.min(), lb)
|
|
self.assertEqual(t.max(), ub - 1)
|
|
|
|
t.fill_(-1)
|
|
t.random_(ub)
|
|
self.assertEqual(t.min(), 0)
|
|
self.assertEqual(t.max(), ub - 1)
|
|
|
|
def assertIsOrdered(self, order, x, mxx, ixx, task):
|
|
SIZE = 4
|
|
if order == 'descending':
|
|
def check_order(a, b):
|
|
return a >= b
|
|
elif order == 'ascending':
|
|
def check_order(a, b):
|
|
return a <= b
|
|
else:
|
|
error('unknown order "{}", must be "ascending" or "descending"'.format(order))
|
|
|
|
are_ordered = True
|
|
for j, k in product(range(SIZE), range(1, SIZE)):
|
|
self.assertTrue(check_order(mxx[j][k - 1], mxx[j][k]),
|
|
'torch.sort ({}) values unordered for {}'.format(order, task))
|
|
|
|
seen = set()
|
|
indicesCorrect = True
|
|
size = x.size(x.dim() - 1)
|
|
for k in range(size):
|
|
seen.clear()
|
|
for j in range(size):
|
|
self.assertEqual(x[k][ixx[k][j]], mxx[k][j],
|
|
'torch.sort ({}) indices wrong for {}'.format(order, task))
|
|
seen.add(ixx[k][j])
|
|
self.assertEqual(len(seen), size)
|
|
|
|
def test_sort(self):
|
|
SIZE = 4
|
|
x = torch.rand(SIZE, SIZE)
|
|
res1val, res1ind = torch.sort(x)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.Tensor()
|
|
res2ind = torch.LongTensor()
|
|
torch.sort(x, out=(res2val, res2ind))
|
|
self.assertEqual(res1val, res2val, 0)
|
|
self.assertEqual(res1ind, res2ind, 0)
|
|
|
|
# Test sorting of random numbers
|
|
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random')
|
|
|
|
# Test simple sort
|
|
self.assertEqual(
|
|
torch.sort(torch.Tensor((50, 40, 30, 20, 10)))[0],
|
|
torch.Tensor((10, 20, 30, 40, 50)),
|
|
0
|
|
)
|
|
|
|
# Test that we still have proper sorting with duplicate keys
|
|
x = torch.floor(torch.rand(SIZE, SIZE) * 10)
|
|
torch.sort(x, out=(res2val, res2ind))
|
|
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys')
|
|
|
|
# DESCENDING SORT
|
|
x = torch.rand(SIZE, SIZE)
|
|
res1val, res1ind = torch.sort(x, x.dim() - 1, True)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.Tensor()
|
|
res2ind = torch.LongTensor()
|
|
torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind))
|
|
self.assertEqual(res1val, res2val, 0)
|
|
self.assertEqual(res1ind, res2ind, 0)
|
|
|
|
# Test sorting of random numbers
|
|
self.assertIsOrdered('descending', x, res2val, res2ind, 'random')
|
|
|
|
# Test simple sort task
|
|
self.assertEqual(
|
|
torch.sort(torch.Tensor((10, 20, 30, 40, 50)), 0, True)[0],
|
|
torch.Tensor((50, 40, 30, 20, 10)),
|
|
0
|
|
)
|
|
|
|
# Test that we still have proper sorting with duplicate keys
|
|
self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys')
|
|
|
|
def test_topk(self):
|
|
def topKViaSort(t, k, dim, dir):
|
|
sorted, indices = t.sort(dim, dir)
|
|
return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k)
|
|
|
|
def compareTensors(t, res1, ind1, res2, ind2, dim):
|
|
# Values should be exactly equivalent
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
# Indices might differ based on the implementation, since there is
|
|
# no guarantee of the relative order of selection
|
|
if not ind1.eq(ind2).all():
|
|
# To verify that the indices represent equivalent elements,
|
|
# gather from the input using the topk indices and compare against
|
|
# the sort indices
|
|
vals = t.gather(dim, ind2)
|
|
self.assertEqual(res1, vals, 0)
|
|
|
|
def compare(t, k, dim, dir):
|
|
topKVal, topKInd = t.topk(k, dim, dir, True)
|
|
sortKVal, sortKInd = topKViaSort(t, k, dim, dir)
|
|
compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim)
|
|
|
|
t = torch.rand(random.randint(1, SIZE),
|
|
random.randint(1, SIZE),
|
|
random.randint(1, SIZE))
|
|
|
|
for _kTries in range(3):
|
|
for _dimTries in range(3):
|
|
for transpose in (True, False):
|
|
for dir in (True, False):
|
|
testTensor = t
|
|
if transpose:
|
|
dim1 = random.randrange(t.ndimension())
|
|
dim2 = dim1
|
|
while dim1 == dim2:
|
|
dim2 = random.randrange(t.ndimension())
|
|
|
|
testTensor = t.transpose(dim1, dim2)
|
|
|
|
dim = random.randrange(testTensor.ndimension())
|
|
k = random.randint(1, testTensor.size(dim))
|
|
compare(testTensor, k, dim, dir)
|
|
|
|
def test_topk_arguments(self):
|
|
q = torch.randn(10, 2, 10)
|
|
# Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1)
|
|
self.assertRaises(TypeError, lambda: q.topk(4, True))
|
|
|
|
def test_kthvalue(self):
|
|
SIZE = 50
|
|
x = torch.rand(SIZE, SIZE, SIZE)
|
|
x0 = x.clone()
|
|
|
|
k = random.randint(1, SIZE)
|
|
res1val, res1ind = torch.kthvalue(x, k, False)
|
|
res2val, res2ind = torch.sort(x)
|
|
|
|
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
|
|
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
|
|
# test use of result tensors
|
|
k = random.randint(1, SIZE)
|
|
res1val = torch.Tensor()
|
|
res1ind = torch.LongTensor()
|
|
torch.kthvalue(x, k, False, out=(res1val, res1ind))
|
|
res2val, res2ind = torch.sort(x)
|
|
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], 0)
|
|
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], 0)
|
|
|
|
# test non-default dim
|
|
k = random.randint(1, SIZE)
|
|
res1val, res1ind = torch.kthvalue(x, k, 0, False)
|
|
res2val, res2ind = torch.sort(x, 0)
|
|
self.assertEqual(res1val, res2val[k - 1], 0)
|
|
self.assertEqual(res1ind, res2ind[k - 1], 0)
|
|
|
|
# non-contiguous
|
|
y = x.narrow(1, 0, 1)
|
|
y0 = y.contiguous()
|
|
k = random.randint(1, SIZE)
|
|
res1val, res1ind = torch.kthvalue(y, k)
|
|
res2val, res2ind = torch.kthvalue(y0, k)
|
|
self.assertEqual(res1val, res2val, 0)
|
|
self.assertEqual(res1ind, res2ind, 0)
|
|
|
|
# check that the input wasn't modified
|
|
self.assertEqual(x, x0, 0)
|
|
|
|
# simple test case (with repetitions)
|
|
y = torch.Tensor((3, 5, 4, 1, 1, 5))
|
|
self.assertEqual(torch.kthvalue(y, 3)[0], torch.Tensor((3,)), 0)
|
|
self.assertEqual(torch.kthvalue(y, 2)[0], torch.Tensor((1,)), 0)
|
|
|
|
def test_median(self):
|
|
for size in (155, 156):
|
|
x = torch.rand(size, size)
|
|
x0 = x.clone()
|
|
|
|
nelem = x.nelement()
|
|
res1val = torch.median(x)
|
|
res2val, _ = torch.sort(x.view(nelem))
|
|
ind = int(math.floor((nelem + 1) / 2) - 1)
|
|
|
|
self.assertEqual(res2val[ind], res1val, 0)
|
|
|
|
res1val, res1ind = torch.median(x, dim=1, keepdim=False)
|
|
res2val, res2ind = torch.sort(x)
|
|
ind = int(math.floor((size + 1) / 2) - 1)
|
|
|
|
self.assertEqual(res2val.select(1, ind), res1val, 0)
|
|
self.assertEqual(res2val.select(1, ind), res1val, 0)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.Tensor()
|
|
res2ind = torch.LongTensor()
|
|
torch.median(x, keepdim=False, out=(res2val, res2ind))
|
|
self.assertEqual(res2val, res1val, 0)
|
|
self.assertEqual(res2ind, res1ind, 0)
|
|
|
|
# Test non-default dim
|
|
res1val, res1ind = torch.median(x, 0, keepdim=False)
|
|
res2val, res2ind = torch.sort(x, 0)
|
|
self.assertEqual(res1val, res2val[ind], 0)
|
|
self.assertEqual(res1ind, res2ind[ind], 0)
|
|
|
|
# input unchanged
|
|
self.assertEqual(x, x0, 0)
|
|
|
|
def test_mode(self):
|
|
x = torch.arange(1, SIZE * SIZE + 1).clone().resize_(SIZE, SIZE)
|
|
x[:2] = 1
|
|
x[:, :2] = 1
|
|
x0 = x.clone()
|
|
|
|
# Pre-calculated results.
|
|
res1val = torch.Tensor(SIZE).fill_(1)
|
|
# The indices are the position of the last appearance of the mode element.
|
|
res1ind = torch.LongTensor(SIZE).fill_(1)
|
|
res1ind[0] = SIZE - 1
|
|
res1ind[1] = SIZE - 1
|
|
|
|
res2val, res2ind = torch.mode(x, keepdim=False)
|
|
self.assertEqual(res1val, res2val, 0)
|
|
self.assertEqual(res1ind, res2ind, 0)
|
|
|
|
# Test use of result tensor
|
|
res2val = torch.Tensor()
|
|
res2ind = torch.LongTensor()
|
|
torch.mode(x, keepdim=False, out=(res2val, res2ind))
|
|
self.assertEqual(res1val, res2val, 0)
|
|
self.assertEqual(res1ind, res2ind, 0)
|
|
|
|
# Test non-default dim
|
|
res2val, res2ind = torch.mode(x, 0, False)
|
|
self.assertEqual(res1val, res2val, 0)
|
|
self.assertEqual(res1ind, res2ind, 0)
|
|
|
|
# input unchanged
|
|
self.assertEqual(x, x0, 0)
|
|
|
|
def test_tril(self):
|
|
x = torch.rand(SIZE, SIZE)
|
|
res1 = torch.tril(x)
|
|
res2 = torch.Tensor()
|
|
torch.tril(x, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
def test_triu(self):
|
|
x = torch.rand(SIZE, SIZE)
|
|
res1 = torch.triu(x)
|
|
res2 = torch.Tensor()
|
|
torch.triu(x, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
|
|
def test_cat(self):
|
|
SIZE = 10
|
|
for dim in range(-3, 3):
|
|
pos_dim = dim if dim >= 0 else 3 + dim
|
|
x = torch.rand(13, SIZE, SIZE).transpose(0, pos_dim)
|
|
y = torch.rand(17, SIZE, SIZE).transpose(0, pos_dim)
|
|
z = torch.rand(19, SIZE, SIZE).transpose(0, pos_dim)
|
|
|
|
res1 = torch.cat((x, y, z), dim)
|
|
self.assertEqual(res1.narrow(pos_dim, 0, 13), x, 0)
|
|
self.assertEqual(res1.narrow(pos_dim, 13, 17), y, 0)
|
|
self.assertEqual(res1.narrow(pos_dim, 30, 19), z, 0)
|
|
|
|
x = torch.randn(20, SIZE, SIZE)
|
|
self.assertEqual(torch.cat(torch.split(x, 7)), x)
|
|
self.assertEqual(torch.cat(torch.chunk(x, 7)), x)
|
|
|
|
y = torch.randn(1, SIZE, SIZE)
|
|
z = torch.cat([x, y])
|
|
self.assertEqual(z.size(), (21, SIZE, SIZE))
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.cat([]))
|
|
|
|
def test_stack(self):
|
|
x = torch.rand(2, 3, 4)
|
|
y = torch.rand(2, 3, 4)
|
|
z = torch.rand(2, 3, 4)
|
|
for dim in range(4):
|
|
res = torch.stack((x, y, z), dim)
|
|
res_neg = torch.stack((x, y, z), dim - 4)
|
|
expected_size = x.size()[:dim] + (3,) + x.size()[dim:]
|
|
self.assertEqual(res, res_neg)
|
|
self.assertEqual(res.size(), expected_size)
|
|
self.assertEqual(res.select(dim, 0), x, 0)
|
|
self.assertEqual(res.select(dim, 1), y, 0)
|
|
self.assertEqual(res.select(dim, 2), z, 0)
|
|
|
|
def test_unbind(self):
|
|
x = torch.rand(2, 3, 4, 5)
|
|
for dim in range(4):
|
|
res = torch.unbind(x, dim)
|
|
self.assertEqual(x.size(dim), len(res))
|
|
for i in range(dim):
|
|
self.assertEqual(x.select(dim, i), res[i])
|
|
|
|
def test_linspace(self):
|
|
_from = random.random()
|
|
to = _from + random.random()
|
|
res1 = torch.linspace(_from, to, 137)
|
|
res2 = torch.Tensor()
|
|
torch.linspace(_from, to, 137, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, 1))
|
|
self.assertEqual(torch.linspace(0, 0, 1), torch.zeros(1), 0)
|
|
|
|
# Check linspace for generating with start > end.
|
|
self.assertEqual(torch.linspace(2, 0, 3), torch.Tensor((2, 1, 0)), 0)
|
|
|
|
# Check linspace for non-contiguous tensors.
|
|
x = torch.zeros(2, 3)
|
|
y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2))
|
|
self.assertEqual(x, torch.Tensor(((0, 0, 1), (0, 2, 3))), 0)
|
|
|
|
def test_logspace(self):
|
|
_from = random.random()
|
|
to = _from + random.random()
|
|
res1 = torch.logspace(_from, to, 137)
|
|
res2 = torch.Tensor()
|
|
torch.logspace(_from, to, 137, out=res2)
|
|
self.assertEqual(res1, res2, 0)
|
|
self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, 1))
|
|
self.assertEqual(torch.logspace(0, 0, 1), torch.ones(1), 0)
|
|
|
|
# Check logspace_ for generating with start > end.
|
|
self.assertEqual(torch.logspace(1, 0, 2), torch.Tensor((10, 1)), 0)
|
|
|
|
# Check logspace_ for non-contiguous tensors.
|
|
x = torch.zeros(2, 3)
|
|
y = torch.logspace(0, 3, 4, out=x.narrow(1, 1, 2))
|
|
self.assertEqual(x, torch.Tensor(((0, 1, 10), (0, 100, 1000))), 0)
|
|
|
|
def test_rand(self):
|
|
torch.manual_seed(123456)
|
|
res1 = torch.rand(SIZE, SIZE)
|
|
res2 = torch.Tensor()
|
|
torch.manual_seed(123456)
|
|
torch.rand(SIZE, SIZE, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_randn(self):
|
|
torch.manual_seed(123456)
|
|
res1 = torch.randn(SIZE, SIZE)
|
|
res2 = torch.Tensor()
|
|
torch.manual_seed(123456)
|
|
torch.randn(SIZE, SIZE, out=res2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_slice(self):
|
|
# TODO: remove the Variable wrapper once we merge Variable and Tensor
|
|
from torch.autograd import Variable
|
|
empty = Variable(torch.Tensor())
|
|
x = Variable(torch.arange(0, 16).view(4, 4))
|
|
self.assertEqual(x.slice(), x)
|
|
self.assertEqual(x.slice(0, 4), x)
|
|
# start and stop are clamped to the size of dim
|
|
self.assertEqual(x.slice(0, 5), x)
|
|
# if start >= stop then the result is empty
|
|
self.assertEqual(x.slice(2, 1), empty)
|
|
self.assertEqual(x.slice(2, 2), empty)
|
|
# out of bounds is also empty
|
|
self.assertEqual(x.slice(10, 12), empty)
|
|
# additional correctness checks
|
|
self.assertEqual(x.slice(0, 1).data.tolist(), [[0, 1, 2, 3]])
|
|
self.assertEqual(x.slice(0, -3).data.tolist(), [[0, 1, 2, 3]])
|
|
self.assertEqual(x.slice(-2, 3, dim=1).data.tolist(), [[2], [6], [10], [14]])
|
|
self.assertEqual(x.slice(0, -1, 2).data.tolist(), [[0, 1, 2, 3], [8, 9, 10, 11]])
|
|
|
|
@skipIfNoLapack
|
|
def test_gesv(self):
|
|
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
|
|
(-6.05, -3.30, 5.36, -4.44, 1.08),
|
|
(-0.45, 2.58, -2.70, 0.27, 9.04),
|
|
(8.32, 2.71, 4.35, -7.17, 2.14),
|
|
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
|
|
b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03),
|
|
(-1.56, 4.00, -8.67, 1.75, 2.86),
|
|
(9.81, -4.09, -4.57, -8.61, 8.99))).t()
|
|
|
|
res1 = torch.gesv(b, a)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(a, res1)), 1e-12)
|
|
ta = torch.Tensor()
|
|
tb = torch.Tensor()
|
|
res2 = torch.gesv(b, a, out=(tb, ta))[0]
|
|
res3 = torch.gesv(b, a, out=(b, a))[0]
|
|
self.assertEqual(res1, tb)
|
|
self.assertEqual(res1, b)
|
|
self.assertEqual(res1, res2)
|
|
self.assertEqual(res1, res3)
|
|
|
|
# test reuse
|
|
res1 = torch.gesv(b, a)[0]
|
|
ta = torch.Tensor()
|
|
tb = torch.Tensor()
|
|
torch.gesv(b, a, out=(tb, ta))[0]
|
|
self.assertEqual(res1, tb)
|
|
torch.gesv(b, a, out=(tb, ta))[0]
|
|
self.assertEqual(res1, tb)
|
|
|
|
@skipIfNoLapack
|
|
def test_qr(self):
|
|
|
|
# Since the QR decomposition is unique only up to the signs of the rows of
|
|
# R, we must ensure these are positive before doing the comparison.
|
|
def canonicalize(q, r):
|
|
d = r.diag().sign().diag()
|
|
return torch.mm(q, d), torch.mm(d, r)
|
|
|
|
def canon_and_check(q, r, expected_q, expected_r):
|
|
q_canon, r_canon = canonicalize(q, r)
|
|
expected_q_canon, expected_r_canon = canonicalize(expected_q, expected_r)
|
|
self.assertEqual(q_canon, expected_q_canon)
|
|
self.assertEqual(r_canon, expected_r_canon)
|
|
|
|
def check_qr(a, expected_q, expected_r):
|
|
# standard invocation
|
|
q, r = torch.qr(a)
|
|
canon_and_check(q, r, expected_q, expected_r)
|
|
|
|
# in-place
|
|
q, r = torch.Tensor(), torch.Tensor()
|
|
torch.qr(a, out=(q, r))
|
|
canon_and_check(q, r, expected_q, expected_r)
|
|
|
|
# manually calculate qr using geqrf and orgqr
|
|
m = a.size(0)
|
|
n = a.size(1)
|
|
k = min(m, n)
|
|
result, tau = torch.geqrf(a)
|
|
self.assertEqual(result.size(0), m)
|
|
self.assertEqual(result.size(1), n)
|
|
self.assertEqual(tau.size(0), k)
|
|
r = torch.triu(result.narrow(0, 0, k))
|
|
q, _ = torch.orgqr(result, tau)
|
|
q, r = q.narrow(1, 0, k), r
|
|
canon_and_check(q, r, expected_q, expected_r)
|
|
|
|
# check square case
|
|
a = torch.Tensor(((1, 2, 3), (4, 5, 6), (7, 8, 10)))
|
|
|
|
expected_q = torch.Tensor((
|
|
(-1.230914909793328e-01, 9.045340337332914e-01, 4.082482904638621e-01),
|
|
(-4.923659639173310e-01, 3.015113445777629e-01, -8.164965809277264e-01),
|
|
(-8.616404368553292e-01, -3.015113445777631e-01, 4.082482904638634e-01)))
|
|
expected_r = torch.Tensor((
|
|
(-8.124038404635959e+00, -9.601136296387955e+00, -1.193987e+01),
|
|
(0.000000000000000e+00, 9.045340337332926e-01, 1.507557e+00),
|
|
(0.000000000000000e+00, 0.000000000000000e+00, 4.082483e-01)))
|
|
|
|
check_qr(a, expected_q, expected_r)
|
|
|
|
# check rectangular thin
|
|
a = torch.Tensor((
|
|
(1, 2, 3),
|
|
(4, 5, 6),
|
|
(7, 8, 9),
|
|
(10, 11, 13),
|
|
))
|
|
expected_q = torch.Tensor((
|
|
(-0.0776150525706334, -0.833052161400748, 0.3651483716701106),
|
|
(-0.3104602102825332, -0.4512365874254053, -0.1825741858350556),
|
|
(-0.5433053679944331, -0.0694210134500621, -0.7302967433402217),
|
|
(-0.7761505257063329, 0.3123945605252804, 0.5477225575051663)
|
|
))
|
|
expected_r = torch.Tensor((
|
|
(-12.8840987267251261, -14.5916298832790581, -17.0753115655393231),
|
|
(0, -1.0413152017509357, -1.770235842976589),
|
|
(0, 0, 0.5477225575051664)
|
|
))
|
|
|
|
check_qr(a, expected_q, expected_r)
|
|
|
|
# check rectangular fat
|
|
a = torch.Tensor((
|
|
(1, 2, 3, 4),
|
|
(5, 6, 7, 8),
|
|
(9, 10, 11, 13)
|
|
))
|
|
expected_q = torch.Tensor((
|
|
(-0.0966736489045663, 0.907737593658436, 0.4082482904638653),
|
|
(-0.4833682445228317, 0.3157348151855452, -0.8164965809277254),
|
|
(-0.870062840141097, -0.2762679632873518, 0.4082482904638621)
|
|
))
|
|
expected_r = torch.Tensor((
|
|
(-1.0344080432788603e+01, -1.1794185166357092e+01,
|
|
-1.3244289899925587e+01, -1.5564457473635180e+01),
|
|
(0.0000000000000000e+00, 9.4720444555662542e-01,
|
|
1.8944088911132546e+00, 2.5653453733825331e+00),
|
|
(0.0000000000000000e+00, 0.0000000000000000e+00,
|
|
1.5543122344752192e-15, 4.0824829046386757e-01)
|
|
))
|
|
check_qr(a, expected_q, expected_r)
|
|
|
|
# check big matrix
|
|
a = torch.randn(1000, 1000)
|
|
q, r = torch.qr(a)
|
|
a_qr = torch.mm(q, r)
|
|
self.assertEqual(a, a_qr, prec=1e-3)
|
|
|
|
@skipIfNoLapack
|
|
def test_ormqr(self):
|
|
mat1 = torch.randn(10, 10)
|
|
mat2 = torch.randn(10, 10)
|
|
q, r = torch.qr(mat1)
|
|
m, tau = torch.geqrf(mat1)
|
|
|
|
res1 = torch.mm(q, mat2)
|
|
res2, _ = torch.ormqr(m, tau, mat2)
|
|
self.assertEqual(res1, res2)
|
|
|
|
res1 = torch.mm(mat2, q)
|
|
res2, _ = torch.ormqr(m, tau, mat2, False)
|
|
self.assertEqual(res1, res2)
|
|
|
|
res1 = torch.mm(q.t(), mat2)
|
|
res2, _ = torch.ormqr(m, tau, mat2, True, True)
|
|
self.assertEqual(res1, res2)
|
|
|
|
res1 = torch.mm(mat2, q.t())
|
|
res2, _ = torch.ormqr(m, tau, mat2, False, True)
|
|
self.assertEqual(res1, res2)
|
|
|
|
@skipIfNoLapack
|
|
def test_trtrs(self):
|
|
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
|
|
(-6.05, -3.30, 5.36, -4.44, 1.08),
|
|
(-0.45, 2.58, -2.70, 0.27, 9.04),
|
|
(8.32, 2.71, 4.35, -7.17, 2.14),
|
|
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
|
|
b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03),
|
|
(-1.56, 4.00, -8.67, 1.75, 2.86),
|
|
(9.81, -4.09, -4.57, -8.61, 8.99))).t()
|
|
|
|
U = torch.triu(a)
|
|
L = torch.tril(a)
|
|
|
|
# solve Ux = b
|
|
x = torch.trtrs(b, U)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(U, x)), 1e-12)
|
|
x = torch.trtrs(b, U, True, False, False)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(U, x)), 1e-12)
|
|
|
|
# solve Lx = b
|
|
x = torch.trtrs(b, L, False)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(L, x)), 1e-12)
|
|
x = torch.trtrs(b, L, False, False, False)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(L, x)), 1e-12)
|
|
|
|
# solve U'x = b
|
|
x = torch.trtrs(b, U, True, True)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(U.t(), x)), 1e-12)
|
|
x = torch.trtrs(b, U, True, True, False)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(U.t(), x)), 1e-12)
|
|
|
|
# solve U'x = b by manual transposition
|
|
y = torch.trtrs(b, U.t(), False, False)[0]
|
|
self.assertLessEqual(x.dist(y), 1e-12)
|
|
|
|
# solve L'x = b
|
|
x = torch.trtrs(b, L, False, True)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(L.t(), x)), 1e-12)
|
|
x = torch.trtrs(b, L, False, True, False)[0]
|
|
self.assertLessEqual(b.dist(torch.mm(L.t(), x)), 1e-12)
|
|
|
|
# solve L'x = b by manual transposition
|
|
y = torch.trtrs(b, L.t(), True, False)[0]
|
|
self.assertLessEqual(x.dist(y), 1e-12)
|
|
|
|
# test reuse
|
|
res1 = torch.trtrs(b, a)[0]
|
|
ta = torch.Tensor()
|
|
tb = torch.Tensor()
|
|
torch.trtrs(b, a, out=(tb, ta))
|
|
self.assertEqual(res1, tb, 0)
|
|
tb.zero_()
|
|
torch.trtrs(b, a, out=(tb, ta))
|
|
self.assertEqual(res1, tb, 0)
|
|
|
|
@skipIfNoLapack
|
|
def test_gels(self):
|
|
def _test_underdetermined(a, b, expectedNorm):
|
|
m = a.size()[0]
|
|
n = a.size()[1]
|
|
assert(m <= n)
|
|
|
|
a_copy = a.clone()
|
|
b_copy = b.clone()
|
|
res1 = torch.gels(b, a)[0]
|
|
self.assertEqual(a, a_copy, 0)
|
|
self.assertEqual(b, b_copy, 0)
|
|
self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8)
|
|
|
|
ta = torch.Tensor()
|
|
tb = torch.Tensor()
|
|
res2 = torch.gels(b, a, out=(tb, ta))[0]
|
|
self.assertEqual(a, a_copy, 0)
|
|
self.assertEqual(b, b_copy, 0)
|
|
self.assertEqual((torch.mm(a, res1) - b).norm(), expectedNorm, 1e-8)
|
|
|
|
res3 = torch.gels(b, a, out=(b, a))[0]
|
|
self.assertEqual((torch.mm(a_copy, b) - b_copy).norm(), expectedNorm, 1e-8)
|
|
self.assertEqual(res1, tb, 0)
|
|
self.assertEqual(res1, b, 0)
|
|
self.assertEqual(res1, res2, 0)
|
|
self.assertEqual(res1, res3, 0)
|
|
|
|
def _test_overdetermined(a, b, expectedNorm):
|
|
m = a.size()[0]
|
|
n = a.size()[1]
|
|
assert(m > n)
|
|
|
|
def check_norm(a, b, expected_norm, gels_result):
|
|
# Checks |ax - b| and the residual info from the result
|
|
n = a.size()[1]
|
|
|
|
# The first n rows is the least square solution.
|
|
# Rows n to m-1 contain residual information.
|
|
x = gels_result[:n]
|
|
resid_info = gels_result[n:]
|
|
|
|
resid_norm = (torch.mm(a, x) - b).norm()
|
|
self.assertEqual(resid_norm, expectedNorm, 1e-8)
|
|
self.assertEqual(resid_info.norm(), resid_norm, 1e-8)
|
|
|
|
a_copy = a.clone()
|
|
b_copy = b.clone()
|
|
res1 = torch.gels(b, a)[0]
|
|
self.assertEqual(a, a_copy, 0)
|
|
self.assertEqual(b, b_copy, 0)
|
|
check_norm(a, b, expectedNorm, res1)
|
|
|
|
ta = torch.Tensor()
|
|
tb = torch.Tensor()
|
|
res2 = torch.gels(b, a, out=(tb, ta))[0]
|
|
self.assertEqual(a, a_copy, 0)
|
|
self.assertEqual(b, b_copy, 0)
|
|
check_norm(a, b, expectedNorm, res2)
|
|
|
|
res3 = torch.gels(b, a, out=(b, a))[0]
|
|
check_norm(a_copy, b_copy, expectedNorm, res3)
|
|
|
|
self.assertEqual(res1, tb, 0)
|
|
self.assertEqual(res1, b, 0)
|
|
self.assertEqual(res1, res2, 0)
|
|
self.assertEqual(res1, res3, 0)
|
|
|
|
# basic test
|
|
expectedNorm = 0
|
|
a = torch.Tensor(((1.44, -9.96, -7.55, 8.34),
|
|
(-7.84, -0.28, 3.24, 8.09),
|
|
(-4.39, -3.24, 6.27, 5.28),
|
|
(4.53, 3.83, -6.64, 2.06))).t()
|
|
b = torch.Tensor(((8.58, 8.26, 8.48, -5.28),
|
|
(9.35, -4.43, -0.70, -0.26))).t()
|
|
_test_underdetermined(a, b, expectedNorm)
|
|
|
|
# test overderemined
|
|
expectedNorm = 17.390200628863
|
|
a = torch.Tensor(((1.44, -9.96, -7.55, 8.34, 7.08, -5.45),
|
|
(-7.84, -0.28, 3.24, 8.09, 2.52, -5.70),
|
|
(-4.39, -3.24, 6.27, 5.28, 0.74, -1.19),
|
|
(4.53, 3.83, -6.64, 2.06, -2.47, 4.70))).t()
|
|
b = torch.Tensor(((8.58, 8.26, 8.48, -5.28, 5.72, 8.93),
|
|
(9.35, -4.43, -0.70, -0.26, -7.36, -2.52))).t()
|
|
_test_overdetermined(a, b, expectedNorm)
|
|
|
|
# test underdetermined
|
|
expectedNorm = 0
|
|
a = torch.Tensor(((1.44, -9.96, -7.55),
|
|
(-7.84, -0.28, 3.24),
|
|
(-4.39, -3.24, 6.27),
|
|
(4.53, 3.83, -6.64))).t()
|
|
b = torch.Tensor(((8.58, 8.26, 8.48),
|
|
(9.35, -4.43, -0.70))).t()
|
|
_test_underdetermined(a, b, expectedNorm)
|
|
|
|
# test reuse
|
|
expectedNorm = 0
|
|
a = torch.Tensor(((1.44, -9.96, -7.55, 8.34),
|
|
(-7.84, -0.28, 3.24, 8.09),
|
|
(-4.39, -3.24, 6.27, 5.28),
|
|
(4.53, 3.83, -6.64, 2.06))).t()
|
|
b = torch.Tensor(((8.58, 8.26, 8.48, -5.28),
|
|
(9.35, -4.43, -0.70, -0.26))).t()
|
|
ta = torch.Tensor()
|
|
tb = torch.Tensor()
|
|
torch.gels(b, a, out=(tb, ta))
|
|
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
|
|
torch.gels(b, a, out=(tb, ta))
|
|
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
|
|
torch.gels(b, a, out=(tb, ta))
|
|
self.assertEqual((torch.mm(a, tb) - b).norm(), expectedNorm, 1e-8)
|
|
|
|
@skipIfNoLapack
|
|
def test_eig(self):
|
|
a = torch.Tensor(((1.96, 0.00, 0.00, 0.00, 0.00),
|
|
(-6.49, 3.80, 0.00, 0.00, 0.00),
|
|
(-0.47, -6.39, 4.17, 0.00, 0.00),
|
|
(-7.20, 1.50, -1.51, 5.70, 0.00),
|
|
(-0.65, -6.34, 2.67, 1.80, -7.10))).t().contiguous()
|
|
e = torch.eig(a)[0]
|
|
ee, vv = torch.eig(a, True)
|
|
te = torch.Tensor()
|
|
tv = torch.Tensor()
|
|
eee, vvv = torch.eig(a, True, out=(te, tv))
|
|
self.assertEqual(e, ee, 1e-12)
|
|
self.assertEqual(ee, eee, 1e-12)
|
|
self.assertEqual(ee, te, 1e-12)
|
|
self.assertEqual(vv, vvv, 1e-12)
|
|
self.assertEqual(vv, tv, 1e-12)
|
|
|
|
# test reuse
|
|
X = torch.randn(4, 4)
|
|
X = torch.mm(X.t(), X)
|
|
e, v = torch.zeros(4, 2), torch.zeros(4, 4)
|
|
torch.eig(X, True, out=(e, v))
|
|
Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t())
|
|
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
|
|
self.assertFalse(v.is_contiguous(), 'V is contiguous')
|
|
|
|
torch.eig(X, True, out=(e, v))
|
|
Xhat = torch.mm(v, torch.mm(e.select(1, 0).diag(), v.t()))
|
|
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
|
|
self.assertFalse(v.is_contiguous(), 'V is contiguous')
|
|
|
|
# test non-contiguous
|
|
X = torch.randn(4, 4)
|
|
X = torch.mm(X.t(), X)
|
|
e = torch.zeros(4, 2, 2)[:, 1]
|
|
v = torch.zeros(4, 2, 4)[:, 1]
|
|
self.assertFalse(v.is_contiguous(), 'V is contiguous')
|
|
self.assertFalse(e.is_contiguous(), 'E is contiguous')
|
|
torch.eig(X, True, out=(e, v))
|
|
Xhat = torch.mm(torch.mm(v, torch.diag(e.select(1, 0))), v.t())
|
|
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
|
|
|
|
@skipIfNoLapack
|
|
def test_symeig(self):
|
|
xval = torch.rand(100, 3)
|
|
cov = torch.mm(xval.t(), xval)
|
|
rese = torch.zeros(3)
|
|
resv = torch.zeros(3, 3)
|
|
|
|
# First call to symeig
|
|
self.assertTrue(resv.is_contiguous(), 'resv is not contiguous')
|
|
torch.symeig(cov.clone(), True, out=(rese, resv))
|
|
ahat = torch.mm(torch.mm(resv, torch.diag(rese)), resv.t())
|
|
self.assertEqual(cov, ahat, 1e-8, 'VeV\' wrong')
|
|
|
|
# Second call to symeig
|
|
self.assertFalse(resv.is_contiguous(), 'resv is contiguous')
|
|
torch.symeig(cov.clone(), True, out=(rese, resv))
|
|
ahat = torch.mm(torch.mm(resv, torch.diag(rese)), resv.t())
|
|
self.assertEqual(cov, ahat, 1e-8, 'VeV\' wrong')
|
|
|
|
# test non-contiguous
|
|
X = torch.rand(5, 5)
|
|
X = X.t() * X
|
|
e = torch.zeros(4, 2).select(1, 1)
|
|
v = torch.zeros(4, 2, 4)[:, 1]
|
|
self.assertFalse(v.is_contiguous(), 'V is contiguous')
|
|
self.assertFalse(e.is_contiguous(), 'E is contiguous')
|
|
torch.symeig(X, True, out=(e, v))
|
|
Xhat = torch.mm(torch.mm(v, torch.diag(e)), v.t())
|
|
self.assertEqual(X, Xhat, 1e-8, 'VeV\' wrong')
|
|
|
|
@skipIfNoLapack
|
|
def test_svd(self):
|
|
a = torch.Tensor(((8.79, 6.11, -9.15, 9.57, -3.49, 9.84),
|
|
(9.93, 6.91, -7.93, 1.64, 4.02, 0.15),
|
|
(9.83, 5.04, 4.86, 8.83, 9.80, -8.99),
|
|
(5.45, -0.27, 4.85, 0.74, 10.00, -6.02),
|
|
(3.16, 7.98, 3.01, 5.80, 4.27, -5.31))).t().clone()
|
|
u, s, v = torch.svd(a)
|
|
uu = torch.Tensor()
|
|
ss = torch.Tensor()
|
|
vv = torch.Tensor()
|
|
uuu, sss, vvv = torch.svd(a, out=(uu, ss, vv))
|
|
self.assertEqual(u, uu, 0, 'torch.svd')
|
|
self.assertEqual(u, uuu, 0, 'torch.svd')
|
|
self.assertEqual(s, ss, 0, 'torch.svd')
|
|
self.assertEqual(s, sss, 0, 'torch.svd')
|
|
self.assertEqual(v, vv, 0, 'torch.svd')
|
|
self.assertEqual(v, vvv, 0, 'torch.svd')
|
|
|
|
# test reuse
|
|
X = torch.randn(4, 4)
|
|
U, S, V = torch.svd(X)
|
|
Xhat = torch.mm(U, torch.mm(S.diag(), V.t()))
|
|
self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong')
|
|
|
|
self.assertFalse(U.is_contiguous(), 'U is contiguous')
|
|
torch.svd(X, out=(U, S, V))
|
|
Xhat = torch.mm(U, torch.mm(S.diag(), V.t()))
|
|
self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong')
|
|
|
|
# test non-contiguous
|
|
X = torch.randn(5, 5)
|
|
U = torch.zeros(5, 2, 5)[:, 1]
|
|
S = torch.zeros(5, 2)[:, 1]
|
|
V = torch.zeros(5, 2, 5)[:, 1]
|
|
|
|
self.assertFalse(U.is_contiguous(), 'U is contiguous')
|
|
self.assertFalse(S.is_contiguous(), 'S is contiguous')
|
|
self.assertFalse(V.is_contiguous(), 'V is contiguous')
|
|
torch.svd(X, out=(U, S, V))
|
|
Xhat = torch.mm(U, torch.mm(S.diag(), V.t()))
|
|
self.assertEqual(X, Xhat, 1e-8, 'USV\' wrong')
|
|
|
|
@skipIfNoLapack
|
|
def test_inverse(self):
|
|
M = torch.randn(5, 5)
|
|
MI = torch.inverse(M)
|
|
E = torch.eye(5)
|
|
self.assertFalse(MI.is_contiguous(), 'MI is contiguous')
|
|
self.assertEqual(E, torch.mm(M, MI), 1e-8, 'inverse value')
|
|
self.assertEqual(E, torch.mm(MI, M), 1e-8, 'inverse value')
|
|
|
|
MII = torch.Tensor(5, 5)
|
|
torch.inverse(M, out=MII)
|
|
self.assertFalse(MII.is_contiguous(), 'MII is contiguous')
|
|
self.assertEqual(MII, MI, 0, 'inverse value in-place')
|
|
# second call, now that MII is transposed
|
|
torch.inverse(M, out=MII)
|
|
self.assertFalse(MII.is_contiguous(), 'MII is contiguous')
|
|
self.assertEqual(MII, MI, 0, 'inverse value in-place')
|
|
|
|
@staticmethod
|
|
def _test_det(self, conv_fn):
|
|
def reference_det(M):
|
|
# naive row reduction
|
|
M = M.clone()
|
|
l = M.size(0)
|
|
multiplier = 1
|
|
for i in range(l):
|
|
if M[i, 0] != 0:
|
|
if i != 0:
|
|
M[0], M[i] = M[i], M[0]
|
|
multiplier = -1
|
|
break
|
|
else:
|
|
return 0
|
|
for i in range(1, l):
|
|
row = M[i]
|
|
for j in range(i):
|
|
row -= row[j] / M[j, j] * M[j]
|
|
M[i] = row
|
|
return M.diag().prod() * multiplier
|
|
|
|
# TODO: remove Variable wrapper once Variable and Tensor are the same
|
|
Variable = torch.autograd.Variable
|
|
|
|
eye_det = Variable(conv_fn(torch.eye(5))).det()
|
|
self.assertEqual(eye_det, eye_det.clone().fill_(1), 1e-8, 'determinant of identity')
|
|
|
|
def test(M):
|
|
M = conv_fn(M)
|
|
var_M = Variable(M)
|
|
M_det = var_M.det().data
|
|
|
|
self.assertEqual(M_det, M_det.clone().fill_(reference_det(M)), 1e-8, 'determinant')
|
|
self.assertEqual(M_det, var_M.inverse().det().data.pow_(-1), 1e-8, 'determinant after transpose')
|
|
self.assertEqual(M_det, var_M.transpose(0, 1).det().data, 1e-8, 'determinant after transpose')
|
|
|
|
for x in [0, 2, 4]:
|
|
for scale in [-2, -0.1, 0, 10]:
|
|
target = M_det * scale
|
|
# dim 0
|
|
M_clone = M.clone()
|
|
M_clone[:, x] *= scale
|
|
det = Variable(M_clone).det().data
|
|
self.assertEqual(target, det, 1e-8, 'determinant after scaling a row')
|
|
# dim 1
|
|
M_clone = M.clone()
|
|
M_clone[x, :] *= scale
|
|
det = Variable(M_clone).det().data
|
|
self.assertEqual(target, det, 1e-8, 'determinant after scaling a column')
|
|
|
|
for x1, x2 in [(0, 3), (4, 1), (3, 2)]:
|
|
assert x1 != x2, 'x1 and x2 needs to be different for this test'
|
|
target = M_det.clone().zero_()
|
|
# dim 0
|
|
M_clone = M.clone()
|
|
M_clone[:, x2] = M_clone[:, x1]
|
|
det = Variable(M_clone).det().data
|
|
self.assertEqual(target, det, 1e-8, 'determinant when two rows are same')
|
|
# dim 1
|
|
M_clone = M.clone()
|
|
M_clone[x2, :] = M_clone[x1, :]
|
|
det = Variable(M_clone).det().data
|
|
self.assertEqual(target, det, 1e-8, 'determinant when two columns are same')
|
|
|
|
for scale1, scale2 in [(0.3, -1), (0, 2), (10, 0.1)]:
|
|
target = -M_det * scale1 * scale2
|
|
# dim 0
|
|
M_clone = M.clone()
|
|
t = M_clone[:, x1] * scale1
|
|
M_clone[:, x1] += M_clone[:, x2] * scale2
|
|
M_clone[:, x2] = t
|
|
det = Variable(M_clone).det().data
|
|
self.assertEqual(target, det, 1e-8, 'determinant after exchanging rows')
|
|
# dim 1
|
|
M_clone = M.clone()
|
|
t = M_clone[x1, :] * scale1
|
|
M_clone[x1, :] += M_clone[x2, :] * scale2
|
|
M_clone[x2, :] = t
|
|
det = Variable(M_clone).det().data
|
|
self.assertEqual(target, det, 1e-8, 'determinant after exchanging columns')
|
|
|
|
test(torch.randn(5, 5))
|
|
r = torch.randn(5, 5)
|
|
test(r.mm(r.transpose(0, 1))) # symmetric
|
|
test(torch.randn(5, 5, 5)[:, 2, :]) # non-contiguous
|
|
|
|
@skipIfNoLapack
|
|
def test_det(self):
|
|
self._test_det(self, lambda x: x)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_conv2(self):
|
|
x = torch.rand(math.floor(torch.uniform(50, 100)), math.floor(torch.uniform(50, 100)))
|
|
k = torch.rand(math.floor(torch.uniform(10, 20)), math.floor(torch.uniform(10, 20)))
|
|
imvc = torch.conv2(x, k)
|
|
imvc2 = torch.conv2(x, k, 'V')
|
|
imfc = torch.conv2(x, k, 'F')
|
|
|
|
ki = k.clone()
|
|
ks = k.storage()
|
|
kis = ki.storage()
|
|
for i in range(ks.size() - 1, 0, -1):
|
|
kis[ks.size() - i + 1] = ks[i]
|
|
# for i=ks.size(), 1, -1 do kis[ks.size()-i+1]=ks[i] end
|
|
imvx = torch.xcorr2(x, ki)
|
|
imvx2 = torch.xcorr2(x, ki, 'V')
|
|
imfx = torch.xcorr2(x, ki, 'F')
|
|
|
|
self.assertEqual(imvc, imvc2, 0, 'torch.conv2')
|
|
self.assertEqual(imvc, imvx, 0, 'torch.conv2')
|
|
self.assertEqual(imvc, imvx2, 0, 'torch.conv2')
|
|
self.assertEqual(imfc, imfx, 0, 'torch.conv2')
|
|
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr2(x, x)[0][0]), 1e-10, 'torch.conv2')
|
|
|
|
xx = torch.Tensor(2, x.size(1), x.size(2))
|
|
xx[1].copy_(x)
|
|
xx[2].copy_(x)
|
|
kk = torch.Tensor(2, k.size(1), k.size(2))
|
|
kk[1].copy_(k)
|
|
kk[2].copy_(k)
|
|
|
|
immvc = torch.conv2(xx, kk)
|
|
immvc2 = torch.conv2(xx, kk, 'V')
|
|
immfc = torch.conv2(xx, kk, 'F')
|
|
|
|
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv2')
|
|
self.assertEqual(immvc[0], imvc, 0, 'torch.conv2')
|
|
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv2')
|
|
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv2')
|
|
self.assertEqual(immfc[0], imfc, 0, 'torch.conv2')
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_conv3(self):
|
|
x = torch.rand(math.floor(torch.uniform(20, 40)),
|
|
math.floor(torch.uniform(20, 40)),
|
|
math.floor(torch.uniform(20, 40)))
|
|
k = torch.rand(math.floor(torch.uniform(5, 10)),
|
|
math.floor(torch.uniform(5, 10)),
|
|
math.floor(torch.uniform(5, 10)))
|
|
imvc = torch.conv3(x, k)
|
|
imvc2 = torch.conv3(x, k, 'V')
|
|
imfc = torch.conv3(x, k, 'F')
|
|
|
|
ki = k.clone()
|
|
ks = k.storage()
|
|
kis = ki.storage()
|
|
for i in range(ks.size() - 1, 0, -1):
|
|
kis[ks.size() - i + 1] = ks[i]
|
|
imvx = torch.xcorr3(x, ki)
|
|
imvx2 = torch.xcorr3(x, ki, 'V')
|
|
imfx = torch.xcorr3(x, ki, 'F')
|
|
|
|
self.assertEqual(imvc, imvc2, 0, 'torch.conv3')
|
|
self.assertEqual(imvc, imvx, 0, 'torch.conv3')
|
|
self.assertEqual(imvc, imvx2, 0, 'torch.conv3')
|
|
self.assertEqual(imfc, imfx, 0, 'torch.conv3')
|
|
self.assertLessEqual(math.abs(x.dot(x) - torch.xcorr3(x, x)[0][0][0]), 4e-10, 'torch.conv3')
|
|
|
|
xx = torch.Tensor(2, x.size(1), x.size(2), x.size(3))
|
|
xx[1].copy_(x)
|
|
xx[2].copy_(x)
|
|
kk = torch.Tensor(2, k.size(1), k.size(2), k.size(3))
|
|
kk[1].copy_(k)
|
|
kk[2].copy_(k)
|
|
|
|
immvc = torch.conv3(xx, kk)
|
|
immvc2 = torch.conv3(xx, kk, 'V')
|
|
immfc = torch.conv3(xx, kk, 'F')
|
|
|
|
self.assertEqual(immvc[0], immvc[1], 0, 'torch.conv3')
|
|
self.assertEqual(immvc[0], imvc, 0, 'torch.conv3')
|
|
self.assertEqual(immvc2[0], imvc2, 0, 'torch.conv3')
|
|
self.assertEqual(immfc[0], immfc[1], 0, 'torch.conv3')
|
|
self.assertEqual(immfc[0], imfc, 0, 'torch.conv3')
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def _test_conv_corr_eq(self, fn, fn_2_to_3):
|
|
ix = math.floor(random.randint(20, 40))
|
|
iy = math.floor(random.randint(20, 40))
|
|
iz = math.floor(random.randint(20, 40))
|
|
kx = math.floor(random.randint(5, 10))
|
|
ky = math.floor(random.randint(5, 10))
|
|
kz = math.floor(random.randint(5, 10))
|
|
|
|
x = torch.rand(ix, iy, iz)
|
|
k = torch.rand(kx, ky, kz)
|
|
|
|
o3 = fn(x, k)
|
|
o32 = torch.zeros(o3.size())
|
|
fn_2_to_3(x, k, o3, o32)
|
|
self.assertEqual(o3, o32)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_xcorr3_xcorr2_eq(self):
|
|
def reference(x, k, o3, o32):
|
|
for i in range(o3.size(1)):
|
|
for j in range(k.size(1)):
|
|
o32[i].add(torch.xcorr2(x[i + j - 1], k[j]))
|
|
self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k), reference)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_xcorr3_xcorr2_eq_full(self):
|
|
def reference(x, k, o3, o32):
|
|
for i in range(x.size(1)):
|
|
for j in range(k.size(1)):
|
|
o32[i].add(torch.xcorr2(x[i], k[k.size(1) - j + 1], 'F'))
|
|
self._test_conv_corr_eq(lambda x, k: torch.xcorr3(x, k, 'F'), reference)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_conv3_conv2_eq_valid(self):
|
|
def reference(x, k, o3, o32):
|
|
for i in range(o3.size(1)):
|
|
for j in range(k.size(1)):
|
|
o32[i].add(torch.conv2(x[i + j - 1], k[k.size(1) - j + 1]))
|
|
self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k), reference)
|
|
|
|
@unittest.skip("Not implemented yet")
|
|
def test_fconv3_fconv2_eq(self):
|
|
def reference(x, k, o3, o32):
|
|
for i in range(o3.size(1)):
|
|
for j in range(k.size(1)):
|
|
o32[i + j - 1].add(torch.conv2(x[i], k[j], 'F'))
|
|
self._test_conv_corr_eq(lambda x, k: torch.conv3(x, k, 'F'), reference)
|
|
|
|
def test_logical(self):
|
|
x = torch.rand(100, 100) * 2 - 1
|
|
xx = x.clone()
|
|
|
|
xgt = torch.gt(x, 1)
|
|
xlt = torch.lt(x, 1)
|
|
|
|
xeq = torch.eq(x, 1)
|
|
xne = torch.ne(x, 1)
|
|
|
|
neqs = xgt + xlt
|
|
all = neqs + xeq
|
|
self.assertEqual(neqs.sum(), xne.sum(), 0)
|
|
self.assertEqual(x.nelement(), all.sum())
|
|
|
|
def test_RNGState(self):
|
|
state = torch.get_rng_state()
|
|
stateCloned = state.clone()
|
|
before = torch.rand(1000)
|
|
|
|
self.assertEqual(state.ne(stateCloned).long().sum(), 0, 0)
|
|
|
|
torch.set_rng_state(state)
|
|
after = torch.rand(1000)
|
|
self.assertEqual(before, after, 0)
|
|
|
|
def test_RNGStateAliasing(self):
|
|
# Fork the random number stream at this point
|
|
gen = torch.Generator()
|
|
gen.set_state(torch.get_rng_state())
|
|
self.assertEqual(gen.get_state(), torch.get_rng_state())
|
|
|
|
target_value = torch.rand(1000)
|
|
# Dramatically alter the internal state of the main generator
|
|
_ = torch.rand(100000)
|
|
forked_value = torch.rand(1000, generator=gen)
|
|
self.assertEqual(target_value, forked_value, 0, "RNG has not forked correctly.")
|
|
|
|
def test_boxMullerState(self):
|
|
torch.manual_seed(123)
|
|
odd_number = 101
|
|
seeded = torch.randn(odd_number)
|
|
state = torch.get_rng_state()
|
|
midstream = torch.randn(odd_number)
|
|
torch.set_rng_state(state)
|
|
repeat_midstream = torch.randn(odd_number)
|
|
torch.manual_seed(123)
|
|
reseeded = torch.randn(odd_number)
|
|
self.assertEqual(midstream, repeat_midstream, 0,
|
|
'get_rng_state/set_rng_state not generating same sequence of normally distributed numbers')
|
|
self.assertEqual(seeded, reseeded, 0,
|
|
'repeated calls to manual_seed not generating same sequence of normally distributed numbers')
|
|
|
|
def test_manual_seed(self):
|
|
rng_state = torch.get_rng_state()
|
|
torch.manual_seed(2)
|
|
x = torch.randn(100)
|
|
self.assertEqual(torch.initial_seed(), 2)
|
|
torch.manual_seed(2)
|
|
y = torch.randn(100)
|
|
self.assertEqual(x, y)
|
|
torch.set_rng_state(rng_state)
|
|
|
|
@skipIfNoLapack
|
|
def test_cholesky(self):
|
|
x = torch.rand(10, 10) + 1e-1
|
|
A = torch.mm(x, x.t())
|
|
|
|
# default Case
|
|
C = torch.potrf(A)
|
|
B = torch.mm(C.t(), C)
|
|
self.assertEqual(A, B, 1e-14)
|
|
|
|
# test Upper Triangular
|
|
U = torch.potrf(A, True)
|
|
B = torch.mm(U.t(), U)
|
|
self.assertEqual(A, B, 1e-14, 'potrf (upper) did not allow rebuilding the original matrix')
|
|
|
|
# test Lower Triangular
|
|
L = torch.potrf(A, False)
|
|
B = torch.mm(L, L.t())
|
|
self.assertEqual(A, B, 1e-14, 'potrf (lower) did not allow rebuilding the original matrix')
|
|
|
|
@skipIfNoLapack
|
|
def test_potrs(self):
|
|
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
|
|
(-6.05, -3.30, 5.36, -4.44, 1.08),
|
|
(-0.45, 2.58, -2.70, 0.27, 9.04),
|
|
(8.32, 2.71, 4.35, -7.17, 2.14),
|
|
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
|
|
b = torch.Tensor(((4.02, 6.19, -8.22, -7.57, -3.03),
|
|
(-1.56, 4.00, -8.67, 1.75, 2.86),
|
|
(9.81, -4.09, -4.57, -8.61, 8.99))).t()
|
|
|
|
# make sure 'a' is symmetric PSD
|
|
a = torch.mm(a, a.t())
|
|
|
|
# upper Triangular Test
|
|
U = torch.potrf(a)
|
|
x = torch.potrs(b, U)
|
|
self.assertLessEqual(b.dist(torch.mm(a, x)), 1e-12)
|
|
|
|
# lower Triangular Test
|
|
L = torch.potrf(a, False)
|
|
x = torch.potrs(b, L, False)
|
|
self.assertLessEqual(b.dist(torch.mm(a, x)), 1e-12)
|
|
|
|
@skipIfNoLapack
|
|
def tset_potri(self):
|
|
a = torch.Tensor(((6.80, -2.11, 5.66, 5.97, 8.23),
|
|
(-6.05, -3.30, 5.36, -4.44, 1.08),
|
|
(-0.45, 2.58, -2.70, 0.27, 9.04),
|
|
(8.32, 2.71, 4.35, -7.17, 2.14),
|
|
(-9.67, -5.14, -7.26, 6.08, -6.87))).t()
|
|
|
|
# make sure 'a' is symmetric PSD
|
|
a = a * a.t()
|
|
|
|
# compute inverse directly
|
|
inv0 = torch.inverse(a)
|
|
|
|
# default case
|
|
chol = torch.potrf(a)
|
|
inv1 = torch.potri(chol)
|
|
self.assertLessEqual(inv0.dist(inv1), 1e-12)
|
|
|
|
# upper Triangular Test
|
|
chol = torch.potrf(a, 'U')
|
|
inv1 = torch.potri(chol, 'U')
|
|
self.assertLessEqual(inv0.dist(inv1), 1e-12)
|
|
|
|
# lower Triangular Test
|
|
chol = torch.potrf(a, 'L')
|
|
inv1 = torch.potri(chol, 'L')
|
|
self.assertLessEqual(inv0.dist(inv1), 1e-12)
|
|
|
|
@skipIfNoLapack
|
|
def test_pstrf(self):
|
|
def checkPsdCholesky(a, uplo, inplace):
|
|
if inplace:
|
|
u = torch.Tensor(a.size())
|
|
piv = torch.IntTensor(a.size(0))
|
|
kwargs = {'out': (u, piv)}
|
|
else:
|
|
kwargs = {}
|
|
args = [a]
|
|
|
|
if uplo is not None:
|
|
args += [uplo]
|
|
|
|
u, piv = torch.pstrf(*args, **kwargs)
|
|
|
|
if uplo is False:
|
|
a_reconstructed = torch.mm(u, u.t())
|
|
else:
|
|
a_reconstructed = torch.mm(u.t(), u)
|
|
|
|
piv = piv.long()
|
|
a_permuted = a.index_select(0, piv).index_select(1, piv)
|
|
self.assertEqual(a_permuted, a_reconstructed, 1e-14)
|
|
|
|
dimensions = ((5, 1), (5, 3), (5, 5), (10, 10))
|
|
for dim in dimensions:
|
|
m = torch.Tensor(*dim).uniform_()
|
|
a = torch.mm(m, m.t())
|
|
# add a small number to the diagonal to make the matrix numerically positive semidefinite
|
|
for i in range(m.size(0)):
|
|
a[i][i] = a[i][i] + 1e-7
|
|
for inplace in (True, False):
|
|
for uplo in (None, True, False):
|
|
checkPsdCholesky(a, uplo, inplace)
|
|
|
|
def test_numel(self):
|
|
b = torch.ByteTensor(3, 100, 100)
|
|
self.assertEqual(b.nelement(), 3 * 100 * 100)
|
|
self.assertEqual(b.numel(), 3 * 100 * 100)
|
|
|
|
def _consecutive(self, size, start=1):
|
|
sequence = torch.ones(int(torch.Tensor(size).prod(0)[0])).cumsum(0)
|
|
sequence.add_(start - 1)
|
|
return sequence.resize_(*size)
|
|
|
|
@staticmethod
|
|
def _test_index(self, conv_fn):
|
|
|
|
def consec(size, start=1):
|
|
sequence = torch.ones(int(torch.Tensor(size).prod(0)[0])).cumsum(0)
|
|
sequence.add_(start - 1)
|
|
return sequence.view(*size)
|
|
|
|
reference = conv_fn(consec((3, 3, 3)))
|
|
|
|
# empty tensor indexing
|
|
self.assertEqual(reference[conv_fn(torch.LongTensor())], reference.new())
|
|
|
|
self.assertEqual(reference[0], consec((3, 3)), 0)
|
|
self.assertEqual(reference[1], consec((3, 3), 10), 0)
|
|
self.assertEqual(reference[2], consec((3, 3), 19), 0)
|
|
self.assertEqual(reference[0, 1], consec((3,), 4), 0)
|
|
self.assertEqual(reference[0:2], consec((2, 3, 3)), 0)
|
|
self.assertEqual(reference[2, 2, 2], 27, 0)
|
|
self.assertEqual(reference[:], consec((3, 3, 3)), 0)
|
|
|
|
# indexing with Ellipsis
|
|
self.assertEqual(reference[..., 2], torch.Tensor([[3, 6, 9],
|
|
[12, 15, 18],
|
|
[21, 24, 27]]), 0)
|
|
self.assertEqual(reference[0, ..., 2], torch.Tensor([3, 6, 9]), 0)
|
|
self.assertEqual(reference[..., 2], reference[:, :, 2], 0)
|
|
self.assertEqual(reference[0, ..., 2], reference[0, :, 2], 0)
|
|
self.assertEqual(reference[0, 2, ...], reference[0, 2], 0)
|
|
self.assertEqual(reference[..., 2, 2, 2], 27, 0)
|
|
self.assertEqual(reference[2, ..., 2, 2], 27, 0)
|
|
self.assertEqual(reference[2, 2, ..., 2], 27, 0)
|
|
self.assertEqual(reference[2, 2, 2, ...], 27, 0)
|
|
self.assertEqual(reference[...], reference, 0)
|
|
|
|
reference_5d = conv_fn(consec((3, 3, 3, 3, 3)))
|
|
self.assertEqual(reference_5d[..., 1, 0], reference_5d[:, :, :, 1, 0], 0)
|
|
self.assertEqual(reference_5d[2, ..., 1, 0], reference_5d[2, :, :, 1, 0], 0)
|
|
self.assertEqual(reference_5d[2, 1, 0, ..., 1], reference_5d[2, 1, 0, :, 1], 0)
|
|
self.assertEqual(reference_5d[...], reference_5d, 0)
|
|
|
|
# LongTensor indexing
|
|
reference = conv_fn(consec((5, 5, 5)))
|
|
idx = conv_fn(torch.LongTensor([2, 4]))
|
|
self.assertEqual(reference[idx], torch.stack([reference[2], reference[4]]))
|
|
# TODO: enable one indexing is implemented like in numpy
|
|
# self.assertEqual(reference[2, idx], torch.stack([reference[2, 2], reference[2, 4]]))
|
|
# self.assertEqual(reference[3, idx, 1], torch.stack([reference[3, 2], reference[3, 4]])[:, 1])
|
|
|
|
# None indexing
|
|
self.assertEqual(reference[2, None], reference[2].unsqueeze(0))
|
|
self.assertEqual(reference[2, None, None], reference[2].unsqueeze(0).unsqueeze(0))
|
|
self.assertEqual(reference[2:4, None], reference[2:4].unsqueeze(1))
|
|
self.assertEqual(reference[None, 2, None, None], reference.unsqueeze(0)[:, 2].unsqueeze(0).unsqueeze(0))
|
|
self.assertEqual(reference[None, 2:5, None, None], reference.unsqueeze(0)[:, 2:5].unsqueeze(2).unsqueeze(2))
|
|
|
|
# indexing with step
|
|
reference = consec((10, 10, 10))
|
|
self.assertEqual(reference[1:5:2], torch.stack([reference[1], reference[3]], 0))
|
|
self.assertEqual(reference[1:6:2], torch.stack([reference[1], reference[3], reference[5]], 0))
|
|
self.assertEqual(reference[1:9:4], torch.stack([reference[1], reference[5]], 0))
|
|
self.assertEqual(reference[2:4, 1:5:2], torch.stack([reference[2:4, 1], reference[2:4, 3]], 1))
|
|
self.assertEqual(reference[3, 1:6:2], torch.stack([reference[3, 1], reference[3, 3], reference[3, 5]], 0))
|
|
self.assertEqual(reference[None, 2, 1:9:4], torch.stack([reference[2, 1], reference[2, 5]], 0).unsqueeze(0))
|
|
self.assertEqual(reference[:, 2, 1:6:2],
|
|
torch.stack([reference[:, 2, 1], reference[:, 2, 3], reference[:, 2, 5]], 1))
|
|
|
|
lst = [list(range(i, i + 10)) for i in range(0, 100, 10)]
|
|
tensor = conv_fn(torch.DoubleTensor(lst))
|
|
for _i in range(100):
|
|
idx1_start = random.randrange(10)
|
|
idx1_end = idx1_start + random.randrange(1, 10 - idx1_start + 1)
|
|
idx1_step = random.randrange(1, 8)
|
|
idx1 = slice(idx1_start, idx1_end, idx1_step)
|
|
if random.randrange(2) == 0:
|
|
idx2_start = random.randrange(10)
|
|
idx2_end = idx2_start + random.randrange(1, 10 - idx2_start + 1)
|
|
idx2_step = random.randrange(1, 8)
|
|
idx2 = slice(idx2_start, idx2_end, idx2_step)
|
|
lst_indexed = list(map(lambda l: l[idx2], lst[idx1]))
|
|
tensor_indexed = tensor[idx1, idx2]
|
|
else:
|
|
lst_indexed = lst[idx1]
|
|
tensor_indexed = tensor[idx1]
|
|
self.assertEqual(torch.DoubleTensor(lst_indexed), tensor_indexed)
|
|
|
|
self.assertRaises(ValueError, lambda: reference[1:9:0])
|
|
self.assertRaises(ValueError, lambda: reference[1:9:-1])
|
|
|
|
self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1])
|
|
self.assertRaises(IndexError, lambda: reference[1, 1, 1, 1:1])
|
|
self.assertRaises(IndexError, lambda: reference[3, 3, 3, 3, 3, 3, 3, 3])
|
|
|
|
self.assertRaises(TypeError, lambda: reference[0.0])
|
|
self.assertRaises(TypeError, lambda: reference[0.0:2.0])
|
|
self.assertRaises(TypeError, lambda: reference[0.0, 0.0:2.0])
|
|
self.assertRaises(TypeError, lambda: reference[0.0, :, 0.0:2.0])
|
|
self.assertRaises(TypeError, lambda: reference[0.0, ..., 0.0:2.0])
|
|
self.assertRaises(TypeError, lambda: reference[0.0, :, 0.0])
|
|
|
|
def test_index(self):
|
|
self._test_index(self, lambda x: x)
|
|
|
|
@staticmethod
|
|
def _test_advancedindex(self, conv_fn):
|
|
# Tests for Integer Array Indexing, Part I - Purely integer array
|
|
# indexing
|
|
|
|
def consec(size, start=1):
|
|
sequence = torch.ones(int(torch.Tensor(size).prod(0)[0])).cumsum(0)
|
|
sequence.add_(start - 1)
|
|
return sequence.view(*size)
|
|
|
|
# pick a random valid indexer type
|
|
def ri(indices):
|
|
choice = random.randint(0, 2)
|
|
if choice == 0:
|
|
return conv_fn(torch.LongTensor(indices))
|
|
elif choice == 1:
|
|
return list(indices)
|
|
else:
|
|
return tuple(indices)
|
|
|
|
# First, we will test indexing to generate return values
|
|
|
|
# Case 1: Purely Integer Array Indexing
|
|
reference = conv_fn(consec((10,)))
|
|
self.assertEqual(reference[[0]], consec((1,)))
|
|
self.assertEqual(reference[ri([0]), ], consec((1,)))
|
|
self.assertEqual(reference[ri([3]), ], consec((1,), 4))
|
|
self.assertEqual(reference[[2, 3, 4]], consec((3,), 3))
|
|
self.assertEqual(reference[ri([2, 3, 4]), ], consec((3,), 3))
|
|
self.assertEqual(reference[ri([0, 2, 4]), ], torch.Tensor([1, 3, 5]))
|
|
|
|
# setting values
|
|
reference[[0]] = -2
|
|
self.assertEqual(reference[[0]], torch.Tensor([-2]))
|
|
reference[[0]] = -1
|
|
self.assertEqual(reference[ri([0]), ], torch.Tensor([-1]))
|
|
reference[[2, 3, 4]] = 4
|
|
self.assertEqual(reference[[2, 3, 4]], torch.Tensor([4, 4, 4]))
|
|
reference[ri([2, 3, 4]), ] = 3
|
|
self.assertEqual(reference[ri([2, 3, 4]), ], torch.Tensor([3, 3, 3]))
|
|
reference[ri([0, 2, 4]), ] = conv_fn(torch.Tensor([5, 4, 3]))
|
|
self.assertEqual(reference[ri([0, 2, 4]), ], torch.Tensor([5, 4, 3]))
|
|
|
|
# Tensor with stride != 1
|
|
|
|
# strided is [1, 3, 5, 7]
|
|
reference = conv_fn(consec((10,)))
|
|
strided = conv_fn(torch.Tensor())
|
|
strided.set_(reference.storage(), storage_offset=0,
|
|
size=torch.Size([4]), stride=[2])
|
|
|
|
self.assertEqual(strided[[0]], torch.Tensor([1]))
|
|
self.assertEqual(strided[ri([0]), ], torch.Tensor([1]))
|
|
self.assertEqual(strided[ri([3]), ], torch.Tensor([7]))
|
|
self.assertEqual(strided[[1, 2]], torch.Tensor([3, 5]))
|
|
self.assertEqual(strided[ri([1, 2]), ], torch.Tensor([3, 5]))
|
|
self.assertEqual(strided[ri([[2, 1], [0, 3]]), ],
|
|
torch.Tensor([[5, 3], [1, 7]]))
|
|
|
|
# stride is [4, 8]
|
|
strided = conv_fn(torch.Tensor())
|
|
strided.set_(reference.storage(), storage_offset=4,
|
|
size=torch.Size([2]), stride=[4])
|
|
self.assertEqual(strided[[0]], torch.Tensor([5]))
|
|
self.assertEqual(strided[ri([0]), ], torch.Tensor([5]))
|
|
self.assertEqual(strided[ri([1]), ], torch.Tensor([9]))
|
|
self.assertEqual(strided[[0, 1]], torch.Tensor([5, 9]))
|
|
self.assertEqual(strided[ri([0, 1]), ], torch.Tensor([5, 9]))
|
|
self.assertEqual(strided[ri([[0, 1], [1, 0]]), ],
|
|
torch.Tensor([[5, 9], [9, 5]]))
|
|
|
|
# reference is 1 2
|
|
# 3 4
|
|
# 5 6
|
|
reference = conv_fn(consec((3, 2)))
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([1, 3, 5]))
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.Tensor([2, 4, 6]))
|
|
self.assertEqual(reference[ri([0]), ri([0])], consec((1,)))
|
|
self.assertEqual(reference[ri([2]), ri([1])], consec((1,), 6))
|
|
self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.Tensor([1, 2]))
|
|
self.assertEqual(reference[[ri([0, 1, 1, 0, 2]), ri([1])]],
|
|
torch.Tensor([2, 4, 4, 2, 6]))
|
|
self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
|
|
torch.Tensor([1, 2, 3, 3]))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = [0],
|
|
self.assertEqual(reference[rows, columns], torch.Tensor([[1, 1],
|
|
[3, 5]]))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = ri([1, 0])
|
|
self.assertEqual(reference[rows, columns], torch.Tensor([[2, 1],
|
|
[4, 5]]))
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = ri([[0, 1],
|
|
[1, 0]])
|
|
self.assertEqual(reference[rows, columns], torch.Tensor([[1, 2],
|
|
[4, 5]]))
|
|
|
|
# setting values
|
|
reference[ri([0]), ri([1])] = -1
|
|
self.assertEqual(reference[ri([0]), ri([1])], torch.Tensor([-1]))
|
|
reference[ri([0, 1, 2]), ri([0])] = conv_fn(torch.Tensor([-1, 2, -4]))
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([-1,
|
|
2, -4]))
|
|
reference[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]]))
|
|
self.assertEqual(reference[rows, columns],
|
|
torch.Tensor([[4, 6], [2, 3]]))
|
|
|
|
# Verify still works with Transposed (i.e. non-contiguous) Tensors
|
|
|
|
reference = conv_fn(torch.Tensor([[0, 1, 2, 3],
|
|
[4, 5, 6, 7],
|
|
[8, 9, 10, 11]])).t_()
|
|
|
|
# Transposed: [[0, 4, 8],
|
|
# [1, 5, 9],
|
|
# [2, 6, 10],
|
|
# [3, 7, 11]]
|
|
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([0, 1,
|
|
2]))
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([1])], torch.Tensor([4, 5,
|
|
6]))
|
|
self.assertEqual(reference[ri([0]), ri([0])], torch.Tensor([0]))
|
|
self.assertEqual(reference[ri([2]), ri([1])], torch.Tensor([6]))
|
|
self.assertEqual(reference[[ri([0, 0]), ri([0, 1])]], torch.Tensor([0, 4]))
|
|
self.assertEqual(reference[[ri([0, 1, 1, 0, 3]), ri([1])]],
|
|
torch.Tensor([4, 5, 5, 4, 7]))
|
|
self.assertEqual(reference[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
|
|
torch.Tensor([0, 4, 1, 1]))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = [0],
|
|
self.assertEqual(reference[rows, columns], torch.Tensor([[0, 0],
|
|
[1, 2]]))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 2]])
|
|
columns = ri([1, 0])
|
|
self.assertEqual(reference[rows, columns], torch.Tensor([[4, 0],
|
|
[5, 2]]))
|
|
rows = ri([[0, 0],
|
|
[1, 3]])
|
|
columns = ri([[0, 1],
|
|
[1, 2]])
|
|
self.assertEqual(reference[rows, columns], torch.Tensor([[0, 4],
|
|
[5, 11]]))
|
|
|
|
# setting values
|
|
reference[ri([0]), ri([1])] = -1
|
|
self.assertEqual(reference[ri([0]), ri([1])], torch.Tensor([-1]))
|
|
reference[ri([0, 1, 2]), ri([0])] = conv_fn(torch.Tensor([-1, 2, -4]))
|
|
self.assertEqual(reference[ri([0, 1, 2]), ri([0])], torch.Tensor([-1,
|
|
2, -4]))
|
|
reference[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]]))
|
|
self.assertEqual(reference[rows, columns],
|
|
torch.Tensor([[4, 6], [2, 3]]))
|
|
|
|
# stride != 1
|
|
|
|
# strided is [[1 3 5 7],
|
|
# [9 11 13 15]]
|
|
|
|
reference = conv_fn(torch.arange(0, 24).view(3, 8))
|
|
strided = conv_fn(torch.Tensor())
|
|
strided.set_(reference.storage(), 1, size=torch.Size([2, 4]),
|
|
stride=[8, 2])
|
|
|
|
self.assertEqual(strided[ri([0, 1]), ri([0])], torch.Tensor([1, 9]))
|
|
self.assertEqual(strided[ri([0, 1]), ri([1])], torch.Tensor([3, 11]))
|
|
self.assertEqual(strided[ri([0]), ri([0])], torch.Tensor([1]))
|
|
self.assertEqual(strided[ri([1]), ri([3])], torch.Tensor([15]))
|
|
self.assertEqual(strided[[ri([0, 0]), ri([0, 3])]], torch.Tensor([1, 7]))
|
|
self.assertEqual(strided[[ri([1]), ri([0, 1, 1, 0, 3])]],
|
|
torch.Tensor([9, 11, 11, 9, 15]))
|
|
self.assertEqual(strided[[ri([0, 0, 1, 1]), ri([0, 1, 0, 0])]],
|
|
torch.Tensor([1, 3, 9, 9]))
|
|
|
|
rows = ri([[0, 0],
|
|
[1, 1]])
|
|
columns = [0],
|
|
self.assertEqual(strided[rows, columns], torch.Tensor([[1, 1],
|
|
[9, 9]]))
|
|
|
|
rows = ri([[0, 1],
|
|
[1, 0]])
|
|
columns = ri([1, 2])
|
|
self.assertEqual(strided[rows, columns], torch.Tensor([[3, 13],
|
|
[11, 5]]))
|
|
rows = ri([[0, 0],
|
|
[1, 1]])
|
|
columns = ri([[0, 1],
|
|
[1, 2]])
|
|
self.assertEqual(strided[rows, columns], torch.Tensor([[1, 3],
|
|
[11, 13]]))
|
|
|
|
# setting values
|
|
|
|
# strided is [[10, 11],
|
|
# [17, 18]]
|
|
|
|
reference = conv_fn(torch.arange(0, 24).view(3, 8))
|
|
strided = conv_fn(torch.Tensor())
|
|
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
|
|
stride=[7, 1])
|
|
self.assertEqual(strided[ri([0]), ri([1])], torch.Tensor([11]))
|
|
strided[ri([0]), ri([1])] = -1
|
|
self.assertEqual(strided[ri([0]), ri([1])], torch.Tensor([-1]))
|
|
|
|
reference = conv_fn(torch.arange(0, 24).view(3, 8))
|
|
strided = conv_fn(torch.Tensor())
|
|
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
|
|
stride=[7, 1])
|
|
self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.Tensor([11,
|
|
17]))
|
|
strided[ri([0, 1]), ri([1, 0])] = conv_fn(torch.Tensor([-1, 2]))
|
|
self.assertEqual(strided[ri([0, 1]), ri([1, 0])], torch.Tensor([-1,
|
|
2]))
|
|
|
|
reference = conv_fn(torch.arange(0, 24).view(3, 8))
|
|
strided = conv_fn(torch.Tensor())
|
|
strided.set_(reference.storage(), 10, size=torch.Size([2, 2]),
|
|
stride=[7, 1])
|
|
|
|
rows = ri([[0],
|
|
[1]])
|
|
columns = ri([[0, 1],
|
|
[0, 1]])
|
|
self.assertEqual(strided[rows, columns],
|
|
torch.Tensor([[10, 11], [17, 18]]))
|
|
strided[rows, columns] = conv_fn(torch.Tensor([[4, 6], [2, 3]]))
|
|
self.assertEqual(strided[rows, columns],
|
|
torch.Tensor([[4, 6], [2, 3]]))
|
|
|
|
# Tests using less than the number of dims, and ellipsis
|
|
|
|
# reference is 1 2
|
|
# 3 4
|
|
# 5 6
|
|
reference = conv_fn(consec((3, 2)))
|
|
self.assertEqual(reference[ri([0, 2]), ], torch.Tensor([[1, 2], [5, 6]]))
|
|
self.assertEqual(reference[ri([1]), ...], torch.Tensor([[3, 4]]))
|
|
self.assertEqual(reference[..., ri([1])], torch.Tensor([[2], [4], [6]]))
|
|
|
|
# verify too many indices fails
|
|
with self.assertRaises(IndexError):
|
|
reference[ri([1]), ri([0, 2]), ri([3])]
|
|
|
|
if TEST_NUMPY:
|
|
# we use numpy to compare against, to verify that our advanced
|
|
# indexing semantics are the same, and also for ease of test
|
|
# writing
|
|
|
|
def tensor_indices_to_np(tensor, indices):
|
|
# convert the Torch Tensor to a numpy array
|
|
if (tensor.is_cuda):
|
|
tensor = tensor.cpu()
|
|
npt = tensor.numpy()
|
|
|
|
# convert indices
|
|
idxs = tuple(i.tolist() if isinstance(i, torch.LongTensor) else
|
|
i for i in indices)
|
|
|
|
return npt, idxs
|
|
|
|
def get_numpy(tensor, indices):
|
|
npt, idxs = tensor_indices_to_np(tensor, indices)
|
|
|
|
# index and return as a Torch Tensor
|
|
return torch.Tensor(npt[idxs])
|
|
|
|
def set_numpy(tensor, indices, value):
|
|
if not isinstance(value, int):
|
|
if value.is_cuda:
|
|
value = value.cpu()
|
|
value = value.numpy()
|
|
|
|
npt, idxs = tensor_indices_to_np(tensor, indices)
|
|
npt[idxs] = value
|
|
return npt
|
|
|
|
def assert_get_eq(tensor, indexer):
|
|
self.assertEqual(reference[indexer],
|
|
conv_fn(get_numpy(reference, indexer)))
|
|
|
|
def assert_set_eq(tensor, indexer, val):
|
|
pyt = tensor.clone()
|
|
numt = tensor.clone()
|
|
pyt[indexer] = val
|
|
numt = conv_fn(torch.Tensor(set_numpy(numt, indexer, val)))
|
|
self.assertEqual(pyt, numt)
|
|
|
|
def get_set_tensor(indexed, indexer):
|
|
set_size = indexed[indexer].size()
|
|
set_count = indexed[indexer].numel()
|
|
set_tensor = conv_fn(torch.randperm(set_count).view(set_size).double())
|
|
return set_tensor
|
|
|
|
# Tensor is 0 1 2 3 4
|
|
# 5 6 7 8 9
|
|
# 10 11 12 13 14
|
|
# 15 16 17 18 19
|
|
reference = conv_fn(torch.arange(0, 20).view(4, 5))
|
|
|
|
indices_to_test = [
|
|
# grab the second, fourth columns
|
|
[slice(None), [1, 3]],
|
|
|
|
# first, third rows,
|
|
[[0, 2], slice(None)],
|
|
|
|
# weird shape
|
|
[slice(None), [[0, 1],
|
|
[2, 3]]]
|
|
]
|
|
|
|
# only test dupes on gets
|
|
get_indices_to_test = indices_to_test + [[slice(None), [0, 1, 1, 2, 2]]]
|
|
|
|
for indexer in get_indices_to_test:
|
|
assert_get_eq(reference, indexer)
|
|
|
|
for indexer in indices_to_test:
|
|
assert_set_eq(reference, indexer, 44)
|
|
assert_set_eq(reference,
|
|
indexer,
|
|
get_set_tensor(reference, indexer))
|
|
|
|
reference = conv_fn(torch.arange(0, 160).view(4, 8, 5))
|
|
|
|
indices_to_test = [
|
|
[slice(None), slice(None), [0, 3, 4]],
|
|
[slice(None), [2, 4, 5, 7], slice(None)],
|
|
[[2, 3], slice(None), slice(None)],
|
|
[slice(None), [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), [0], [1, 2, 4]],
|
|
[slice(None), [0, 1, 3], [4]],
|
|
[slice(None), [[0, 1], [1, 0]], [[2, 3], [3, 0]]],
|
|
[slice(None), [[0, 1], [1, 0]], [[2, 3]]],
|
|
[slice(None), [[0, 1], [2, 3]], [[0]]],
|
|
[slice(None), [[5, 6]], [[0, 3], [4, 4]]],
|
|
[slice(None), [[2]], [[0, 3], [4, 4]]],
|
|
[[0, 2, 3], [1, 3, 4], slice(None)],
|
|
[[0], [1, 2, 4], slice(None)],
|
|
[[0, 1, 3], [4], slice(None)],
|
|
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)],
|
|
[[[0, 1], [1, 0]], [[2, 3]], slice(None)],
|
|
[[[0, 1], [2, 3]], [[0]], slice(None)],
|
|
[[[2, 1]], [[0, 3], [4, 4]], slice(None)],
|
|
[[[2]], [[0, 3], [4, 1]], slice(None)],
|
|
|
|
# less dim, ellipsis
|
|
[[0, 2], ],
|
|
[[0, 2], slice(None)],
|
|
[[0, 2], Ellipsis],
|
|
[[0, 2], slice(None), Ellipsis],
|
|
[[0, 2], Ellipsis, slice(None)],
|
|
[[0, 2], [1, 3]],
|
|
[[0, 2], [1, 3], Ellipsis],
|
|
[Ellipsis, [1, 3], [2, 3]],
|
|
[Ellipsis, [2, 3, 4]],
|
|
[Ellipsis, slice(None), [2, 3, 4]],
|
|
[slice(None), Ellipsis, [2, 3, 4]],
|
|
|
|
# ellipsis counts for nothing
|
|
[Ellipsis, slice(None), slice(None), [0, 3, 4]],
|
|
[slice(None), Ellipsis, slice(None), [0, 3, 4]],
|
|
[slice(None), slice(None), Ellipsis, [0, 3, 4]],
|
|
[slice(None), slice(None), [0, 3, 4], Ellipsis],
|
|
[Ellipsis, [[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None)],
|
|
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], Ellipsis, slice(None)],
|
|
[[[0, 1], [1, 0]], [[2, 1], [3, 5]], slice(None), Ellipsis],
|
|
]
|
|
|
|
for indexer in indices_to_test:
|
|
assert_get_eq(reference, indexer)
|
|
assert_set_eq(reference, indexer, 212)
|
|
assert_set_eq(reference,
|
|
indexer,
|
|
get_set_tensor(reference, indexer))
|
|
|
|
reference = conv_fn(torch.arange(0, 1296).view(3, 9, 8, 6))
|
|
|
|
indices_to_test = [
|
|
[slice(None), slice(None), slice(None), [0, 3, 4]],
|
|
[slice(None), slice(None), [2, 4, 5, 7], slice(None)],
|
|
[slice(None), [2, 3], slice(None), slice(None)],
|
|
[[1, 2], slice(None), slice(None), slice(None)],
|
|
[slice(None), slice(None), [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), slice(None), [0], [1, 2, 4]],
|
|
[slice(None), slice(None), [0, 1, 3], [4]],
|
|
[slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3]]],
|
|
[slice(None), slice(None), [[0, 1], [2, 3]], [[0]]],
|
|
[slice(None), slice(None), [[5, 6]], [[0, 3], [4, 4]]],
|
|
[slice(None), [0, 2, 3], [1, 3, 4], slice(None)],
|
|
[slice(None), [0], [1, 2, 4], slice(None)],
|
|
[slice(None), [0, 1, 3], [4], slice(None)],
|
|
[slice(None), [[0, 1], [3, 4]], [[2, 3], [0, 1]], slice(None)],
|
|
[slice(None), [[0, 1], [3, 4]], [[2, 3]], slice(None)],
|
|
[slice(None), [[0, 1], [3, 2]], [[0]], slice(None)],
|
|
[slice(None), [[2, 1]], [[0, 3], [6, 4]], slice(None)],
|
|
[slice(None), [[2]], [[0, 3], [4, 2]], slice(None)],
|
|
[[0, 1, 2], [1, 3, 4], slice(None), slice(None)],
|
|
[[0], [1, 2, 4], slice(None), slice(None)],
|
|
[[0, 1, 2], [4], slice(None), slice(None)],
|
|
[[[0, 1], [0, 2]], [[2, 4], [1, 5]], slice(None), slice(None)],
|
|
[[[0, 1], [1, 2]], [[2, 0]], slice(None), slice(None)],
|
|
[[[2, 2]], [[0, 3], [4, 5]], slice(None), slice(None)],
|
|
[[[2]], [[0, 3], [4, 5]], slice(None), slice(None)],
|
|
[slice(None), [3, 4, 6], [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), [2, 3, 4], [1, 3, 4], [4]],
|
|
[slice(None), [0, 1, 3], [4], [1, 3, 4]],
|
|
[slice(None), [6], [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), [2, 3, 5], [3], [4]],
|
|
[slice(None), [0], [4], [1, 3, 4]],
|
|
[slice(None), [6], [0, 2, 3], [1]],
|
|
[slice(None), [[0, 3], [3, 6]], [[0, 1], [1, 3]], [[5, 3], [1, 2]]],
|
|
[[2, 2, 1], [0, 2, 3], [1, 3, 4], slice(None)],
|
|
[[2, 0, 1], [1, 2, 3], [4], slice(None)],
|
|
[[0, 1, 2], [4], [1, 3, 4], slice(None)],
|
|
[[0], [0, 2, 3], [1, 3, 4], slice(None)],
|
|
[[0, 2, 1], [3], [4], slice(None)],
|
|
[[0], [4], [1, 3, 4], slice(None)],
|
|
[[1], [0, 2, 3], [1], slice(None)],
|
|
[[[1, 2], [1, 2]], [[0, 1], [2, 3]], [[2, 3], [3, 5]], slice(None)],
|
|
|
|
# less dim, ellipsis
|
|
[Ellipsis, [0, 3, 4]],
|
|
[Ellipsis, slice(None), [0, 3, 4]],
|
|
[Ellipsis, slice(None), slice(None), [0, 3, 4]],
|
|
[slice(None), Ellipsis, [0, 3, 4]],
|
|
[slice(None), slice(None), Ellipsis, [0, 3, 4]],
|
|
[slice(None), [0, 2, 3], [1, 3, 4]],
|
|
[slice(None), [0, 2, 3], [1, 3, 4], Ellipsis],
|
|
[Ellipsis, [0, 2, 3], [1, 3, 4], slice(None)],
|
|
[[0], [1, 2, 4]],
|
|
[[0], [1, 2, 4], slice(None)],
|
|
[[0], [1, 2, 4], Ellipsis],
|
|
[[0], [1, 2, 4], Ellipsis, slice(None)],
|
|
[[1], ],
|
|
[[0, 2, 1], [3], [4]],
|
|
[[0, 2, 1], [3], [4], slice(None)],
|
|
[[0, 2, 1], [3], [4], Ellipsis],
|
|
[Ellipsis, [0, 2, 1], [3], [4]],
|
|
]
|
|
|
|
for indexer in indices_to_test:
|
|
assert_get_eq(reference, indexer)
|
|
assert_set_eq(reference, indexer, 1333)
|
|
assert_set_eq(reference,
|
|
indexer,
|
|
get_set_tensor(reference, indexer))
|
|
indices_to_test += [
|
|
[slice(None), slice(None), [[0, 1], [1, 0]], [[2, 3], [3, 0]]],
|
|
[slice(None), slice(None), [[2]], [[0, 3], [4, 4]]],
|
|
]
|
|
for indexer in indices_to_test:
|
|
assert_get_eq(reference, indexer)
|
|
assert_set_eq(reference, indexer, 1333)
|
|
|
|
def test_advancedindex(self):
|
|
self._test_advancedindex(self, lambda x: x)
|
|
|
|
@staticmethod
|
|
def _test_advancedindex_big(self, conv_fn):
|
|
reference = conv_fn(torch.arange(0, 123344).int())
|
|
|
|
self.assertEqual(reference[[0, 123, 44488, 68807, 123343], ],
|
|
torch.LongTensor([0, 123, 44488, 68807, 123343]))
|
|
|
|
def test_advancedindex_big(self):
|
|
self._test_advancedindex_big(self, lambda x: x)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_newaxis_numpy_comparison(self):
|
|
def run_test(tensor, *idx):
|
|
npt = tensor.numpy()
|
|
self.assertEqual(tensor[idx], npt[idx])
|
|
|
|
# 1D Tensor Tests
|
|
x = torch.arange(0, 10)
|
|
cases = [
|
|
[None],
|
|
[None, None],
|
|
[Ellipsis, None],
|
|
[None, Ellipsis],
|
|
[2, None],
|
|
[None, 2],
|
|
[Ellipsis, None, 2],
|
|
[Ellipsis, 2, None],
|
|
[2, Ellipsis, None],
|
|
[2, None, Ellipsis],
|
|
[None, 2, Ellipsis],
|
|
[None, Ellipsis, 2],
|
|
]
|
|
|
|
for case in cases:
|
|
run_test(x, *case)
|
|
|
|
# 2D Tensor Tests
|
|
x = torch.arange(0, 12).view(3, 4)
|
|
cases = [
|
|
[None],
|
|
[None, None],
|
|
[None, None, None],
|
|
[Ellipsis, None],
|
|
[Ellipsis, None, None],
|
|
[None, Ellipsis],
|
|
[None, Ellipsis, None],
|
|
[None, None, Ellipsis],
|
|
[2, None],
|
|
[2, None, Ellipsis],
|
|
[2, Ellipsis, None],
|
|
[None, 2, Ellipsis],
|
|
[Ellipsis, 2, None],
|
|
[Ellipsis, None, 2],
|
|
[None, Ellipsis, 2],
|
|
[1, 2, None],
|
|
[1, 2, Ellipsis, None],
|
|
[1, Ellipsis, 2, None],
|
|
[Ellipsis, 1, None, 2],
|
|
[Ellipsis, 1, 2, None],
|
|
[1, None, 2, Ellipsis],
|
|
[None, 1, Ellipsis, 2],
|
|
[None, 1, 2, Ellipsis],
|
|
]
|
|
|
|
for case in cases:
|
|
run_test(x, *case)
|
|
|
|
def test_newindex(self):
|
|
reference = self._consecutive((3, 3, 3))
|
|
# This relies on __index__() being correct - but we have separate tests for that
|
|
|
|
def checkPartialAssign(index):
|
|
reference = torch.zeros(3, 3, 3)
|
|
reference[index] = self._consecutive((3, 3, 3))[index]
|
|
self.assertEqual(reference[index], self._consecutive((3, 3, 3))[index], 0)
|
|
reference[index] = 0
|
|
self.assertEqual(reference, torch.zeros(3, 3, 3), 0)
|
|
|
|
checkPartialAssign(0)
|
|
checkPartialAssign(1)
|
|
checkPartialAssign(2)
|
|
checkPartialAssign((0, 1))
|
|
checkPartialAssign((1, 2))
|
|
checkPartialAssign((0, 2))
|
|
checkPartialAssign(torch.LongTensor((0, 2)))
|
|
|
|
with self.assertRaises(IndexError):
|
|
reference[1, 1, 1, 1] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[1, 1, 1, (1, 1)] = 1
|
|
with self.assertRaises(IndexError):
|
|
reference[3, 3, 3, 3, 3, 3, 3, 3] = 1
|
|
with self.assertRaises(TypeError):
|
|
reference[0.0] = 1
|
|
with self.assertRaises(TypeError):
|
|
reference[0.0:2.0] = 1
|
|
with self.assertRaises(TypeError):
|
|
reference[0.0, 0.0:2.0] = 1
|
|
with self.assertRaises(TypeError):
|
|
reference[0.0, :, 0.0:2.0] = 1
|
|
with self.assertRaises(TypeError):
|
|
reference[0.0, ..., 0.0:2.0] = 1
|
|
with self.assertRaises(TypeError):
|
|
reference[0.0, :, 0.0] = 1
|
|
|
|
# LongTensor assignments are not fully supported yet
|
|
with self.assertRaises(TypeError):
|
|
reference[0, torch.LongTensor([2, 4])] = 1
|
|
|
|
def test_index_copy(self):
|
|
num_copy, num_dest = 3, 20
|
|
dest = torch.randn(num_dest, 4, 5)
|
|
src = torch.randn(num_copy, 4, 5)
|
|
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
|
|
dest2 = dest.clone()
|
|
dest.index_copy_(0, idx, src)
|
|
for i in range(idx.size(0)):
|
|
dest2[idx[i]].copy_(src[i])
|
|
self.assertEqual(dest, dest2, 0)
|
|
|
|
dest = torch.randn(num_dest)
|
|
src = torch.randn(num_copy)
|
|
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
|
|
dest2 = dest.clone()
|
|
dest.index_copy_(0, idx, src)
|
|
for i in range(idx.size(0)):
|
|
dest2[idx[i]] = src[i]
|
|
self.assertEqual(dest, dest2, 0)
|
|
|
|
def test_index_add(self):
|
|
num_copy, num_dest = 3, 3
|
|
dest = torch.randn(num_dest, 4, 5)
|
|
src = torch.randn(num_copy, 4, 5)
|
|
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
|
|
dest2 = dest.clone()
|
|
dest.index_add_(0, idx, src)
|
|
for i in range(idx.size(0)):
|
|
dest2[idx[i]].add_(src[i])
|
|
self.assertEqual(dest, dest2)
|
|
|
|
dest = torch.randn(num_dest)
|
|
src = torch.randn(num_copy)
|
|
idx = torch.randperm(num_dest).narrow(0, 0, num_copy)
|
|
dest2 = dest.clone()
|
|
dest.index_add_(0, idx, src)
|
|
for i in range(idx.size(0)):
|
|
dest2[idx[i]] = dest2[idx[i]] + src[i]
|
|
self.assertEqual(dest, dest2)
|
|
|
|
def test_take(self):
|
|
def check(src, idx):
|
|
expected = src.contiguous().view(-1).index_select(
|
|
0, idx.contiguous().view(-1)).view_as(idx)
|
|
actual = src.take(idx)
|
|
self.assertEqual(actual.size(), idx.size())
|
|
self.assertEqual(expected, actual)
|
|
|
|
src = torch.randn(2, 3, 5)
|
|
idx = torch.LongTensor([[0, 2], [3, 4]])
|
|
check(src, idx)
|
|
check(src.transpose(1, 2), idx)
|
|
|
|
def test_put_(self):
|
|
def check(dst, idx, value):
|
|
expected = dst.clone().view(-1).index_copy_(
|
|
0, idx.contiguous().view(-1), value.contiguous().view(-1))
|
|
expected = expected.view_as(dst)
|
|
dst.put_(idx, value)
|
|
self.assertEqual(expected, dst)
|
|
|
|
dst = torch.randn(2, 3, 5)
|
|
idx = torch.LongTensor([[0, 2], [3, 4]])
|
|
values = torch.randn(2, 2)
|
|
check(dst, idx, values)
|
|
check(dst.transpose(1, 2), idx, values)
|
|
|
|
def test_put_accumulate(self):
|
|
dst = torch.ones(2, 2)
|
|
idx = torch.LongTensor([[0, 1], [0, 1]])
|
|
src = torch.Tensor([1, 2, 3, 4])
|
|
dst.put_(idx, src, accumulate=True)
|
|
self.assertEqual(dst.tolist(), [[5, 7], [1, 1]])
|
|
|
|
# Fill idx with valid indices.
|
|
@staticmethod
|
|
def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o):
|
|
for i in range(1 if dim == 0 else m):
|
|
for j in range(1 if dim == 1 else n):
|
|
for k in range(1 if dim == 2 else o):
|
|
ii = [i, j, k]
|
|
ii[dim] = slice(0, idx.size(dim) + 1)
|
|
idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row]
|
|
|
|
@staticmethod
|
|
def _test_gather(self, cast, test_bounds=True):
|
|
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
|
|
elems_per_row = random.randint(1, 10)
|
|
dim = random.randrange(3)
|
|
|
|
src = torch.randn(m, n, o)
|
|
idx_size = [m, n, o]
|
|
idx_size[dim] = elems_per_row
|
|
idx = torch.LongTensor().resize_(*idx_size)
|
|
TestTorch._fill_indices(self, idx, dim, src.size(dim), elems_per_row, m, n, o)
|
|
|
|
src = cast(src)
|
|
idx = cast(idx)
|
|
|
|
actual = torch.gather(src, dim, idx)
|
|
expected = cast(torch.Tensor().resize_(*idx_size))
|
|
for i in range(idx_size[0]):
|
|
for j in range(idx_size[1]):
|
|
for k in range(idx_size[2]):
|
|
ii = [i, j, k]
|
|
ii[dim] = idx[i, j, k]
|
|
expected[i, j, k] = src[tuple(ii)]
|
|
self.assertEqual(actual, expected, 0)
|
|
|
|
if test_bounds:
|
|
idx[0][0][0] = 23
|
|
self.assertRaises(RuntimeError, lambda: torch.gather(src, dim, idx))
|
|
|
|
src = cast(torch.randn(3, 4, 5))
|
|
expected, idx = src.max(2, True)
|
|
expected = cast(expected)
|
|
idx = cast(idx)
|
|
actual = torch.gather(src, 2, idx)
|
|
self.assertEqual(actual, expected, 0)
|
|
|
|
def test_gather(self):
|
|
self._test_gather(self, lambda t: t)
|
|
|
|
@staticmethod
|
|
def _test_scatter_base(self, cast, method, is_scalar=False, test_bounds=True):
|
|
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
|
|
elems_per_row = random.randint(1, 10)
|
|
dim = random.randrange(3)
|
|
|
|
idx_size = [m, n, o]
|
|
idx_size[dim] = elems_per_row
|
|
idx = cast(torch.LongTensor().resize_(*idx_size))
|
|
TestTorch._fill_indices(self, idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o)
|
|
|
|
if is_scalar:
|
|
src = random.random()
|
|
else:
|
|
src = cast(torch.Tensor(*idx_size).normal_())
|
|
|
|
base = cast(torch.randn(m, n, o))
|
|
actual = getattr(base.clone(), method)(dim, idx, src)
|
|
expected = base.clone()
|
|
for i in range(idx_size[0]):
|
|
for j in range(idx_size[1]):
|
|
for k in range(idx_size[2]):
|
|
ii = [i, j, k]
|
|
ii[dim] = idx[i, j, k]
|
|
if method == 'scatter_' and not is_scalar:
|
|
expected[tuple(ii)] = src[i, j, k]
|
|
elif method == 'scatter_add_':
|
|
expected[tuple(ii)] += src[i, j, k]
|
|
else:
|
|
expected[tuple(ii)] = src
|
|
self.assertEqual(actual, expected, 0)
|
|
|
|
if test_bounds:
|
|
idx[0][0][0] = 34
|
|
with self.assertRaises(RuntimeError):
|
|
getattr(base.clone(), method)(dim, idx, src)
|
|
|
|
def test_scatter(self):
|
|
self._test_scatter_base(self, lambda t: t, 'scatter_')
|
|
|
|
def test_scatterAdd(self):
|
|
self._test_scatter_base(self, lambda t: t, 'scatter_add_')
|
|
|
|
def test_scatterFill(self):
|
|
self._test_scatter_base(self, lambda t: t, 'scatter_', True)
|
|
|
|
def test_masked_scatter(self):
|
|
num_copy, num_dest = 3, 10
|
|
dest = torch.randn(num_dest)
|
|
src = torch.randn(num_copy)
|
|
mask = torch.ByteTensor((0, 0, 0, 0, 1, 0, 1, 0, 1, 0))
|
|
dest2 = dest.clone()
|
|
dest.masked_scatter_(mask, src)
|
|
j = 0
|
|
for i in range(num_dest):
|
|
if mask[i]:
|
|
dest2[i] = src[j]
|
|
j += 1
|
|
self.assertEqual(dest, dest2, 0)
|
|
|
|
# make source bigger than number of 1s in mask
|
|
src = torch.randn(num_dest)
|
|
dest.masked_scatter_(mask, src)
|
|
|
|
# make src smaller. this should fail
|
|
src = torch.randn(num_copy - 1)
|
|
with self.assertRaises(RuntimeError):
|
|
dest.masked_scatter_(mask, src)
|
|
|
|
def test_masked_select(self):
|
|
num_src = 10
|
|
src = torch.randn(num_src)
|
|
mask = torch.rand(num_src).clamp(0, 1).mul(2).floor().byte()
|
|
dst = src.masked_select(mask)
|
|
dst2 = []
|
|
for i in range(num_src):
|
|
if mask[i]:
|
|
dst2 += [src[i]]
|
|
self.assertEqual(dst, torch.Tensor(dst2), 0)
|
|
|
|
def test_masked_fill(self):
|
|
num_dest = 10
|
|
dst = torch.randn(num_dest)
|
|
mask = torch.rand(num_dest).mul(2).floor().byte()
|
|
val = random.random()
|
|
dst2 = dst.clone()
|
|
dst.masked_fill_(mask, val)
|
|
for i in range(num_dest):
|
|
if mask[i]:
|
|
dst2[i] = val
|
|
self.assertEqual(dst, dst2, 0)
|
|
|
|
def test_abs(self):
|
|
size = 1000
|
|
max_val = 1000
|
|
original = torch.rand(size).mul(max_val)
|
|
# Tensor filled with values from {-1, 1}
|
|
switch = torch.rand(size).mul(2).floor().mul(2).add(-1)
|
|
|
|
types = ['torch.DoubleTensor', 'torch.FloatTensor', 'torch.LongTensor', 'torch.IntTensor']
|
|
for t in types:
|
|
data = original.type(t)
|
|
switch = switch.type(t)
|
|
res = torch.mul(data, switch)
|
|
# abs is used in assertEqual so we use the slow version instead
|
|
self.assertTensorsSlowEqual(res.abs(), data, 1e-16)
|
|
|
|
# Checking that the right abs function is called for LongTensor
|
|
bignumber = 2 ^ 31 + 1
|
|
res = torch.LongTensor((-bignumber,))
|
|
self.assertGreater(res.abs()[0], 0)
|
|
|
|
def test_unbiased(self):
|
|
tensor = torch.randn(100)
|
|
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
|
|
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
|
|
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False)[0])
|
|
|
|
tensor = torch.FloatTensor([1.0, 2.0])
|
|
self.assertEqual(tensor.var(unbiased=True), 0.5)
|
|
self.assertEqual(tensor.var(unbiased=False), 0.25)
|
|
|
|
tensor = torch.FloatTensor([1.0, 2.0, 3.0])
|
|
self.assertEqual(tensor.var(unbiased=True), 1.0)
|
|
self.assertEqual(tensor.var(unbiased=False), 2.0 / 3.0)
|
|
|
|
tensor = torch.randn(100)
|
|
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
|
|
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
|
|
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False)[0])
|
|
|
|
def test_var_stability(self):
|
|
tensor = torch.FloatTensor([2281.5, 2281.25])
|
|
self.assertEqual(tensor.var(0)[0], 0.03125)
|
|
self.assertEqual(tensor.var(), 0.03125)
|
|
|
|
def test_view(self):
|
|
tensor = torch.rand(15)
|
|
template = torch.rand(3, 5)
|
|
empty = torch.Tensor()
|
|
target = template.size()
|
|
self.assertEqual(tensor.view_as(template).size(), target)
|
|
self.assertEqual(tensor.view(3, 5).size(), target)
|
|
self.assertEqual(tensor.view(torch.Size([3, 5])).size(), target)
|
|
self.assertEqual(tensor.view(-1, 5).size(), target)
|
|
self.assertEqual(tensor.view(3, -1).size(), target)
|
|
tensor_view = tensor.view(5, 3)
|
|
tensor_view.fill_(random.uniform(0, 1))
|
|
# suppress broadcastable warning
|
|
with warnings.catch_warnings(record=True):
|
|
self.assertEqual((tensor_view - tensor).abs().max(), 0)
|
|
self.assertEqual(empty.view_as(empty), empty)
|
|
self.assertEqual(empty.view(0), empty)
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(15, 0))
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(7, -1))
|
|
self.assertRaises(RuntimeError, lambda: tensor.view(15, -1, -1))
|
|
|
|
def test_expand(self):
|
|
tensor = torch.rand(1, 8, 1)
|
|
tensor2 = torch.rand(5)
|
|
template = torch.rand(4, 8, 5)
|
|
target = template.size()
|
|
self.assertEqual(tensor.expand_as(template).size(), target)
|
|
self.assertEqual(tensor.expand(4, 8, 5).size(), target)
|
|
self.assertEqual(tensor.expand(target).size(), target)
|
|
self.assertEqual(tensor2.expand_as(template).size(), target)
|
|
self.assertEqual(tensor2.expand(4, 8, 5).size(), target)
|
|
self.assertEqual(tensor2.expand(target).size(), target)
|
|
|
|
# test double expand
|
|
self.assertEqual(tensor2.expand(1, 5).expand(2, 2, 5), tensor2.repeat(2, 2, 1))
|
|
|
|
# test non-contiguous
|
|
noncontig = torch.randn(5, 2, 1, 3)[:, 0]
|
|
assert not noncontig.is_contiguous()
|
|
self.assertEqual(noncontig.expand(2, 5, 4, 3), noncontig.contiguous().repeat(2, 1, 4, 1))
|
|
|
|
# make sure it's compatible with unsqueeze
|
|
expanded = tensor2.expand(1, 1, 5)
|
|
unsqueezed = tensor2.unsqueeze(0).unsqueeze(1)
|
|
self.assertEqual(expanded, unsqueezed)
|
|
self.assertEqual(expanded.stride(), unsqueezed.stride())
|
|
|
|
# test -1 as target size
|
|
self.assertEqual(tensor.expand(4, -1, 5), tensor.expand(4, 8, 5))
|
|
self.assertRaises(RuntimeError, lambda: tensor2.expand(-1, -1))
|
|
|
|
# test expanding empty to empty
|
|
self.assertEqual(torch.randn(()).expand(()), torch.randn(()))
|
|
|
|
def test_repeat(self):
|
|
result = torch.Tensor()
|
|
tensor = torch.rand(8, 4)
|
|
size = (3, 1, 1)
|
|
torchSize = torch.Size(size)
|
|
target = [3, 8, 4]
|
|
self.assertEqual(tensor.repeat(*size).size(), target, 'Error in repeat')
|
|
self.assertEqual(tensor.repeat(torchSize).size(), target, 'Error in repeat using LongStorage')
|
|
result = tensor.repeat(*size)
|
|
self.assertEqual(result.size(), target, 'Error in repeat using result')
|
|
result = tensor.repeat(torchSize)
|
|
self.assertEqual(result.size(), target, 'Error in repeat using result and LongStorage')
|
|
self.assertEqual(result.mean(0).view(8, 4), tensor, 'Error in repeat (not equal)')
|
|
|
|
def test_is_same_size(self):
|
|
t1 = torch.Tensor(3, 4, 9, 10)
|
|
t2 = torch.Tensor(3, 4)
|
|
t3 = torch.Tensor(1, 9, 3, 3)
|
|
t4 = torch.Tensor(3, 4, 9, 10)
|
|
|
|
self.assertFalse(t1.is_same_size(t2))
|
|
self.assertFalse(t1.is_same_size(t3))
|
|
self.assertTrue(t1.is_same_size(t4))
|
|
|
|
def test_is_set_to(self):
|
|
t1 = torch.Tensor(3, 4, 9, 10)
|
|
t2 = torch.Tensor(3, 4, 9, 10)
|
|
t3 = torch.Tensor().set_(t1)
|
|
t4 = t3.clone().resize_(12, 90)
|
|
self.assertFalse(t1.is_set_to(t2))
|
|
self.assertTrue(t1.is_set_to(t3))
|
|
self.assertTrue(t3.is_set_to(t1), "is_set_to should be symmetric")
|
|
self.assertFalse(t1.is_set_to(t4))
|
|
self.assertFalse(torch.Tensor().is_set_to(torch.Tensor()),
|
|
"Tensors with no storages should not appear to be set "
|
|
"to each other")
|
|
|
|
def test_tensor_set(self):
|
|
t1 = torch.Tensor()
|
|
t2 = torch.Tensor(3, 4, 9, 10).uniform_()
|
|
t1.set_(t2)
|
|
self.assertEqual(t1.storage()._cdata, t2.storage()._cdata)
|
|
size = torch.Size([9, 3, 4, 10])
|
|
t1.set_(t2.storage(), 0, size)
|
|
self.assertEqual(t1.size(), size)
|
|
t1.set_(t2.storage(), 0, tuple(size))
|
|
self.assertEqual(t1.size(), size)
|
|
self.assertEqual(t1.stride(), (120, 40, 10, 1))
|
|
stride = (10, 360, 90, 1)
|
|
t1.set_(t2.storage(), 0, size, stride)
|
|
self.assertEqual(t1.stride(), stride)
|
|
t1.set_(t2.storage(), 0, size=size, stride=stride)
|
|
self.assertEqual(t1.size(), size)
|
|
self.assertEqual(t1.stride(), stride)
|
|
|
|
def test_equal(self):
|
|
# Contiguous, 1D
|
|
t1 = torch.Tensor((3, 4, 9, 10))
|
|
t2 = t1.contiguous()
|
|
t3 = torch.Tensor((1, 9, 3, 10))
|
|
t4 = torch.Tensor((3, 4, 9))
|
|
t5 = torch.Tensor()
|
|
self.assertTrue(t1.equal(t2))
|
|
self.assertFalse(t1.equal(t3))
|
|
self.assertFalse(t1.equal(t4))
|
|
self.assertFalse(t1.equal(t5))
|
|
self.assertTrue(torch.equal(t1, t2))
|
|
self.assertFalse(torch.equal(t1, t3))
|
|
self.assertFalse(torch.equal(t1, t4))
|
|
self.assertFalse(torch.equal(t1, t5))
|
|
|
|
# Non contiguous, 2D
|
|
s = torch.Tensor(((1, 2, 3, 4), (5, 6, 7, 8)))
|
|
s1 = s[:, 1:3]
|
|
s2 = s1.clone()
|
|
s3 = torch.Tensor(((2, 3), (6, 7)))
|
|
s4 = torch.Tensor(((0, 0), (0, 0)))
|
|
|
|
self.assertFalse(s1.is_contiguous())
|
|
self.assertTrue(s1.equal(s2))
|
|
self.assertTrue(s1.equal(s3))
|
|
self.assertFalse(s1.equal(s4))
|
|
self.assertTrue(torch.equal(s1, s2))
|
|
self.assertTrue(torch.equal(s1, s3))
|
|
self.assertFalse(torch.equal(s1, s4))
|
|
|
|
def test_element_size(self):
|
|
byte = torch.ByteStorage().element_size()
|
|
char = torch.CharStorage().element_size()
|
|
short = torch.ShortStorage().element_size()
|
|
int = torch.IntStorage().element_size()
|
|
long = torch.LongStorage().element_size()
|
|
float = torch.FloatStorage().element_size()
|
|
double = torch.DoubleStorage().element_size()
|
|
|
|
self.assertEqual(byte, torch.ByteTensor().element_size())
|
|
self.assertEqual(char, torch.CharTensor().element_size())
|
|
self.assertEqual(short, torch.ShortTensor().element_size())
|
|
self.assertEqual(int, torch.IntTensor().element_size())
|
|
self.assertEqual(long, torch.LongTensor().element_size())
|
|
self.assertEqual(float, torch.FloatTensor().element_size())
|
|
self.assertEqual(double, torch.DoubleTensor().element_size())
|
|
|
|
self.assertGreater(byte, 0)
|
|
self.assertGreater(char, 0)
|
|
self.assertGreater(short, 0)
|
|
self.assertGreater(int, 0)
|
|
self.assertGreater(long, 0)
|
|
self.assertGreater(float, 0)
|
|
self.assertGreater(double, 0)
|
|
|
|
# These tests are portable, not necessarily strict for your system.
|
|
self.assertEqual(byte, 1)
|
|
self.assertEqual(char, 1)
|
|
self.assertGreaterEqual(short, 2)
|
|
self.assertGreaterEqual(int, 2)
|
|
self.assertGreaterEqual(int, short)
|
|
self.assertGreaterEqual(long, 4)
|
|
self.assertGreaterEqual(long, int)
|
|
self.assertGreaterEqual(double, float)
|
|
|
|
def test_split(self):
|
|
tensor = torch.rand(7, 4)
|
|
split_size = 3
|
|
dim = 0
|
|
target_sizes = ([3, 4], [3, 4], [1, 4])
|
|
splits = tensor.split(split_size, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
|
|
start = start + target_size[dim]
|
|
|
|
def test_chunk(self):
|
|
tensor = torch.rand(4, 7)
|
|
num_chunks = 3
|
|
dim = 1
|
|
target_sizes = ([4, 3], [4, 3], [4, 1])
|
|
splits = tensor.chunk(num_chunks, dim)
|
|
start = 0
|
|
for target_size, split in zip(target_sizes, splits):
|
|
self.assertEqual(split.size(), target_size)
|
|
self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, 0)
|
|
start = start + target_size[dim]
|
|
|
|
def test_tolist(self):
|
|
list0D = []
|
|
tensor0D = torch.Tensor(list0D)
|
|
self.assertEqual(tensor0D.tolist(), list0D)
|
|
|
|
table1D = [1, 2, 3]
|
|
tensor1D = torch.Tensor(table1D)
|
|
storage = torch.Storage(table1D)
|
|
self.assertEqual(tensor1D.tolist(), table1D)
|
|
self.assertEqual(storage.tolist(), table1D)
|
|
self.assertEqual(tensor1D.tolist(), table1D)
|
|
self.assertEqual(storage.tolist(), table1D)
|
|
|
|
table2D = [[1, 2], [3, 4]]
|
|
tensor2D = torch.Tensor(table2D)
|
|
self.assertEqual(tensor2D.tolist(), table2D)
|
|
|
|
tensor3D = torch.Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
|
|
tensorNonContig = tensor3D.select(1, 1)
|
|
self.assertFalse(tensorNonContig.is_contiguous())
|
|
self.assertEqual(tensorNonContig.tolist(), [[3, 4], [7, 8]])
|
|
|
|
def test_permute(self):
|
|
orig = [1, 2, 3, 4, 5, 6, 7]
|
|
perm = list(torch.randperm(7))
|
|
x = torch.Tensor(*orig).fill_(0)
|
|
new = list(map(lambda x: x - 1, x.permute(*perm).size()))
|
|
self.assertEqual(perm, new)
|
|
self.assertEqual(x.size(), orig)
|
|
|
|
def test_storage(self):
|
|
from torch.autograd import Variable
|
|
v = Variable(torch.randn(3, 5))
|
|
self.assertEqual(v.storage()[0], v.data[0][0])
|
|
self.assertEqual(v.storage()[14], v.data[2][4])
|
|
|
|
def test_storageview(self):
|
|
s1 = torch.LongStorage((3, 4, 5))
|
|
s2 = torch.LongStorage(s1, 1)
|
|
|
|
self.assertEqual(s2.size(), 2)
|
|
self.assertEqual(s2[0], s1[1])
|
|
self.assertEqual(s2[1], s1[2])
|
|
|
|
s2[1] = 13
|
|
self.assertEqual(13, s1[2])
|
|
|
|
def test_nonzero(self):
|
|
num_src = 12
|
|
|
|
types = [
|
|
'torch.ByteTensor',
|
|
'torch.CharTensor',
|
|
'torch.ShortTensor',
|
|
'torch.IntTensor',
|
|
'torch.FloatTensor',
|
|
'torch.DoubleTensor',
|
|
'torch.LongTensor',
|
|
]
|
|
|
|
shapes = [
|
|
torch.Size((12,)),
|
|
torch.Size((12, 1)),
|
|
torch.Size((1, 12)),
|
|
torch.Size((6, 2)),
|
|
torch.Size((3, 2, 2)),
|
|
]
|
|
|
|
for t in types:
|
|
while True:
|
|
tensor = torch.rand(num_src).mul(2).floor().type(t)
|
|
if tensor.sum() > 0:
|
|
break
|
|
for shape in shapes:
|
|
tensor = tensor.clone().resize_(shape)
|
|
dst1 = torch.nonzero(tensor)
|
|
dst2 = tensor.nonzero()
|
|
dst3 = torch.LongTensor()
|
|
torch.nonzero(tensor, out=dst3)
|
|
if len(shape) == 1:
|
|
dst = []
|
|
for i in range(num_src):
|
|
if tensor[i] != 0:
|
|
dst += [i]
|
|
|
|
self.assertEqual(dst1.select(1, 0), torch.LongTensor(dst), 0)
|
|
self.assertEqual(dst2.select(1, 0), torch.LongTensor(dst), 0)
|
|
self.assertEqual(dst3.select(1, 0), torch.LongTensor(dst), 0)
|
|
elif len(shape) == 2:
|
|
# This test will allow through some False positives. It only checks
|
|
# that the elements flagged positive are indeed non-zero.
|
|
for i in range(dst1.size(0)):
|
|
self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1]], 0)
|
|
elif len(shape) == 3:
|
|
# This test will allow through some False positives. It only checks
|
|
# that the elements flagged positive are indeed non-zero.
|
|
for i in range(dst1.size(0)):
|
|
self.assertNotEqual(tensor[dst1[i, 0], dst1[i, 1], dst1[i, 2]], 0)
|
|
|
|
def test_deepcopy(self):
|
|
from copy import deepcopy
|
|
a = torch.randn(5, 5)
|
|
b = torch.randn(5, 5)
|
|
c = a.view(25)
|
|
q = [a, [a.storage(), b.storage()], b, c]
|
|
w = deepcopy(q)
|
|
self.assertEqual(w[0], q[0], 0)
|
|
self.assertEqual(w[1][0], q[1][0], 0)
|
|
self.assertEqual(w[1][1], q[1][1], 0)
|
|
self.assertEqual(w[1], q[1], 0)
|
|
self.assertEqual(w[2], q[2], 0)
|
|
|
|
# Check that deepcopy preserves sharing
|
|
w[0].add_(1)
|
|
for i in range(a.numel()):
|
|
self.assertEqual(w[1][0][i], q[1][0][i] + 1)
|
|
self.assertEqual(w[3], c + 1)
|
|
w[2].sub_(1)
|
|
for i in range(a.numel()):
|
|
self.assertEqual(w[1][1][i], q[1][1][i] - 1)
|
|
|
|
def test_copy(self):
|
|
from copy import copy
|
|
a = torch.randn(5, 5)
|
|
a_clone = a.clone()
|
|
b = copy(a)
|
|
b.fill_(1)
|
|
# copy is a shallow copy, only copies the tensor view,
|
|
# not the data
|
|
self.assertEqual(a, b)
|
|
|
|
def test_pickle(self):
|
|
if sys.version_info[0] == 2:
|
|
import cPickle as pickle
|
|
else:
|
|
import pickle
|
|
a = torch.randn(5, 5)
|
|
serialized = pickle.dumps(a)
|
|
b = pickle.loads(serialized)
|
|
self.assertEqual(a, b)
|
|
|
|
def test_bernoulli(self):
|
|
t = torch.ByteTensor(10, 10)
|
|
|
|
def isBinary(t):
|
|
return torch.ne(t, 0).mul_(torch.ne(t, 1)).sum() == 0
|
|
|
|
p = 0.5
|
|
t.bernoulli_(p)
|
|
self.assertTrue(isBinary(t))
|
|
|
|
p = torch.rand(SIZE)
|
|
t.bernoulli_(p)
|
|
self.assertTrue(isBinary(t))
|
|
|
|
q = torch.rand(5, 5)
|
|
self.assertTrue(isBinary(q.bernoulli()))
|
|
|
|
def test_normal(self):
|
|
q = torch.Tensor(100, 100)
|
|
q.normal_()
|
|
self.assertEqual(q.mean(), 0, 0.2)
|
|
self.assertEqual(q.std(), 1, 0.2)
|
|
|
|
q.normal_(2, 3)
|
|
self.assertEqual(q.mean(), 2, 0.3)
|
|
self.assertEqual(q.std(), 3, 0.3)
|
|
|
|
mean = torch.Tensor(100, 100)
|
|
std = torch.Tensor(100, 100)
|
|
mean[:50] = 0
|
|
mean[50:] = 1
|
|
std[:, :50] = 4
|
|
std[:, 50:] = 1
|
|
|
|
r = torch.normal(mean)
|
|
self.assertEqual(r[:50].mean(), 0, 0.2)
|
|
self.assertEqual(r[50:].mean(), 1, 0.2)
|
|
self.assertEqual(r.std(), 1, 0.2)
|
|
|
|
r = torch.normal(mean, 3)
|
|
self.assertEqual(r[:50].mean(), 0, 0.2)
|
|
self.assertEqual(r[50:].mean(), 1, 0.2)
|
|
self.assertEqual(r.std(), 3, 0.2)
|
|
|
|
r = torch.normal(2, std)
|
|
self.assertEqual(r.mean(), 2, 0.2)
|
|
self.assertEqual(r[:, :50].std(), 4, 0.3)
|
|
self.assertEqual(r[:, 50:].std(), 1, 0.2)
|
|
|
|
r = torch.normal(mean, std)
|
|
self.assertEqual(r[:50].mean(), 0, 0.2)
|
|
self.assertEqual(r[50:].mean(), 1, 0.2)
|
|
self.assertEqual(r[:, :50].std(), 4, 0.3)
|
|
self.assertEqual(r[:, 50:].std(), 1, 0.2)
|
|
|
|
def test_serialization(self):
|
|
a = [torch.randn(5, 5).float() for i in range(2)]
|
|
b = [a[i % 2] for i in range(4)]
|
|
b += [a[0].storage()]
|
|
b += [a[0].storage()[1:4]]
|
|
b += [torch.arange(1, 11).int()]
|
|
t1 = torch.FloatTensor().set_(a[0].storage()[1:4], 0, (3,), (1,))
|
|
t2 = torch.FloatTensor().set_(a[0].storage()[1:4], 0, (3,), (1,))
|
|
b += [(t1.storage(), t1.storage(), t2.storage())]
|
|
b += [a[0].storage()[0:2]]
|
|
for use_name in (False, True):
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
handle = f if not use_name else f.name
|
|
torch.save(b, handle)
|
|
f.seek(0)
|
|
c = torch.load(handle)
|
|
self.assertEqual(b, c, 0)
|
|
self.assertTrue(isinstance(c[0], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[1], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[2], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[3], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[4], torch.FloatStorage))
|
|
c[0].fill_(10)
|
|
self.assertEqual(c[0], c[2], 0)
|
|
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0)
|
|
c[1].fill_(20)
|
|
self.assertEqual(c[1], c[3], 0)
|
|
self.assertEqual(c[4][1:4], c[5], 0)
|
|
|
|
# check that serializing the same storage view object unpickles
|
|
# it as one object not two (and vice versa)
|
|
views = c[7]
|
|
self.assertEqual(views[0]._cdata, views[1]._cdata)
|
|
self.assertEqual(views[0], views[2])
|
|
self.assertNotEqual(views[0]._cdata, views[2]._cdata)
|
|
|
|
rootview = c[8]
|
|
self.assertEqual(rootview.data_ptr(), c[0].data_ptr())
|
|
|
|
def test_serialization_offset(self):
|
|
a = torch.randn(5, 5)
|
|
i = 41
|
|
with tempfile.TemporaryFile() as f:
|
|
pickle.dump(i, f)
|
|
torch.save(a, f)
|
|
f.seek(0)
|
|
j = pickle.load(f)
|
|
b = torch.load(f)
|
|
self.assertTrue(torch.equal(a, b))
|
|
self.assertEqual(i, j)
|
|
|
|
def test_half_tensor(self):
|
|
x = torch.randn(5, 5).float()
|
|
y = torch.randn(5, 5).float()
|
|
xh, yh = x.half(), y.half()
|
|
|
|
self.assertEqual(x.half().float(), x, 1e-3)
|
|
|
|
z = torch.Tensor(5, 5)
|
|
self.assertEqual(z.copy_(xh), x, 1e-3)
|
|
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
torch.save(xh, f)
|
|
f.seek(0)
|
|
xh2 = torch.load(f)
|
|
self.assertEqual(xh.float(), xh2.float())
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_half_tensor_cuda(self):
|
|
x = torch.randn(5, 5).half()
|
|
self.assertEqual(x.cuda(), x)
|
|
|
|
xc = x.cuda()
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
torch.save(xc, f)
|
|
f.seek(0)
|
|
xc2 = torch.load(f)
|
|
self.assertIsInstance(xc2, type(xc))
|
|
self.assertEqual(xc.float(), xc2.float())
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_serialization_cuda(self):
|
|
device_count = torch.cuda.device_count()
|
|
t0 = torch.cuda.FloatTensor(5).fill_(1)
|
|
torch.cuda.set_device(device_count - 1)
|
|
tn = torch.cuda.FloatTensor(3).fill_(2)
|
|
torch.cuda.set_device(0)
|
|
b = (t0, tn)
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
torch.save(b, f)
|
|
f.seek(0)
|
|
c = torch.load(f)
|
|
self.assertEqual(b, c, 0)
|
|
u0, un = c
|
|
self.assertEqual(u0.get_device(), 0)
|
|
self.assertEqual(un.get_device(), device_count - 1)
|
|
|
|
def test_serialization_backwards_compat(self):
|
|
a = [torch.arange(1 + i, 26 + i).view(5, 5).float() for i in range(2)]
|
|
b = [a[i % 2] for i in range(4)]
|
|
b += [a[0].storage()]
|
|
b += [a[0].storage()[1:4]]
|
|
path = download_file('https://download.pytorch.org/test_data/legacy_serialized.pt')
|
|
c = torch.load(path)
|
|
self.assertEqual(b, c, 0)
|
|
self.assertTrue(isinstance(c[0], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[1], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[2], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[3], torch.FloatTensor))
|
|
self.assertTrue(isinstance(c[4], torch.FloatStorage))
|
|
c[0].fill_(10)
|
|
self.assertEqual(c[0], c[2], 0)
|
|
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), 0)
|
|
c[1].fill_(20)
|
|
self.assertEqual(c[1], c[3], 0)
|
|
self.assertEqual(c[4][1:4], c[5], 0)
|
|
|
|
def test_serialization_container(self):
|
|
def import_module(name, filename):
|
|
if sys.version_info >= (3, 5):
|
|
import importlib.util
|
|
spec = importlib.util.spec_from_file_location(name, filename)
|
|
module = importlib.util.module_from_spec(spec)
|
|
spec.loader.exec_module(module)
|
|
else:
|
|
import imp
|
|
module = imp.load_source(name, filename)
|
|
sys.modules[module.__name__] = module
|
|
return module
|
|
|
|
with tempfile.NamedTemporaryFile() as checkpoint:
|
|
fname = os.path.join(os.path.dirname(__file__), 'data/network1.py')
|
|
module = import_module('tmpmodule', fname)
|
|
torch.save(module.Net(), checkpoint)
|
|
|
|
# First check that the checkpoint can be loaded without warnings
|
|
checkpoint.seek(0)
|
|
with warnings.catch_warnings(record=True) as w:
|
|
loaded = torch.load(checkpoint)
|
|
self.assertTrue(isinstance(loaded, module.Net))
|
|
self.assertEquals(len(w), 0)
|
|
|
|
# Replace the module with different source
|
|
fname = os.path.join(os.path.dirname(__file__), 'data/network2.py')
|
|
module = import_module('tmpmodule', fname)
|
|
checkpoint.seek(0)
|
|
with warnings.catch_warnings(record=True) as w:
|
|
loaded = torch.load(checkpoint)
|
|
self.assertTrue(isinstance(loaded, module.Net))
|
|
self.assertEquals(len(w), 1)
|
|
self.assertTrue(w[0].category, 'SourceChangeWarning')
|
|
|
|
def test_serialization_map_location(self):
|
|
test_file_path = download_file('https://download.pytorch.org/test_data/gpu_tensors.pt')
|
|
|
|
def map_location(storage, loc):
|
|
return storage
|
|
|
|
tensor = torch.load(test_file_path, map_location=map_location)
|
|
self.assertEqual(type(tensor), torch.FloatTensor)
|
|
self.assertEqual(tensor, torch.FloatTensor([[1.0, 2.0], [3.0, 4.0]]))
|
|
|
|
tensor = torch.load(test_file_path, map_location={'cuda:0': 'cpu'})
|
|
self.assertEqual(type(tensor), torch.FloatTensor)
|
|
self.assertEqual(tensor, torch.FloatTensor([[1.0, 2.0], [3.0, 4.0]]))
|
|
|
|
def test_from_buffer(self):
|
|
a = bytearray([1, 2, 3, 4])
|
|
self.assertEqual(torch.ByteStorage.from_buffer(a).tolist(), [1, 2, 3, 4])
|
|
shorts = torch.ShortStorage.from_buffer(a, 'big')
|
|
self.assertEqual(shorts.size(), 2)
|
|
self.assertEqual(shorts.tolist(), [258, 772])
|
|
ints = torch.IntStorage.from_buffer(a, 'little')
|
|
self.assertEqual(ints.size(), 1)
|
|
self.assertEqual(ints[0], 67305985)
|
|
f = bytearray([0x40, 0x10, 0x00, 0x00])
|
|
floats = torch.FloatStorage.from_buffer(f, 'big')
|
|
self.assertEqual(floats.size(), 1)
|
|
self.assertEqual(floats[0], 2.25)
|
|
|
|
def test_from_file(self):
|
|
size = 10000
|
|
with tempfile.NamedTemporaryFile() as f:
|
|
s1 = torch.FloatStorage.from_file(f.name, True, size)
|
|
t1 = torch.FloatTensor(s1).copy_(torch.randn(size))
|
|
|
|
# check mapping
|
|
s2 = torch.FloatStorage.from_file(f.name, True, size)
|
|
t2 = torch.FloatTensor(s2)
|
|
self.assertEqual(t1, t2, 0)
|
|
|
|
# check changes to t1 from t2
|
|
rnum = random.uniform(-1, 1)
|
|
t1.fill_(rnum)
|
|
self.assertEqual(t1, t2, 0)
|
|
|
|
# check changes to t2 from t1
|
|
rnum = random.uniform(-1, 1)
|
|
t2.fill_(rnum)
|
|
self.assertEqual(t1, t2, 0)
|
|
|
|
def test_print(self):
|
|
for t in torch._tensor_classes:
|
|
if t == torch.HalfTensor:
|
|
continue # HalfTensor does not support fill
|
|
if t in torch.sparse._sparse_tensor_classes:
|
|
continue
|
|
if t.is_cuda and not torch.cuda.is_available():
|
|
continue
|
|
obj = t(100, 100).fill_(1)
|
|
obj.__repr__()
|
|
str(obj)
|
|
for t in torch._storage_classes:
|
|
if t.is_cuda and not torch.cuda.is_available():
|
|
continue
|
|
obj = t(100).fill_(1)
|
|
obj.__repr__()
|
|
str(obj)
|
|
|
|
x = torch.Tensor([4, float('inf'), 1.5, float('-inf'), 0, float('nan'), 1])
|
|
x.__repr__()
|
|
str(x)
|
|
|
|
x = torch.DoubleTensor([1e-324, 1e-323, 1e-322, 1e307, 1e308, 1e309])
|
|
x.__repr__()
|
|
str(x),
|
|
|
|
def test_sizeof(self):
|
|
sizeof_empty = torch.randn(0).storage().__sizeof__()
|
|
sizeof_10 = torch.randn(10).storage().__sizeof__()
|
|
sizeof_100 = torch.randn(100).storage().__sizeof__()
|
|
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
|
|
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
|
|
|
|
sizeof_empty = torch.randn(0).type(torch.ByteTensor).storage().__sizeof__()
|
|
sizeof_10 = torch.randn(10).type(torch.ByteTensor).storage().__sizeof__()
|
|
sizeof_100 = torch.randn(100).type(torch.ByteTensor).storage().__sizeof__()
|
|
self.assertEqual((sizeof_100 - sizeof_empty) // (sizeof_10 - sizeof_empty), 10)
|
|
self.assertEqual((sizeof_100 - sizeof_empty) % (sizeof_10 - sizeof_empty), 0)
|
|
|
|
def test_unsqueeze(self):
|
|
x = torch.randn(2, 3, 4)
|
|
y = x.unsqueeze(1)
|
|
self.assertEqual(y, x.view(2, 1, 3, 4))
|
|
y = x.clone().unsqueeze_(2)
|
|
self.assertEqual(y, x.view(2, 3, 1, 4))
|
|
|
|
x = x[:, 1]
|
|
self.assertFalse(x.is_contiguous())
|
|
y = x.unsqueeze(1)
|
|
self.assertEqual(y, x.contiguous().view(2, 1, 4))
|
|
y = x.clone().unsqueeze_(2)
|
|
self.assertEqual(y, x.contiguous().view(2, 4, 1))
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.Tensor().unsqueeze(0))
|
|
|
|
def test_iter(self):
|
|
x = torch.randn(5, 5)
|
|
for i, sub in enumerate(x):
|
|
self.assertEqual(sub, x[i])
|
|
|
|
x = torch.Tensor()
|
|
self.assertEqual(list(x), [])
|
|
|
|
def test_accreal_type(self):
|
|
x = torch.randn(2, 3, 4) * 10
|
|
self.assertIsInstance(x.double().sum(), float)
|
|
self.assertIsInstance(x.float().sum(), float)
|
|
self.assertIsInstance(x.long().sum(), int)
|
|
self.assertIsInstance(x.int().sum(), int)
|
|
self.assertIsInstance(x.short().sum(), int)
|
|
self.assertIsInstance(x.char().sum(), int)
|
|
self.assertIsInstance(x.byte().sum(), int)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'no CUDA')
|
|
def test_pin_memory(self):
|
|
x = torch.randn(3, 5)
|
|
self.assertFalse(x.is_pinned())
|
|
pinned = x.pin_memory()
|
|
self.assertTrue(pinned.is_pinned())
|
|
self.assertEqual(pinned, x)
|
|
self.assertNotEqual(pinned.data_ptr(), x.data_ptr())
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_numpy_unresizable(self):
|
|
x = np.zeros((2, 2))
|
|
y = torch.from_numpy(x)
|
|
with self.assertRaises(ValueError):
|
|
x.resize((5, 5))
|
|
|
|
z = torch.randn(5, 5)
|
|
w = z.numpy()
|
|
with self.assertRaises(RuntimeError):
|
|
z.resize_(10, 10)
|
|
with self.assertRaises(ValueError):
|
|
w.resize((10, 10))
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_toNumpy(self):
|
|
types = [
|
|
'torch.ByteTensor',
|
|
'torch.IntTensor',
|
|
'torch.HalfTensor',
|
|
'torch.FloatTensor',
|
|
'torch.DoubleTensor',
|
|
'torch.LongTensor',
|
|
]
|
|
for tp in types:
|
|
# 1D
|
|
sz = 10
|
|
x = torch.randn(sz).mul(255).type(tp)
|
|
y = x.numpy()
|
|
for i in range(sz):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
# 1D > 0 storage offset
|
|
xm = torch.randn(sz * 2).mul(255).type(tp)
|
|
x = xm.narrow(0, sz - 1, sz)
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
y = x.numpy()
|
|
for i in range(sz):
|
|
self.assertEqual(x[i], y[i])
|
|
|
|
def check2d(x, y):
|
|
for i in range(sz1):
|
|
for j in range(sz2):
|
|
self.assertEqual(x[i][j], y[i][j])
|
|
|
|
# empty
|
|
x = torch.Tensor().type(tp)
|
|
y = x.numpy()
|
|
self.assertEqual(y.size, 0)
|
|
|
|
# contiguous 2D
|
|
sz1 = 3
|
|
sz2 = 5
|
|
x = torch.randn(sz1, sz2).mul(255).type(tp)
|
|
y = x.numpy()
|
|
check2d(x, y)
|
|
self.assertTrue(y.flags['C_CONTIGUOUS'])
|
|
|
|
# with storage offset
|
|
xm = torch.randn(sz1 * 2, sz2).mul(255).type(tp)
|
|
x = xm.narrow(0, sz1 - 1, sz1)
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
self.assertTrue(y.flags['C_CONTIGUOUS'])
|
|
|
|
if tp != 'torch.HalfTensor':
|
|
# non-contiguous 2D
|
|
x = torch.randn(sz2, sz1).mul(255).type(tp).t()
|
|
y = x.numpy()
|
|
check2d(x, y)
|
|
self.assertFalse(y.flags['C_CONTIGUOUS'])
|
|
|
|
# with storage offset
|
|
xm = torch.randn(sz2 * 2, sz1).mul(255).type(tp)
|
|
if tp == 'torch.HalfTensor':
|
|
# TODO: remove when `t()` is implemented. This assertion is
|
|
# intended to mark this as to be changed when the feature
|
|
# becomes available. Later tests are just skipped for half
|
|
# floats.
|
|
with self.assertRaises(AttributeError):
|
|
x = xm.narrow(0, sz2 - 1, sz2).t()
|
|
else:
|
|
x = xm.narrow(0, sz2 - 1, sz2).t()
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
|
|
if tp != 'torch.HalfTensor':
|
|
# non-contiguous 2D with holes
|
|
xm = torch.randn(sz2 * 2, sz1 * 2).mul(255).type(tp)
|
|
x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t()
|
|
y = x.numpy()
|
|
self.assertTrue(x.storage_offset() > 0)
|
|
check2d(x, y)
|
|
|
|
# check writeable
|
|
x = torch.randn(3, 4).mul(255).type(tp)
|
|
y = x.numpy()
|
|
self.assertTrue(y.flags.writeable)
|
|
y[0][1] = 3
|
|
self.assertTrue(x[0][1] == 3)
|
|
y = x.t().numpy()
|
|
self.assertTrue(y.flags.writeable)
|
|
y[0][1] = 3
|
|
self.assertTrue(x[0][1] == 3)
|
|
|
|
def test_dlpack_conversion(self):
|
|
x = torch.randn(1, 2, 3, 4).type('torch.FloatTensor')
|
|
z = from_dlpack(to_dlpack(x))
|
|
self.assertEqual(z, x)
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_from_numpy(self):
|
|
dtypes = [
|
|
np.double,
|
|
np.float,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.uint8
|
|
]
|
|
for dtype in dtypes:
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
tensor_from_array = torch.from_numpy(array)
|
|
# TODO: change to tensor equality check once HalfTensor
|
|
# implements `==`
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor_from_array[i], array[i])
|
|
|
|
# check storage offset
|
|
x = np.linspace(1, 125, 125)
|
|
x.shape = (5, 5, 5)
|
|
x = x[1]
|
|
expected = torch.arange(1, 126).view(5, 5, 5)[1]
|
|
self.assertEqual(torch.from_numpy(x), expected)
|
|
|
|
# check noncontiguous
|
|
x = np.linspace(1, 25, 25)
|
|
x.shape = (5, 5)
|
|
expected = torch.arange(1, 26).view(5, 5).t()
|
|
self.assertEqual(torch.from_numpy(x.T), expected)
|
|
|
|
# check noncontiguous with holes
|
|
x = np.linspace(1, 125, 125)
|
|
x.shape = (5, 5, 5)
|
|
x = x[:, 1]
|
|
expected = torch.arange(1, 126).view(5, 5, 5)[:, 1]
|
|
self.assertEqual(torch.from_numpy(x), expected)
|
|
|
|
# check zero dimensional
|
|
x = np.zeros((0, 2))
|
|
self.assertEqual(torch.from_numpy(x).shape, tuple())
|
|
self.assertEqual(torch.autograd.Variable.from_numpy(x).shape, [0])
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_ctor_with_numpy_array(self):
|
|
dtypes = [
|
|
np.double,
|
|
np.float,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.uint8
|
|
]
|
|
for dtype in dtypes:
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
|
|
# Upcast
|
|
tensor = torch.DoubleTensor(array)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
if torch.cuda.is_available():
|
|
tensor = torch.cuda.DoubleTensor(array)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
# Downcast (sometimes)
|
|
tensor = torch.FloatTensor(array)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
tensor = torch.HalfTensor(array)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
if torch.cuda.is_available():
|
|
tensor = torch.cuda.FloatTensor(array)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
tensor = torch.cuda.HalfTensor(array)
|
|
for i in range(len(array)):
|
|
self.assertEqual(tensor[i], array[i])
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_numpy_index(self):
|
|
i = np.int32([0, 1, 2])
|
|
x = torch.randn(5, 5)
|
|
for idx in i:
|
|
self.assertFalse(isinstance(idx, int))
|
|
self.assertEqual(x[idx], x[int(idx)])
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_numpy_array_interface(self):
|
|
types = [
|
|
torch.DoubleTensor,
|
|
torch.FloatTensor,
|
|
torch.HalfTensor,
|
|
torch.LongTensor,
|
|
torch.IntTensor,
|
|
torch.ShortTensor,
|
|
torch.ByteTensor,
|
|
]
|
|
dtypes = [
|
|
np.float64,
|
|
np.float32,
|
|
np.float16,
|
|
np.int64,
|
|
np.int32,
|
|
np.int16,
|
|
np.uint8,
|
|
]
|
|
for tp, dtype in zip(types, dtypes):
|
|
if np.dtype(dtype).kind == 'u':
|
|
x = torch.Tensor([1, 2, 3, 4]).type(tp)
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
else:
|
|
x = torch.Tensor([1, -2, 3, -4]).type(tp)
|
|
array = np.array([1, -2, 3, -4], dtype=dtype)
|
|
|
|
# Test __array__ w/o dtype argument
|
|
asarray = np.asarray(x)
|
|
self.assertIsInstance(asarray, np.ndarray)
|
|
self.assertEqual(asarray.dtype, dtype)
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], x[i])
|
|
|
|
# Test __array_wrap__, same dtype
|
|
abs_x = np.abs(x)
|
|
abs_array = np.abs(array)
|
|
self.assertIsInstance(abs_x, tp)
|
|
for i in range(len(x)):
|
|
self.assertEqual(abs_x[i], abs_array[i])
|
|
|
|
# Test __array__ with dtype argument
|
|
for dtype in dtypes:
|
|
x = torch.IntTensor([1, -2, 3, -4])
|
|
asarray = np.asarray(x, dtype=dtype)
|
|
self.assertEqual(asarray.dtype, dtype)
|
|
if np.dtype(dtype).kind == 'u':
|
|
wrapped_x = np.array([1, -2, 3, -4], dtype=dtype)
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], wrapped_x[i])
|
|
else:
|
|
for i in range(len(x)):
|
|
self.assertEqual(asarray[i], x[i])
|
|
|
|
# Test some math functions with float types
|
|
float_types = [torch.DoubleTensor, torch.FloatTensor]
|
|
float_dtypes = [np.float64, np.float32]
|
|
for tp, dtype in zip(float_types, float_dtypes):
|
|
x = torch.Tensor([1, 2, 3, 4]).type(tp)
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
for func in ['sin', 'sqrt', 'ceil']:
|
|
ufunc = getattr(np, func)
|
|
res_x = ufunc(x)
|
|
res_array = ufunc(array)
|
|
self.assertIsInstance(res_x, tp)
|
|
for i in range(len(x)):
|
|
self.assertEqual(res_x[i], res_array[i])
|
|
|
|
# Test functions with boolean return value
|
|
for tp, dtype in zip(types, dtypes):
|
|
x = torch.Tensor([1, 2, 3, 4]).type(tp)
|
|
array = np.array([1, 2, 3, 4], dtype=dtype)
|
|
geq2_x = np.greater_equal(x, 2)
|
|
geq2_array = np.greater_equal(array, 2).astype('uint8')
|
|
self.assertIsInstance(geq2_x, torch.ByteTensor)
|
|
for i in range(len(x)):
|
|
self.assertEqual(geq2_x[i], geq2_array[i])
|
|
|
|
def test_error_msg_type_translation(self):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
# message includes both torch.DoubleTensor and torch.LongTensor
|
|
'(?=.*torch\.DoubleTensor)(?=.*torch\.LongTensor)'):
|
|
|
|
# Calls model with a DoubleTensor input but LongTensor weights
|
|
input = torch.autograd.Variable(torch.randn(1, 1, 1, 6).double())
|
|
weight = torch.zeros(1, 1, 1, 3).long()
|
|
model = torch.nn.Conv2d(1, 1, (1, 3), stride=1, padding=0, bias=False)
|
|
model.weight.data = weight
|
|
out = model(input)
|
|
|
|
def test_comparison_ops(self):
|
|
x = torch.randn(5, 5)
|
|
y = torch.randn(5, 5)
|
|
|
|
eq = x == y
|
|
for idx in iter_indices(x):
|
|
self.assertIs(x[idx] == y[idx], eq[idx] == 1)
|
|
|
|
ne = x != y
|
|
for idx in iter_indices(x):
|
|
self.assertIs(x[idx] != y[idx], ne[idx] == 1)
|
|
|
|
lt = x < y
|
|
for idx in iter_indices(x):
|
|
self.assertIs(x[idx] < y[idx], lt[idx] == 1)
|
|
|
|
le = x <= y
|
|
for idx in iter_indices(x):
|
|
self.assertIs(x[idx] <= y[idx], le[idx] == 1)
|
|
|
|
gt = x > y
|
|
for idx in iter_indices(x):
|
|
self.assertIs(x[idx] > y[idx], gt[idx] == 1)
|
|
|
|
ge = x >= y
|
|
for idx in iter_indices(x):
|
|
self.assertIs(x[idx] >= y[idx], ge[idx] == 1)
|
|
|
|
def test_logical_ops(self):
|
|
x = torch.randn(5, 5).gt(0)
|
|
y = torch.randn(5, 5).gt(0)
|
|
|
|
and_result = x & y
|
|
for idx in iter_indices(x):
|
|
if and_result[idx]:
|
|
self.assertTrue(x[idx] and y[idx])
|
|
else:
|
|
self.assertFalse(x[idx] and y[idx])
|
|
|
|
or_result = x | y
|
|
for idx in iter_indices(x):
|
|
if or_result[idx]:
|
|
self.assertTrue(x[idx] or y[idx])
|
|
else:
|
|
self.assertFalse(x[idx] or y[idx])
|
|
|
|
xor_result = x ^ y
|
|
for idx in iter_indices(x):
|
|
if xor_result[idx]:
|
|
self.assertTrue(x[idx] ^ y[idx])
|
|
else:
|
|
self.assertFalse(x[idx] ^ y[idx])
|
|
|
|
invert_result = ~x
|
|
for idx in iter_indices(x):
|
|
self.assertEqual(1 - x[idx], invert_result[idx])
|
|
|
|
x_clone = x.clone()
|
|
x_clone &= y
|
|
self.assertEqual(x_clone, and_result)
|
|
|
|
x_clone = x.clone()
|
|
x_clone |= y
|
|
self.assertEqual(x_clone, or_result)
|
|
|
|
x_clone = x.clone()
|
|
x_clone ^= y
|
|
self.assertEqual(x_clone, xor_result)
|
|
|
|
def test_apply(self):
|
|
x = torch.arange(1, 6)
|
|
res = x.clone().apply_(lambda k: k + k)
|
|
self.assertEqual(res, x * 2)
|
|
self.assertRaises(RuntimeError, lambda: x.apply_(lambda k: "str"))
|
|
|
|
def test_map(self):
|
|
x = torch.autograd.Variable(torch.randn(3, 3))
|
|
y = torch.autograd.Variable(torch.randn(3))
|
|
res = x.clone()
|
|
res.map_(y, lambda a, b: a + b)
|
|
self.assertEqual(res, x + y)
|
|
self.assertRaisesRegex(TypeError, "not callable", lambda: res.map_(y, "str"))
|
|
|
|
def test_map2(self):
|
|
x = torch.autograd.Variable(torch.randn(3, 3))
|
|
y = torch.autograd.Variable(torch.randn(3))
|
|
z = torch.autograd.Variable(torch.randn(1, 3))
|
|
res = x.clone()
|
|
res.map2_(y, z, lambda a, b, c: a + b * c)
|
|
self.assertEqual(res, x + y * z)
|
|
z.requires_grad = True
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "requires grad",
|
|
lambda: res.map2_(y, z, lambda a, b, c: a + b * c))
|
|
|
|
def test_Size(self):
|
|
x = torch.Size([1, 2, 3])
|
|
self.assertIsInstance(x, tuple)
|
|
self.assertEqual(x[0], 1)
|
|
self.assertEqual(x[1], 2)
|
|
self.assertEqual(x[2], 3)
|
|
self.assertEqual(len(x), 3)
|
|
self.assertRaises(TypeError, lambda: torch.Size(torch.ones(3)))
|
|
|
|
self.assertIsInstance(x * 2, torch.Size)
|
|
self.assertIsInstance(x[:-1], torch.Size)
|
|
self.assertIsInstance(x + x, torch.Size)
|
|
|
|
# unit test for THTensor_(copyTranspose)
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_big_transpose(self):
|
|
t = torch.rand(456, 789)
|
|
t1 = t.t().contiguous()
|
|
t2 = torch.from_numpy(t.numpy().transpose())
|
|
self.assertEqual(t1, t2)
|
|
|
|
def test_inplace_division(self):
|
|
t = torch.rand(5, 5)
|
|
id_before = id(t)
|
|
t /= 2
|
|
id_after = id(t)
|
|
self.assertEqual(id_before, id_after)
|
|
|
|
def test_simple_scalar_cast(self):
|
|
ok = [torch.Tensor([1.5]), torch.zeros(1, 1, 1, 1)]
|
|
ok_values = [1.5, 0]
|
|
|
|
not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]])
|
|
|
|
for tensor, value in zip(ok, ok_values):
|
|
self.assertEqual(int(tensor), int(value))
|
|
self.assertEqual(float(tensor), float(value))
|
|
if sys.version_info[0] < 3:
|
|
self.assertEqual(long(tensor), long(value))
|
|
|
|
for tensor in not_ok:
|
|
self.assertRaises(TypeError, lambda: int(tensor))
|
|
self.assertRaises(TypeError, lambda: float(tensor))
|
|
if sys.version_info[0] < 3:
|
|
self.assertRaises(TypeError, lambda: long(tensor))
|
|
|
|
def test_offset_scalar_cast(self):
|
|
x = torch.Tensor([1, 2, 3])
|
|
y = x[2:]
|
|
self.assertEqual(int(y), 3)
|
|
|
|
# Functions to test negative dimension wrapping
|
|
METHOD = 1
|
|
INPLACE_METHOD = 2
|
|
FUNCTIONAL = 4
|
|
DIM_ARG = None
|
|
|
|
|
|
def make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim=0):
|
|
def neg_dim_test(self):
|
|
if isinstance(tensor_arg, list):
|
|
assert METHOD not in types and INPLACE_METHOD not in types
|
|
x = [torch.randn(arg) for arg in tensor_arg]
|
|
ndim = len(tensor_arg[-1])
|
|
else:
|
|
x = torch.randn(*tensor_arg)
|
|
ndim = len(tensor_arg)
|
|
ndim += extra_dim
|
|
|
|
n_dim_to_test = sum(map(lambda e: e is DIM_ARG, arg_constr()))
|
|
|
|
for dims_val in combinations(range(ndim), n_dim_to_test):
|
|
arg = arg_constr()
|
|
arg_neg = copy.deepcopy(arg)
|
|
idx = 0
|
|
for i, v in enumerate(arg):
|
|
if v is DIM_ARG:
|
|
arg[i] = dims_val[idx]
|
|
arg_neg[i] = dims_val[idx] - ndim
|
|
idx += 1
|
|
|
|
if METHOD in types:
|
|
a = getattr(x, name)(*arg)
|
|
b = getattr(x, name)(*arg_neg)
|
|
self.assertEqual(a, b)
|
|
|
|
if INPLACE_METHOD in types:
|
|
a = x.clone()
|
|
getattr(a, name + '_')(*arg)
|
|
b = x.clone()
|
|
getattr(b, name + '_')(*arg_neg)
|
|
self.assertEqual(a, b)
|
|
|
|
if FUNCTIONAL in types:
|
|
a = getattr(torch, name)(x, *arg)
|
|
b = getattr(torch, name)(x, *arg_neg)
|
|
self.assertEqual(a, b)
|
|
|
|
return neg_dim_test
|
|
|
|
|
|
def idx_tensor(size, max_val):
|
|
return torch.LongTensor(*size).random_(0, max_val - 1)
|
|
|
|
neg_dim_tests = [
|
|
('narrow', (10, 20, 30), lambda: [DIM_ARG, 0, 5], [METHOD]),
|
|
('transpose', (10, 20, 30), lambda: [DIM_ARG, DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
|
|
('size', (10, 20, 30), lambda: [DIM_ARG], [METHOD]),
|
|
('cat', [(2, 3, 4), (2, 3, 4)], lambda: [DIM_ARG], [FUNCTIONAL]),
|
|
('chunk', (10, 20, 30), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('gather', (10, 20), lambda: [DIM_ARG, idx_tensor((10, 20), 10)], [METHOD, FUNCTIONAL]),
|
|
('index_select', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10)], [METHOD, FUNCTIONAL]),
|
|
('split', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('squeeze', (10, 1, 20, 1), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
|
|
('unbind', (2, 3, 4), lambda: [DIM_ARG], [FUNCTIONAL]),
|
|
('unsqueeze', (10, 20), lambda: [DIM_ARG], [METHOD, INPLACE_METHOD, FUNCTIONAL], 1),
|
|
('cumprod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('cumsum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('mean', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('median', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('mode', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('norm', (10, 20), lambda: [2, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('prod', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('std', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('sum', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('var', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('kthvalue', (10, 20), lambda: [3, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('max', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('min', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('sort', (10, 20), lambda: [DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('topk', (10, 20), lambda: [5, DIM_ARG], [METHOD, FUNCTIONAL]),
|
|
('renorm', (10, 20), lambda: [2, DIM_ARG, 1], [METHOD, INPLACE_METHOD, FUNCTIONAL]),
|
|
('index_add', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
|
|
('index_copy', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
|
|
('index_fill', (10, 10), lambda: [DIM_ARG, idx_tensor((10,), 10), 12], [INPLACE_METHOD]),
|
|
('scatter', (10, 10), lambda: [DIM_ARG, idx_tensor((10, 10), 10), torch.randn(10, 10)], [INPLACE_METHOD]),
|
|
('select', (10, 20), lambda: [DIM_ARG, 3], [METHOD]),
|
|
('unfold', (10, 20), lambda: [DIM_ARG, 5, 2], [METHOD]),
|
|
]
|
|
|
|
for decl in neg_dim_tests:
|
|
if len(decl) == 4:
|
|
name, tensor_arg, arg_constr, types = decl
|
|
extra_dim = 0
|
|
elif len(decl) == 5:
|
|
name, tensor_arg, arg_constr, types, extra_dim = decl
|
|
|
|
test_name = 'test_' + name + '_neg_dim'
|
|
|
|
assert not hasattr(TestTorch, test_name), "Duplicated test name: " + test_name
|
|
setattr(TestTorch, test_name, make_neg_dim_test(name, tensor_arg, arg_constr, types, extra_dim))
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|