mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit How to read the diff: * Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes) * torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs * torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). There's a teensy bit of FB specific code to automatically enable trace logging if a /logs directory exists. `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines. * torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log. * test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable. https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs. Testing that the fbcode detection works at https://www.internalfb.com/mlhub/pipelines/runs/fblearner/534553450 (Meta-only) Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289 Approved by: https://github.com/Skylion007
342 lines
16 KiB
Python
342 lines
16 KiB
Python
# Owner(s): ["module: dynamo"]
|
|
import functools
|
|
import io
|
|
import json
|
|
import logging
|
|
import os
|
|
import unittest.mock
|
|
|
|
import torch
|
|
import torch._dynamo.test_case
|
|
import torch._dynamo.testing
|
|
import torch._logging.structured
|
|
import torch.distributed as dist
|
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
|
|
from torch.testing._internal.common_utils import find_free_port, TestCase
|
|
from torch.testing._internal.inductor_utils import HAS_CUDA
|
|
|
|
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
|
|
requires_distributed = functools.partial(
|
|
unittest.skipIf, not dist.is_available(), "requires distributed"
|
|
)
|
|
|
|
|
|
def example_fn(a):
|
|
output = a.mul(torch.ones(1000, 1000))
|
|
output = output.add(torch.ones(1000, 1000))
|
|
return output
|
|
|
|
|
|
def dynamo_error_fn(a):
|
|
output = a.mul(torch.ones(1000, 1000))
|
|
output = output.add(torch.ones(10, 10))
|
|
return output
|
|
|
|
|
|
def inductor_error_fn(a):
|
|
output = torch.round(a)
|
|
return output
|
|
|
|
|
|
def inductor_schedule_fn(a):
|
|
output = a.add(torch.ones(1000, 1000, device="cuda"))
|
|
return output
|
|
|
|
|
|
ARGS = (torch.ones(1000, 1000, requires_grad=True),)
|
|
|
|
|
|
class StructuredTraceTestingFilter(logging.Filter):
|
|
def filter(self, record):
|
|
if "str" in record.metadata:
|
|
return False
|
|
return True
|
|
|
|
|
|
class StructuredTraceTestingFormatter(logging.Formatter):
|
|
def format(self, record):
|
|
metadata = dict(record.metadata)
|
|
|
|
# Stub out values that are not stable across runs
|
|
# TODO: Check that these match schema
|
|
if "has_payload" in metadata:
|
|
metadata["has_payload"] = "HASH"
|
|
if "dynamo_start" in metadata:
|
|
metadata["dynamo_start"]["stack"] = "STACK"
|
|
if "inductor_output_code" in metadata:
|
|
metadata["inductor_output_code"]["filename"] = "FILENAME"
|
|
|
|
return json.dumps(metadata)
|
|
|
|
|
|
trace_log = logging.getLogger("torch.__trace")
|
|
|
|
|
|
class StructuredTraceTest(TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
torch._dynamo.reset()
|
|
torch._logging.structured.INTERN_TABLE.clear()
|
|
self.buffer = io.StringIO()
|
|
self.old_level = trace_log.level
|
|
trace_log.setLevel(logging.DEBUG)
|
|
self.handler = logging.StreamHandler(self.buffer)
|
|
self.handler.setFormatter(StructuredTraceTestingFormatter())
|
|
self.handler.addFilter(StructuredTraceTestingFilter())
|
|
trace_log.addHandler(self.handler)
|
|
|
|
def tearDown(self):
|
|
trace_log.removeHandler(self.handler)
|
|
trace_log.setLevel(self.old_level)
|
|
|
|
@requires_cuda
|
|
def test_schedule(self):
|
|
fn_opt = torch._dynamo.optimize("inductor")(inductor_schedule_fn)
|
|
fn_opt(torch.ones(1000, 1000, device="cuda"))
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": [1000, 1000], "ones": [1000, 1000], "output": [1000, 1000]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_post_grad_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_guards": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
@requires_cuda
|
|
def test_cudagraphs(self):
|
|
fn_opt = torch.compile(mode="reduce-overhead")(inductor_schedule_fn)
|
|
fn_opt(torch.ones(1000, 1000, device="cuda"))
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": [1000, 1000], "ones": [1000, 1000], "output": [1000, 1000]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_post_grad_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_guards": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
def test_recompiles(self):
|
|
def fn(x, y):
|
|
return torch.add(x, y)
|
|
|
|
fn_opt = torch._dynamo.optimize("inductor")(fn)
|
|
fn_opt(torch.ones(1000, 1000), torch.ones(1000, 1000))
|
|
fn_opt(torch.ones(1000, 1000), 1)
|
|
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_x_": [1000, 1000], "l_y_": [1000, 1000], "add": [1000, 1000]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_post_grad_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_guards": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_x_": [1000, 1000], "add": [1000, 1000]}}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_post_grad_graph": {}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_guards": {}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
def test_example_fn(self):
|
|
fn_opt = torch._dynamo.optimize("inductor")(example_fn)
|
|
fn_opt(torch.ones(1000, 1000))
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": [1000, 1000], "ones": [1000, 1000], "output": [1000, 1000], "ones_1": [1000, 1000], "output_1": [1000, 1000]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_post_grad_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_guards": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
def test_dynamo_error(self):
|
|
try:
|
|
fn_opt = torch._dynamo.optimize("inductor")(dynamo_error_fn)
|
|
fn_opt(*ARGS)
|
|
except Exception:
|
|
pass
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
def test_inductor_error(self):
|
|
import torch._inductor.lowering
|
|
|
|
def throw(x):
|
|
raise AssertionError()
|
|
|
|
# inject an error in the lowerings
|
|
dict_entries = {}
|
|
for x in list(torch._inductor.lowering.lowerings.keys()):
|
|
if "round" in x.__name__:
|
|
dict_entries[x] = throw
|
|
|
|
with unittest.mock.patch.dict(torch._inductor.lowering.lowerings, dict_entries):
|
|
try:
|
|
fn_opt = torch._dynamo.optimize("inductor")(inductor_error_fn)
|
|
fn_opt(*ARGS)
|
|
except Exception:
|
|
pass
|
|
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": [1000, 1000], "output": [1000, 1000]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_joint_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_backward_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_post_grad_graph": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
@requires_distributed()
|
|
@requires_cuda
|
|
def test_ddp_graphs(self):
|
|
class ToyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layers = torch.nn.Sequential(
|
|
torch.nn.Linear(1024, 1024),
|
|
torch.nn.Linear(1024, 1024),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.layers(x)
|
|
|
|
# TODO: this isn't safely bracketed, will leak
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
os.environ["MASTER_PORT"] = str(find_free_port())
|
|
dist.init_process_group("gloo", rank=0, world_size=1)
|
|
|
|
ddp_model = torch._dynamo.optimize("inductor")(
|
|
DDP(ToyModel().to("cuda:0"), device_ids=[0], bucket_cap_mb=4)
|
|
)
|
|
|
|
ddp_model(torch.randn(1024, 1024, device="cuda:0"))
|
|
|
|
dist.destroy_process_group()
|
|
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "rank": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_guards": {}, "rank": 0, "frame_id": 0, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"dynamo_start": {"stack": "STACK"}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_x_": [1024, 1024], "l__self___layers_0": [1024, 1024], "l__self___layers_1": [1024, 1024]}}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"optimize_ddp_split_graph": {}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"optimize_ddp_split_child": {"name": "submod_0"}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"optimize_ddp_split_child": {"name": "submod_1"}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_joint_graph": {}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_backward_graph": {}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_post_grad_graph": {}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME"}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_joint_graph": {}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_backward_graph": {}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_post_grad_graph": {}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME"}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_guards": {}, "rank": 0, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
def test_graph_breaks(self):
|
|
@torch._dynamo.optimize("inductor")
|
|
def fn(x):
|
|
torch._dynamo.graph_break()
|
|
return x + 1
|
|
|
|
fn(torch.ones(1))
|
|
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_guards": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 1, "has_payload": "HASH"}
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_x_": [1], "add": [1]}}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"aot_forward_graph": {}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_post_grad_graph": {}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"inductor_output_code": {"filename": "FILENAME"}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_guards": {}, "frame_id": 1, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
# TODO: bring in the trace_source tests once we start emitting bytecode
|
|
|
|
def test_graph_sizes_dynamic(self):
|
|
def fn(a, b):
|
|
return a @ b
|
|
|
|
fn_opt = torch._dynamo.optimize("eager", dynamic=False)(fn)
|
|
fn_opt(torch.randn(10, 20), torch.randn(20, 30))
|
|
|
|
fn_opt2 = torch._dynamo.optimize("eager", dynamic=True)(fn)
|
|
fn_opt2(torch.randn(5, 10), torch.randn(10, 15))
|
|
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": [10, 20], "l_b_": [20, 30], "matmul": [10, 30]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_guards": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_a_": ["s0", "s1"], "l_b_": ["s1", "s3"], "matmul": ["s0", "s3"]}}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_guards": {}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
def test_guards_recompiles(self):
|
|
def fn(x, ys, zs):
|
|
return inner(x, ys, zs)
|
|
|
|
def inner(x, ys, zs):
|
|
for y, z in zip(ys, zs):
|
|
x += y * z
|
|
return x
|
|
|
|
ys = [1.0, 2.0]
|
|
zs = [3.0]
|
|
x = torch.tensor([1.0])
|
|
|
|
fn_opt = torch._dynamo.optimize("eager")(fn)
|
|
fn_opt(x, ys, zs)
|
|
fn_opt(x, ys[:1], zs)
|
|
|
|
self.assertExpectedInline(
|
|
self.buffer.getvalue(),
|
|
"""\
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_x_": [1], "x": [1]}}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_guards": {}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_start": {"stack": "STACK"}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0}
|
|
{"dynamo_output_graph": {"sizes": {"l_x_": [1], "x": [1]}}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
{"dynamo_guards": {}, "frame_id": 0, "frame_compile_id": 1, "attempt": 0, "has_payload": "HASH"}
|
|
""", # noqa: B950
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from torch._dynamo.test_case import run_tests
|
|
|
|
run_tests()
|