mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
`E721` checks for object type comparisons using == and other comparison operators. This is useful because it is recommended to use `is` for type comparisons. Pull Request resolved: https://github.com/pytorch/pytorch/pull/165162 Approved by: https://github.com/Skylion007
95 lines
2.6 KiB
Python
95 lines
2.6 KiB
Python
import random
|
|
|
|
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for Stack operator"""
|
|
|
|
# Configs for PT stack operator
|
|
stack_configs_static_runtime = op_bench.config_list(
|
|
attr_names=["sizes", "N"],
|
|
attrs=[
|
|
[(20, 40), 5],
|
|
[(1, 40), 5],
|
|
],
|
|
cross_product_configs={"device": ["cpu", "cuda"], "dim": list(range(3))},
|
|
tags=["static_runtime"],
|
|
)
|
|
|
|
stack_configs_short = op_bench.config_list(
|
|
attr_names=["sizes", "N"],
|
|
attrs=[
|
|
[(1, 1, 1), 2], # noqa: E241
|
|
[(512, 512, 2), 2], # noqa: E241
|
|
[(128, 1024, 2), 2], # noqa: E241
|
|
],
|
|
cross_product_configs={"device": ["cpu", "cuda"], "dim": list(range(4))},
|
|
tags=["short"],
|
|
)
|
|
|
|
stack_configs_long = op_bench.config_list(
|
|
attr_names=["sizes", "N"],
|
|
attrs=[
|
|
[(2**10, 2**10, 2), 2], # noqa: E241
|
|
[(2**10 + 1, 2**10 - 1, 2), 2], # noqa: E226,E241
|
|
[(2**10, 2**10, 2), 2], # noqa: E241
|
|
],
|
|
cross_product_configs={"device": ["cpu", "cuda"], "dim": list(range(4))},
|
|
tags=["long"],
|
|
)
|
|
|
|
# There is a different codepath on CUDA for >4 dimensions
|
|
stack_configs_multidim = op_bench.config_list(
|
|
attr_names=["sizes", "N"],
|
|
attrs=[
|
|
[(2**6, 2**5, 2**2, 2**4, 2**5), 2], # noqa: E241
|
|
[(2**4, 2**5, 2**2, 2**4, 2**5), 8], # noqa: E241
|
|
[
|
|
(2**3 + 1, 2**5 - 1, 2**2 + 1, 2**4 - 1, 2**5 + 1),
|
|
17,
|
|
], # noqa: E226,E241
|
|
],
|
|
cross_product_configs={"device": ["cpu", "cuda"], "dim": list(range(6))},
|
|
tags=["multidim"],
|
|
)
|
|
|
|
|
|
class StackBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, sizes, N, dim, device):
|
|
random.seed(42)
|
|
inputs = []
|
|
gen_sizes = []
|
|
if type(sizes) is list and N == -1:
|
|
gen_sizes = sizes
|
|
else:
|
|
for i in range(N):
|
|
gen_sizes.append(
|
|
[
|
|
old_size() if callable(old_size) else old_size
|
|
for old_size in sizes
|
|
]
|
|
)
|
|
|
|
for s in gen_sizes:
|
|
inputs.append(torch.rand(s, device=device))
|
|
result = torch.rand(gen_sizes[0], device=device)
|
|
self.inputs = {"result": result, "inputs": inputs, "dim": dim}
|
|
self.set_module_name("stack")
|
|
|
|
def forward(self, result: torch.Tensor, inputs: list[torch.Tensor], dim: int):
|
|
return torch.stack(inputs, dim=dim, out=result)
|
|
|
|
|
|
op_bench.generate_pt_test(
|
|
stack_configs_static_runtime
|
|
+ stack_configs_short
|
|
+ stack_configs_long
|
|
+ stack_configs_multidim,
|
|
StackBenchmark,
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|