mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/53294 Just a bunch of little things, none of which are big enough to need a full PR. 1) C++ wall time should release the GIL 2) Add option to retain `callgrind.out` contents. This will allow processing with kCachegrind for more detailed analysis. 3) Stop subtracting the baseline instruction counts. (People just found it confusing when they saw negative instruction counts.) There is a finesse in #53295 that drops the baseline to ~800 instructions for `number=100`, and at that level it's not worth correcting. 4) Add a `__mul__` overload to function counts. e.g. suppose `c0` was run with `number=100`, and `c1` was run with `number=200`, then `c0 * 2 - c1` is needed to properly diff them. (Obviously there are correctness concerns, but I think it's fine as a caveat emptor convenience method.) 5) Tweak the `callgrind_annotate` call, since by default it filters very small counts. 6) Move some args to kwargs only since types could be ambiguous otherwise. 7) Don't omit rows from slices. It was annoying to print something like `stats[:25]` and have `__repr__` hide the lines in the middle. Test Plan: Imported from OSS Reviewed By: Chillee Differential Revision: D26906715 Pulled By: robieta fbshipit-source-id: 53d5cd92cd17212ec013f89d48ac8678ba6e6228
965 lines
42 KiB
Python
965 lines
42 KiB
Python
import json
|
|
import os
|
|
import re
|
|
import textwrap
|
|
import timeit
|
|
from typing import Any, List, Tuple
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.utils.benchmark as benchmark_utils
|
|
from torch.testing._internal.common_utils import TestCase, run_tests, IS_SANDCASTLE, IS_WINDOWS, slowTest
|
|
from torch.testing._internal import expecttest
|
|
import numpy as np
|
|
|
|
|
|
CALLGRIND_ARTIFACTS: str = os.path.join(
|
|
os.path.split(os.path.abspath(__file__))[0],
|
|
"callgrind_artifacts.json"
|
|
)
|
|
|
|
|
|
def generate_callgrind_artifacts() -> None:
|
|
"""Regenerate `callgrind_artifacts.json`
|
|
|
|
Unlike the expect tests, regenerating callgrind counts will produce a
|
|
large diff since build directories and conda/pip directories are included
|
|
in the instruction string. It is also not 100% deterministic (due to jitter
|
|
from Python) and takes over a minute to run. As a result, running this
|
|
function is manual.
|
|
"""
|
|
print("Regenerating callgrind artifact.")
|
|
|
|
stats_no_data = benchmark_utils.Timer(
|
|
"y = torch.ones(())"
|
|
).collect_callgrind(number=1000)
|
|
|
|
stats_with_data = benchmark_utils.Timer(
|
|
"y = torch.ones((1,))"
|
|
).collect_callgrind(number=1000)
|
|
|
|
user = os.getenv("USER")
|
|
|
|
def to_entry(fn_counts):
|
|
return [f"{c} {fn.replace(f'/{user}/', '/test_user/')}" for c, fn in fn_counts]
|
|
|
|
artifacts = {
|
|
"baseline_inclusive": to_entry(stats_no_data.baseline_inclusive_stats),
|
|
"baseline_exclusive": to_entry(stats_no_data.baseline_exclusive_stats),
|
|
"ones_no_data_inclusive": to_entry(stats_no_data.stmt_inclusive_stats),
|
|
"ones_no_data_exclusive": to_entry(stats_no_data.stmt_exclusive_stats),
|
|
"ones_with_data_inclusive": to_entry(stats_with_data.stmt_inclusive_stats),
|
|
"ones_with_data_exclusive": to_entry(stats_with_data.stmt_exclusive_stats),
|
|
}
|
|
|
|
with open(CALLGRIND_ARTIFACTS, "wt") as f:
|
|
json.dump(artifacts, f, indent=4)
|
|
|
|
|
|
def load_callgrind_artifacts() -> Tuple[benchmark_utils.CallgrindStats, benchmark_utils.CallgrindStats]:
|
|
"""Hermetic artifact to unit test Callgrind wrapper.
|
|
|
|
In addition to collecting counts, this wrapper provides some facilities for
|
|
manipulating and displaying the collected counts. The results of several
|
|
measurements are stored in callgrind_artifacts.json.
|
|
|
|
While FunctionCounts and CallgrindStats are pickleable, the artifacts for
|
|
testing are stored in raw string form for easier inspection and to avoid
|
|
baking any implementation details into the artifact itself.
|
|
"""
|
|
with open(CALLGRIND_ARTIFACTS, "rt") as f:
|
|
artifacts = json.load(f)
|
|
|
|
pattern = re.compile(r"^\s*([0-9]+)\s(.+)$")
|
|
|
|
def to_function_counts(
|
|
count_strings: List[str],
|
|
inclusive: bool
|
|
) -> benchmark_utils.FunctionCounts:
|
|
data: List[benchmark_utils.FunctionCount] = []
|
|
for cs in count_strings:
|
|
# Storing entries as f"{c} {fn}" rather than [c, fn] adds some work
|
|
# reviving the artifact, but it makes the json much easier to read.
|
|
match = pattern.search(cs)
|
|
assert match is not None
|
|
c, fn = match.groups()
|
|
data.append(benchmark_utils.FunctionCount(count=int(c), function=fn))
|
|
|
|
return benchmark_utils.FunctionCounts(
|
|
tuple(sorted(data, reverse=True)),
|
|
inclusive=inclusive)
|
|
|
|
baseline_inclusive = to_function_counts(artifacts["baseline_inclusive"], True)
|
|
baseline_exclusive = to_function_counts(artifacts["baseline_exclusive"], False)
|
|
|
|
stats_no_data = benchmark_utils.CallgrindStats(
|
|
benchmark_utils.TaskSpec("y = torch.ones(())", "pass"),
|
|
number_per_run=1000,
|
|
built_with_debug_symbols=True,
|
|
baseline_inclusive_stats=baseline_inclusive,
|
|
baseline_exclusive_stats=baseline_exclusive,
|
|
stmt_inclusive_stats=to_function_counts(artifacts["ones_no_data_inclusive"], True),
|
|
stmt_exclusive_stats=to_function_counts(artifacts["ones_no_data_exclusive"], False),
|
|
stmt_callgrind_out=None,
|
|
)
|
|
|
|
stats_with_data = benchmark_utils.CallgrindStats(
|
|
benchmark_utils.TaskSpec("y = torch.ones((1,))", "pass"),
|
|
number_per_run=1000,
|
|
built_with_debug_symbols=True,
|
|
baseline_inclusive_stats=baseline_inclusive,
|
|
baseline_exclusive_stats=baseline_exclusive,
|
|
stmt_inclusive_stats=to_function_counts(artifacts["ones_with_data_inclusive"], True),
|
|
stmt_exclusive_stats=to_function_counts(artifacts["ones_with_data_exclusive"], False),
|
|
stmt_callgrind_out=None,
|
|
)
|
|
|
|
return stats_no_data, stats_with_data
|
|
|
|
|
|
class MyModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x + 1
|
|
|
|
|
|
class TestBenchmarkUtils(TestCase):
|
|
def regularizeAndAssertExpectedInline(
|
|
self, x: Any,
|
|
expect: str,
|
|
indent: int = 12
|
|
) -> None:
|
|
x_str: str = re.sub(
|
|
"object at 0x[0-9a-fA-F]+>",
|
|
"object at 0xXXXXXXXXXXXX>",
|
|
x if isinstance(x, str) else repr(x)
|
|
)
|
|
if "\n" in x_str:
|
|
# Indent makes the reference align at the call site.
|
|
x_str = textwrap.indent(x_str, " " * indent)
|
|
|
|
self.assertExpectedInline(x_str, expect, skip=1)
|
|
|
|
def test_timer(self):
|
|
timer = benchmark_utils.Timer(
|
|
stmt="torch.ones(())",
|
|
)
|
|
sample = timer.timeit(5).median
|
|
self.assertIsInstance(sample, float)
|
|
|
|
median = timer.blocked_autorange(min_run_time=0.01).median
|
|
self.assertIsInstance(median, float)
|
|
|
|
# We set a very high threshold to avoid flakiness in CI.
|
|
# The internal algorithm is tested in `test_adaptive_timer`
|
|
median = timer.adaptive_autorange(threshold=0.5).median
|
|
|
|
# Test that multi-line statements work properly.
|
|
median = benchmark_utils.Timer(
|
|
stmt="""
|
|
with torch.no_grad():
|
|
y = x + 1""",
|
|
setup="""
|
|
x = torch.ones((1,), requires_grad=True)
|
|
for _ in range(5):
|
|
x = x + 1.0""",
|
|
).timeit(5).median
|
|
self.assertIsInstance(sample, float)
|
|
|
|
@slowTest
|
|
@unittest.skipIf(IS_SANDCASTLE, "C++ timing is OSS only.")
|
|
def test_cpp_timer(self):
|
|
timer = benchmark_utils.Timer(
|
|
"""
|
|
#ifndef TIMER_GLOBAL_CHECK
|
|
static_assert(false);
|
|
#endif
|
|
|
|
torch::Tensor y = x + 1;
|
|
""",
|
|
setup="torch::Tensor x = torch::empty({1});",
|
|
global_setup="#define TIMER_GLOBAL_CHECK",
|
|
timer=timeit.default_timer,
|
|
language=benchmark_utils.Language.CPP,
|
|
)
|
|
t = timer.timeit(10)
|
|
self.assertIsInstance(t.median, float)
|
|
|
|
class _MockTimer:
|
|
_seed = 0
|
|
|
|
_timer_noise_level = 0.05
|
|
_timer_cost = 100e-9 # 100 ns
|
|
|
|
_function_noise_level = 0.05
|
|
_function_costs = (
|
|
("pass", 8e-9),
|
|
("cheap_fn()", 4e-6),
|
|
("expensive_fn()", 20e-6),
|
|
("with torch.no_grad():\n y = x + 1", 10e-6),
|
|
)
|
|
|
|
def __init__(self, stmt, setup, timer, globals):
|
|
self._random_state = np.random.RandomState(seed=self._seed)
|
|
self._mean_cost = {k: v for k, v in self._function_costs}[stmt]
|
|
|
|
def sample(self, mean, noise_level):
|
|
return max(self._random_state.normal(mean, mean * noise_level), 5e-9)
|
|
|
|
def timeit(self, number):
|
|
return sum([
|
|
# First timer invocation
|
|
self.sample(self._timer_cost, self._timer_noise_level),
|
|
|
|
# Stmt body
|
|
self.sample(self._mean_cost * number, self._function_noise_level),
|
|
|
|
# Second timer invocation
|
|
self.sample(self._timer_cost, self._timer_noise_level),
|
|
])
|
|
|
|
def test_adaptive_timer(self):
|
|
class MockTimer(benchmark_utils.Timer):
|
|
_timer_cls = self._MockTimer
|
|
|
|
class _MockCudaTimer(self._MockTimer):
|
|
# torch.cuda.synchronize is much more expensive than
|
|
# just timeit.default_timer
|
|
_timer_cost = 10e-6
|
|
|
|
_function_costs = (
|
|
self._MockTimer._function_costs[0],
|
|
self._MockTimer._function_costs[1],
|
|
|
|
# GPU should be faster once there is enough work.
|
|
("expensive_fn()", 5e-6),
|
|
)
|
|
|
|
class MockCudaTimer(benchmark_utils.Timer):
|
|
_timer_cls = _MockCudaTimer
|
|
|
|
m = MockTimer("pass").blocked_autorange(min_run_time=10)
|
|
self.regularizeAndAssertExpectedInline(
|
|
m,
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
pass
|
|
Median: 7.98 ns
|
|
IQR: 0.52 ns (7.74 to 8.26)
|
|
125 measurements, 10000000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockTimer("pass").adaptive_autorange(),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
pass
|
|
Median: 7.86 ns
|
|
IQR: 0.71 ns (7.63 to 8.34)
|
|
6 measurements, 1000000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
# Check against strings so we can reuse expect infra.
|
|
self.regularizeAndAssertExpectedInline(m.mean, """8.001365835795602e-09""")
|
|
self.regularizeAndAssertExpectedInline(m.median, """7.983151323215967e-09""")
|
|
self.regularizeAndAssertExpectedInline(len(m.times), """125""")
|
|
self.regularizeAndAssertExpectedInline(m.number_per_run, """10000000""")
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockTimer("cheap_fn()").blocked_autorange(min_run_time=10),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
cheap_fn()
|
|
Median: 3.98 us
|
|
IQR: 0.27 us (3.85 to 4.12)
|
|
252 measurements, 10000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockTimer("cheap_fn()").adaptive_autorange(),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
cheap_fn()
|
|
Median: 4.16 us
|
|
IQR: 0.22 us (4.04 to 4.26)
|
|
4 measurements, 1000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockTimer("expensive_fn()").blocked_autorange(min_run_time=10),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
expensive_fn()
|
|
Median: 19.97 us
|
|
IQR: 1.35 us (19.31 to 20.65)
|
|
501 measurements, 1000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockTimer("expensive_fn()").adaptive_autorange(),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
expensive_fn()
|
|
Median: 20.79 us
|
|
IQR: 1.09 us (20.20 to 21.29)
|
|
4 measurements, 1000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockCudaTimer("pass").blocked_autorange(min_run_time=10),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
pass
|
|
Median: 7.92 ns
|
|
IQR: 0.43 ns (7.75 to 8.17)
|
|
13 measurements, 100000000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockCudaTimer("pass").adaptive_autorange(),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
pass
|
|
Median: 7.75 ns
|
|
IQR: 0.57 ns (7.56 to 8.13)
|
|
4 measurements, 10000000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockCudaTimer("cheap_fn()").blocked_autorange(min_run_time=10),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
cheap_fn()
|
|
Median: 4.04 us
|
|
IQR: 0.30 us (3.90 to 4.19)
|
|
25 measurements, 100000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockCudaTimer("cheap_fn()").adaptive_autorange(),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
cheap_fn()
|
|
Median: 4.09 us
|
|
IQR: 0.38 us (3.90 to 4.28)
|
|
4 measurements, 100000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockCudaTimer("expensive_fn()").blocked_autorange(min_run_time=10),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
expensive_fn()
|
|
Median: 4.98 us
|
|
IQR: 0.31 us (4.83 to 5.13)
|
|
20 measurements, 100000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockCudaTimer("expensive_fn()").adaptive_autorange(),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
expensive_fn()
|
|
Median: 5.01 us
|
|
IQR: 0.28 us (4.87 to 5.15)
|
|
4 measurements, 10000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
# Make sure __repr__ is reasonable for
|
|
# multi-line / label / sub_label / description, but we don't need to
|
|
# check numerics.
|
|
multi_line_stmt = """
|
|
with torch.no_grad():
|
|
y = x + 1
|
|
"""
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockTimer(multi_line_stmt).blocked_autorange(),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
stmt:
|
|
with torch.no_grad():
|
|
y = x + 1
|
|
|
|
Median: 10.06 us
|
|
IQR: 0.54 us (9.73 to 10.27)
|
|
20 measurements, 1000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockTimer(multi_line_stmt, sub_label="scalar_add").blocked_autorange(),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
stmt: (scalar_add)
|
|
with torch.no_grad():
|
|
y = x + 1
|
|
|
|
Median: 10.06 us
|
|
IQR: 0.54 us (9.73 to 10.27)
|
|
20 measurements, 1000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockTimer(
|
|
multi_line_stmt,
|
|
label="x + 1 (no grad)",
|
|
sub_label="scalar_add",
|
|
).blocked_autorange(),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
x + 1 (no grad): scalar_add
|
|
Median: 10.06 us
|
|
IQR: 0.54 us (9.73 to 10.27)
|
|
20 measurements, 1000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockTimer(
|
|
multi_line_stmt,
|
|
setup="setup_fn()",
|
|
sub_label="scalar_add",
|
|
).blocked_autorange(),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
stmt: (scalar_add)
|
|
with torch.no_grad():
|
|
y = x + 1
|
|
|
|
setup: setup_fn()
|
|
Median: 10.06 us
|
|
IQR: 0.54 us (9.73 to 10.27)
|
|
20 measurements, 1000 runs per measurement, 1 thread"""
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
MockTimer(
|
|
multi_line_stmt,
|
|
setup="""
|
|
x = torch.ones((1,), requires_grad=True)
|
|
for _ in range(5):
|
|
x = x + 1.0""",
|
|
sub_label="scalar_add",
|
|
description="Multi-threaded scalar math!",
|
|
num_threads=16,
|
|
).blocked_autorange(),
|
|
"""\
|
|
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
|
|
stmt: (scalar_add)
|
|
with torch.no_grad():
|
|
y = x + 1
|
|
|
|
Multi-threaded scalar math!
|
|
setup:
|
|
x = torch.ones((1,), requires_grad=True)
|
|
for _ in range(5):
|
|
x = x + 1.0
|
|
|
|
Median: 10.06 us
|
|
IQR: 0.54 us (9.73 to 10.27)
|
|
20 measurements, 1000 runs per measurement, 16 threads"""
|
|
)
|
|
|
|
@slowTest
|
|
@unittest.skipIf(IS_WINDOWS, "Valgrind is not supported on Windows.")
|
|
@unittest.skipIf(IS_SANDCASTLE, "Valgrind is OSS only.")
|
|
def test_collect_callgrind(self):
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
r"`collect_callgrind` requires that globals be wrapped "
|
|
r"in `CopyIfCallgrind` so that serialization is explicit."
|
|
):
|
|
benchmark_utils.Timer(
|
|
"pass",
|
|
globals={"x": 1}
|
|
).collect_callgrind(collect_baseline=False)
|
|
|
|
with self.assertRaisesRegex(
|
|
# Subprocess raises AttributeError (from pickle),
|
|
# _ValgrindWrapper re-raises as generic OSError.
|
|
OSError, "AttributeError: Can't get attribute 'MyModule'"
|
|
):
|
|
benchmark_utils.Timer(
|
|
"model(1)",
|
|
globals={"model": benchmark_utils.CopyIfCallgrind(MyModule())}
|
|
).collect_callgrind(collect_baseline=False)
|
|
|
|
|
|
@torch.jit.script
|
|
def add_one(x):
|
|
return x + 1
|
|
|
|
timer = benchmark_utils.Timer(
|
|
"y = add_one(x) + k",
|
|
setup="x = torch.ones((1,))",
|
|
globals={
|
|
"add_one": benchmark_utils.CopyIfCallgrind(add_one),
|
|
"k": benchmark_utils.CopyIfCallgrind(5),
|
|
"model": benchmark_utils.CopyIfCallgrind(
|
|
MyModule(),
|
|
setup=f"""\
|
|
import sys
|
|
sys.path.append({repr(os.path.split(os.path.abspath(__file__))[0])})
|
|
from test_benchmark_utils import MyModule
|
|
"""
|
|
)
|
|
}
|
|
)
|
|
|
|
# Don't collect baseline to speed up unit test by ~30 seconds.
|
|
stats = timer.collect_callgrind(number=1000, collect_baseline=False)
|
|
counts = stats.counts(denoise=False)
|
|
|
|
self.assertIsInstance(counts, int)
|
|
self.assertGreater(counts, 0)
|
|
|
|
from torch.utils.benchmark.utils.valgrind_wrapper.timer_interface import wrapper_singleton
|
|
self.assertIsNone(
|
|
wrapper_singleton()._bindings_module,
|
|
"JIT'd bindings are only for back testing."
|
|
)
|
|
|
|
@slowTest
|
|
@unittest.skipIf(IS_WINDOWS, "Valgrind is not supported on Windows.")
|
|
@unittest.skipIf(IS_SANDCASTLE, "Valgrind is OSS only.")
|
|
def test_collect_cpp_callgrind(self):
|
|
timer = benchmark_utils.Timer(
|
|
"x += 1;",
|
|
setup="torch::Tensor x = torch::ones({1});",
|
|
timer=timeit.default_timer,
|
|
language="c++",
|
|
)
|
|
stats = [
|
|
timer.collect_callgrind()
|
|
for _ in range(3)
|
|
]
|
|
counts = [s.counts() for s in stats]
|
|
|
|
self.assertGreater(
|
|
min(counts), 0, "No stats were collected")
|
|
self.assertEqual(
|
|
min(counts), max(counts), "C++ Callgrind should be deterministic")
|
|
|
|
for s in stats:
|
|
self.assertEqual(
|
|
s.counts(denoise=True), s.counts(denoise=False),
|
|
"De-noising should not apply to C++.")
|
|
|
|
def test_manipulate_callgrind_stats(self):
|
|
stats_no_data, stats_with_data = load_callgrind_artifacts()
|
|
|
|
# Mock `torch.set_printoptions(linewidth=160)`
|
|
wide_linewidth = benchmark_utils.FunctionCounts(
|
|
stats_no_data.stats(inclusive=False)._data, False, _linewidth=160)
|
|
|
|
for l in repr(wide_linewidth).splitlines(keepends=False):
|
|
self.assertLessEqual(len(l), 160)
|
|
|
|
self.assertEqual(
|
|
# `delta` is just a convenience method.
|
|
stats_with_data.delta(stats_no_data)._data,
|
|
(stats_with_data.stats() - stats_no_data.stats())._data
|
|
)
|
|
|
|
deltas = stats_with_data.as_standardized().delta(stats_no_data.as_standardized())
|
|
|
|
def custom_transforms(fn: str):
|
|
fn = re.sub(re.escape("/usr/include/c++/8/bits/"), "", fn)
|
|
fn = re.sub(r"build/../", "", fn)
|
|
fn = re.sub(".+" + re.escape("libsupc++"), "libsupc++", fn)
|
|
return fn
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
stats_no_data,
|
|
"""\
|
|
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0xXXXXXXXXXXXX>
|
|
y = torch.ones(())
|
|
All Noisy symbols removed
|
|
Instructions: 8869966 8728096
|
|
Baseline: 6682 5766
|
|
1000 runs per measurement, 1 thread""",
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
stats_no_data.counts(),
|
|
"""8869966""",
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
stats_no_data.counts(denoise=True),
|
|
"""8728096""",
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
stats_no_data.stats(),
|
|
"""\
|
|
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
|
|
408000 ???:__tls_get_addr [/usr/lib64/ld-2.28.so]
|
|
388193 ???:_int_free [/usr/lib64/libc-2.28.so]
|
|
274000 build/../torch/csrc/utils/python ... rch/torch/lib/libtorch_python.so]
|
|
264000 build/../aten/src/ATen/record_fu ... ytorch/torch/lib/libtorch_cpu.so]
|
|
192000 build/../c10/core/Device.h:c10:: ... epos/pytorch/torch/lib/libc10.so]
|
|
169855 ???:_int_malloc [/usr/lib64/libc-2.28.so]
|
|
154000 build/../c10/core/TensorOptions. ... ytorch/torch/lib/libtorch_cpu.so]
|
|
148561 /tmp/build/80754af9/python_15996 ... da3/envs/throwaway/bin/python3.6]
|
|
135000 ???:malloc [/usr/lib64/libc-2.28.so]
|
|
...
|
|
2000 /usr/include/c++/8/ext/new_allocator.h:torch::PythonArgs::intlist(int)
|
|
2000 /usr/include/c++/8/bits/stl_vect ... *, _object*, _object*, _object**)
|
|
2000 /usr/include/c++/8/bits/stl_vect ... rningHandler::~PyWarningHandler()
|
|
2000 /usr/include/c++/8/bits/stl_vect ... ject*, _object*, _object**, bool)
|
|
2000 /usr/include/c++/8/bits/stl_algobase.h:torch::PythonArgs::intlist(int)
|
|
2000 /usr/include/c++/8/bits/shared_p ... ad_accumulator(at::Tensor const&)
|
|
2000 /usr/include/c++/8/bits/move.h:c ... te<c10::AutogradMetaInterface> >)
|
|
2000 /usr/include/c++/8/bits/atomic_b ... DispatchKey&&, caffe2::TypeMeta&)
|
|
2000 /usr/include/c++/8/array:at::Ten ... , at::Tensor&, c10::Scalar) const
|
|
|
|
Total: 8869966""",
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
stats_no_data.stats(inclusive=True),
|
|
"""\
|
|
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
|
|
8959166 ???:0x0000000000001050 [/usr/lib64/ld-2.28.so]
|
|
8959166 ???:(below main) [/usr/lib64/libc-2.28.so]
|
|
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
|
|
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
|
|
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
|
|
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
|
|
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
|
|
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
|
|
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
|
|
...
|
|
92821 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
|
|
91000 build/../torch/csrc/tensor/pytho ... ch/torch/lib/libtorch_python.so]
|
|
91000 /data/users/test_user/repos/pyto ... nsors::get_default_scalar_type()
|
|
90090 ???:pthread_mutex_lock [/usr/lib64/libpthread-2.28.so]
|
|
90000 build/../c10/core/TensorImpl.h:c ... ch/torch/lib/libtorch_python.so]
|
|
90000 build/../aten/src/ATen/record_fu ... torch/torch/lib/libtorch_cpu.so]
|
|
90000 /data/users/test_user/repos/pyto ... uard(c10::optional<c10::Device>)
|
|
90000 /data/users/test_user/repos/pyto ... ersionCounter::~VersionCounter()
|
|
88000 /data/users/test_user/repos/pyto ... ratorKernel*, at::Tensor const&)""",
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
wide_linewidth,
|
|
"""\
|
|
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
|
|
408000 ???:__tls_get_addr [/usr/lib64/ld-2.28.so]
|
|
388193 ???:_int_free [/usr/lib64/libc-2.28.so]
|
|
274000 build/../torch/csrc/utils/python_arg_parser.cpp:torch::FunctionSignature ... bool) [/data/users/test_user/repos/pytorch/torch/lib/libtorch_python.so]
|
|
264000 build/../aten/src/ATen/record_function.cpp:at::RecordFunction::RecordFun ... ordScope) [/data/users/test_user/repos/pytorch/torch/lib/libtorch_cpu.so]
|
|
192000 build/../c10/core/Device.h:c10::Device::validate() [/data/users/test_user/repos/pytorch/torch/lib/libc10.so]
|
|
169855 ???:_int_malloc [/usr/lib64/libc-2.28.so]
|
|
154000 build/../c10/core/TensorOptions.h:c10::TensorOptions::merge_in(c10::Tens ... ns) const [/data/users/test_user/repos/pytorch/torch/lib/libtorch_cpu.so]
|
|
148561 /tmp/build/80754af9/python_1599604603603/work/Python/ceval.c:_PyEval_EvalFrameDefault [/home/test_user/miniconda3/envs/throwaway/bin/python3.6]
|
|
135000 ???:malloc [/usr/lib64/libc-2.28.so]
|
|
...
|
|
2000 /usr/include/c++/8/ext/new_allocator.h:torch::PythonArgs::intlist(int)
|
|
2000 /usr/include/c++/8/bits/stl_vector.h:torch::PythonArgParser::raw_parse(_object*, _object*, _object*, _object**)
|
|
2000 /usr/include/c++/8/bits/stl_vector.h:torch::PyWarningHandler::~PyWarningHandler()
|
|
2000 /usr/include/c++/8/bits/stl_vector.h:torch::FunctionSignature::parse(_object*, _object*, _object*, _object**, bool)
|
|
2000 /usr/include/c++/8/bits/stl_algobase.h:torch::PythonArgs::intlist(int)
|
|
2000 /usr/include/c++/8/bits/shared_ptr_base.h:torch::autograd::impl::try_get_grad_accumulator(at::Tensor const&)
|
|
2000 /usr/include/c++/8/bits/move.h:c10::TensorImpl::set_autograd_meta(std::u ... AutogradMetaInterface, std::default_delete<c10::AutogradMetaInterface> >)
|
|
2000 /usr/include/c++/8/bits/atomic_base.h:at::Tensor at::detail::make_tensor ... t_null_type<c10::StorageImpl> >&&, c10::DispatchKey&&, caffe2::TypeMeta&)
|
|
2000 /usr/include/c++/8/array:at::Tensor& c10::Dispatcher::callWithDispatchKe ... , c10::Scalar)> const&, c10::DispatchKey, at::Tensor&, c10::Scalar) const
|
|
|
|
Total: 8869966""" # noqa
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
stats_no_data.as_standardized().stats(),
|
|
"""\
|
|
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
|
|
408000 ???:__tls_get_addr
|
|
388193 ???:_int_free
|
|
274000 build/../torch/csrc/utils/python ... ject*, _object*, _object**, bool)
|
|
264000 build/../aten/src/ATen/record_fu ... ::RecordFunction(at::RecordScope)
|
|
192000 build/../c10/core/Device.h:c10::Device::validate()
|
|
169855 ???:_int_malloc
|
|
154000 build/../c10/core/TensorOptions. ... erge_in(c10::TensorOptions) const
|
|
148561 Python/ceval.c:_PyEval_EvalFrameDefault
|
|
135000 ???:malloc
|
|
...
|
|
2000 /usr/include/c++/8/ext/new_allocator.h:torch::PythonArgs::intlist(int)
|
|
2000 /usr/include/c++/8/bits/stl_vect ... *, _object*, _object*, _object**)
|
|
2000 /usr/include/c++/8/bits/stl_vect ... rningHandler::~PyWarningHandler()
|
|
2000 /usr/include/c++/8/bits/stl_vect ... ject*, _object*, _object**, bool)
|
|
2000 /usr/include/c++/8/bits/stl_algobase.h:torch::PythonArgs::intlist(int)
|
|
2000 /usr/include/c++/8/bits/shared_p ... ad_accumulator(at::Tensor const&)
|
|
2000 /usr/include/c++/8/bits/move.h:c ... te<c10::AutogradMetaInterface> >)
|
|
2000 /usr/include/c++/8/bits/atomic_b ... DispatchKey&&, caffe2::TypeMeta&)
|
|
2000 /usr/include/c++/8/array:at::Ten ... , at::Tensor&, c10::Scalar) const
|
|
|
|
Total: 8869966""",
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
deltas,
|
|
"""\
|
|
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
|
|
85000 Objects/dictobject.c:lookdict_unicode
|
|
59089 ???:_int_free
|
|
43000 ???:malloc
|
|
25000 build/../torch/csrc/utils/python ... :torch::PythonArgs::intlist(int)
|
|
24000 ???:__tls_get_addr
|
|
23000 ???:free
|
|
21067 Objects/dictobject.c:lookdict_unicode_nodummy
|
|
20000 build/../torch/csrc/utils/python ... :torch::PythonArgs::intlist(int)
|
|
18000 Objects/longobject.c:PyLong_AsLongLongAndOverflow
|
|
...
|
|
2000 /home/nwani/m3/conda-bld/compile ... del_op.cc:operator delete(void*)
|
|
1000 /usr/include/c++/8/bits/stl_vector.h:torch::PythonArgs::intlist(int)
|
|
193 ???:_int_malloc
|
|
75 ???:_int_memalign
|
|
-1000 build/../c10/util/SmallVector.h: ... _contiguous(c10::ArrayRef<long>)
|
|
-1000 build/../c10/util/SmallVector.h: ... nsor_restride(c10::MemoryFormat)
|
|
-1000 /usr/include/c++/8/bits/stl_vect ... es(_object*, _object*, _object*)
|
|
-8000 Python/ceval.c:_PyEval_EvalFrameDefault
|
|
-16000 Objects/tupleobject.c:PyTuple_New
|
|
|
|
Total: 432917""",
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(len(deltas), """35""")
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
deltas.transform(custom_transforms),
|
|
"""\
|
|
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
|
|
85000 Objects/dictobject.c:lookdict_unicode
|
|
59089 ???:_int_free
|
|
43000 ???:malloc
|
|
25000 torch/csrc/utils/python_numbers.h:torch::PythonArgs::intlist(int)
|
|
24000 ???:__tls_get_addr
|
|
23000 ???:free
|
|
21067 Objects/dictobject.c:lookdict_unicode_nodummy
|
|
20000 torch/csrc/utils/python_arg_parser.h:torch::PythonArgs::intlist(int)
|
|
18000 Objects/longobject.c:PyLong_AsLongLongAndOverflow
|
|
...
|
|
2000 c10/util/SmallVector.h:c10::TensorImpl::compute_contiguous() const
|
|
1000 stl_vector.h:torch::PythonArgs::intlist(int)
|
|
193 ???:_int_malloc
|
|
75 ???:_int_memalign
|
|
-1000 stl_vector.h:torch::autograd::TH ... es(_object*, _object*, _object*)
|
|
-1000 c10/util/SmallVector.h:c10::Tens ... _contiguous(c10::ArrayRef<long>)
|
|
-1000 c10/util/SmallVector.h:c10::Tens ... nsor_restride(c10::MemoryFormat)
|
|
-8000 Python/ceval.c:_PyEval_EvalFrameDefault
|
|
-16000 Objects/tupleobject.c:PyTuple_New
|
|
|
|
Total: 432917""",
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
deltas.filter(lambda fn: fn.startswith("???")),
|
|
"""\
|
|
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
|
|
59089 ???:_int_free
|
|
43000 ???:malloc
|
|
24000 ???:__tls_get_addr
|
|
23000 ???:free
|
|
193 ???:_int_malloc
|
|
75 ???:_int_memalign
|
|
|
|
Total: 149357""",
|
|
)
|
|
|
|
self.regularizeAndAssertExpectedInline(
|
|
deltas[:5],
|
|
"""\
|
|
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
|
|
85000 Objects/dictobject.c:lookdict_unicode
|
|
59089 ???:_int_free
|
|
43000 ???:malloc
|
|
25000 build/../torch/csrc/utils/python_ ... h:torch::PythonArgs::intlist(int)
|
|
24000 ???:__tls_get_addr
|
|
|
|
Total: 236089""",
|
|
)
|
|
|
|
def test_compare(self):
|
|
# Simulate several approaches.
|
|
costs = (
|
|
# overhead_optimized_fn()
|
|
(1e-6, 1e-9),
|
|
|
|
# compute_optimized_fn()
|
|
(3e-6, 5e-10),
|
|
|
|
# special_case_fn() [square inputs only]
|
|
(1e-6, 4e-10),
|
|
)
|
|
|
|
sizes = (
|
|
(16, 16),
|
|
(16, 128),
|
|
(128, 128),
|
|
(4096, 1024),
|
|
(2048, 2048),
|
|
)
|
|
|
|
# overhead_optimized_fn()
|
|
class _MockTimer_0(self._MockTimer):
|
|
_function_costs = tuple(
|
|
(f"fn({i}, {j})", costs[0][0] + costs[0][1] * i * j)
|
|
for i, j in sizes
|
|
)
|
|
|
|
class MockTimer_0(benchmark_utils.Timer):
|
|
_timer_cls = _MockTimer_0
|
|
|
|
# compute_optimized_fn()
|
|
class _MockTimer_1(self._MockTimer):
|
|
_function_costs = tuple(
|
|
(f"fn({i}, {j})", costs[1][0] + costs[1][1] * i * j)
|
|
for i, j in sizes
|
|
)
|
|
|
|
class MockTimer_1(benchmark_utils.Timer):
|
|
_timer_cls = _MockTimer_1
|
|
|
|
# special_case_fn()
|
|
class _MockTimer_2(self._MockTimer):
|
|
_function_costs = tuple(
|
|
(f"fn({i}, {j})", costs[2][0] + costs[2][1] * i * j)
|
|
for i, j in sizes if i == j
|
|
)
|
|
|
|
class MockTimer_2(benchmark_utils.Timer):
|
|
_timer_cls = _MockTimer_2
|
|
|
|
results = []
|
|
for i, j in sizes:
|
|
results.append(
|
|
MockTimer_0(
|
|
f"fn({i}, {j})",
|
|
label="fn",
|
|
description=f"({i}, {j})",
|
|
sub_label="overhead_optimized",
|
|
).blocked_autorange(min_run_time=10)
|
|
)
|
|
|
|
results.append(
|
|
MockTimer_1(
|
|
f"fn({i}, {j})",
|
|
label="fn",
|
|
description=f"({i}, {j})",
|
|
sub_label="compute_optimized",
|
|
).blocked_autorange(min_run_time=10)
|
|
)
|
|
|
|
if i == j:
|
|
results.append(
|
|
MockTimer_2(
|
|
f"fn({i}, {j})",
|
|
label="fn",
|
|
description=f"({i}, {j})",
|
|
sub_label="special_case (square)",
|
|
).blocked_autorange(min_run_time=10)
|
|
)
|
|
|
|
def rstrip_lines(s: str) -> str:
|
|
# VSCode will rstrip the `expected` string literal whether you like
|
|
# it or not. So we have to rstrip the compare table as well.
|
|
return "\n".join([i.rstrip() for i in s.splitlines(keepends=False)])
|
|
|
|
compare = benchmark_utils.Compare(results)
|
|
self.regularizeAndAssertExpectedInline(
|
|
rstrip_lines(str(compare).strip()),
|
|
"""\
|
|
[------------------------------------------------- fn ------------------------------------------------]
|
|
| (16, 16) | (16, 128) | (128, 128) | (4096, 1024) | (2048, 2048)
|
|
1 threads: --------------------------------------------------------------------------------------------
|
|
overhead_optimized | 1.3 | 3.0 | 17.4 | 4174.4 | 4174.4
|
|
compute_optimized | 3.1 | 4.0 | 11.2 | 2099.3 | 2099.3
|
|
special_case (square) | 1.1 | | 7.5 | | 1674.7
|
|
|
|
Times are in microseconds (us)."""
|
|
)
|
|
|
|
compare.trim_significant_figures()
|
|
self.regularizeAndAssertExpectedInline(
|
|
rstrip_lines(str(compare).strip()),
|
|
"""\
|
|
[------------------------------------------------- fn ------------------------------------------------]
|
|
| (16, 16) | (16, 128) | (128, 128) | (4096, 1024) | (2048, 2048)
|
|
1 threads: --------------------------------------------------------------------------------------------
|
|
overhead_optimized | 1 | 3.0 | 17 | 4200 | 4200
|
|
compute_optimized | 3 | 4.0 | 11 | 2100 | 2100
|
|
special_case (square) | 1 | | 8 | | 1700
|
|
|
|
Times are in microseconds (us)."""
|
|
)
|
|
|
|
compare.colorize()
|
|
columnwise_colored_actual = rstrip_lines(str(compare).strip())
|
|
columnwise_colored_expected = textwrap.dedent(
|
|
"""\
|
|
[------------------------------------------------- fn ------------------------------------------------]
|
|
| (16, 16) | (16, 128) | (128, 128) | (4096, 1024) | (2048, 2048)
|
|
1 threads: --------------------------------------------------------------------------------------------
|
|
overhead_optimized | 1 | \x1b[92m\x1b[1m 3.0 \x1b[0m\x1b[0m | \x1b[2m\x1b[91m 17 \x1b[0m\x1b[0m | 4200 | \x1b[2m\x1b[91m 4200 \x1b[0m\x1b[0m
|
|
compute_optimized | \x1b[2m\x1b[91m 3 \x1b[0m\x1b[0m | 4.0 | 11 | \x1b[92m\x1b[1m 2100 \x1b[0m\x1b[0m | 2100
|
|
special_case (square) | \x1b[92m\x1b[1m 1 \x1b[0m\x1b[0m | | \x1b[92m\x1b[1m 8 \x1b[0m\x1b[0m | | \x1b[92m\x1b[1m 1700 \x1b[0m\x1b[0m
|
|
|
|
Times are in microseconds (us).""" # noqa
|
|
)
|
|
|
|
compare.colorize(rowwise=True)
|
|
rowwise_colored_actual = rstrip_lines(str(compare).strip())
|
|
rowwise_colored_expected = textwrap.dedent(
|
|
"""\
|
|
[------------------------------------------------- fn ------------------------------------------------]
|
|
| (16, 16) | (16, 128) | (128, 128) | (4096, 1024) | (2048, 2048)
|
|
1 threads: --------------------------------------------------------------------------------------------
|
|
overhead_optimized | \x1b[92m\x1b[1m 1 \x1b[0m\x1b[0m | \x1b[2m\x1b[91m 3.0 \x1b[0m\x1b[0m | \x1b[31m\x1b[1m 17 \x1b[0m\x1b[0m | \x1b[31m\x1b[1m 4200 \x1b[0m\x1b[0m | \x1b[31m\x1b[1m 4200 \x1b[0m\x1b[0m
|
|
compute_optimized | \x1b[92m\x1b[1m 3 \x1b[0m\x1b[0m | 4.0 | \x1b[2m\x1b[91m 11 \x1b[0m\x1b[0m | \x1b[31m\x1b[1m 2100 \x1b[0m\x1b[0m | \x1b[31m\x1b[1m 2100 \x1b[0m\x1b[0m
|
|
special_case (square) | \x1b[92m\x1b[1m 1 \x1b[0m\x1b[0m | | \x1b[31m\x1b[1m 8 \x1b[0m\x1b[0m | | \x1b[31m\x1b[1m 1700 \x1b[0m\x1b[0m
|
|
|
|
Times are in microseconds (us).""" # noqa
|
|
)
|
|
|
|
def print_new_expected(s: str) -> None:
|
|
print(f'{"":>12}"""\\', end="")
|
|
for l in s.splitlines(keepends=False):
|
|
print("\n" + textwrap.indent(repr(l)[1:-1], " " * 12), end="")
|
|
print('"""\n')
|
|
|
|
if expecttest.ACCEPT:
|
|
# expecttest does not currently support non-printable characters,
|
|
# so these two entries have to be updated manually.
|
|
if columnwise_colored_actual != columnwise_colored_expected:
|
|
print("New columnwise coloring:\n")
|
|
print_new_expected(columnwise_colored_actual)
|
|
|
|
if rowwise_colored_actual != rowwise_colored_expected:
|
|
print("New rowwise coloring:\n")
|
|
print_new_expected(rowwise_colored_actual)
|
|
|
|
self.assertEqual(columnwise_colored_actual, columnwise_colored_expected)
|
|
self.assertEqual(rowwise_colored_actual, rowwise_colored_expected)
|
|
|
|
@unittest.skipIf(IS_WINDOWS and os.getenv("VC_YEAR") == "2019", "Random seed only accepts int32")
|
|
def test_fuzzer(self):
|
|
fuzzer = benchmark_utils.Fuzzer(
|
|
parameters=[
|
|
benchmark_utils.FuzzedParameter(
|
|
"n", minval=1, maxval=16, distribution="loguniform")],
|
|
tensors=[benchmark_utils.FuzzedTensor("x", size=("n",))],
|
|
seed=0,
|
|
)
|
|
|
|
expected_results = [
|
|
(0.7821, 0.0536, 0.9888, 0.1949, 0.5242, 0.1987, 0.5094),
|
|
(0.7166, 0.5961, 0.8303, 0.005),
|
|
]
|
|
|
|
for i, (tensors, _, _) in enumerate(fuzzer.take(2)):
|
|
x = tensors["x"]
|
|
self.assertEqual(
|
|
x, torch.Tensor(expected_results[i]), rtol=1e-3, atol=1e-3)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|