mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Resolve #137540 Summary: We might get different state_dict and named_parameters result when the module has registered custom state_dict_hooks. For exported_program's state_dict, we want the state_dict to reflect the actual module hierarchy at runtime, and it might be different from the model's state_dict() output if the model has state_dict hooks. To do weight swapping, one needs to either re-export or turn-off the hooks when saving model's state_dict(). Previously, ExportedProgram uses nn.Module's state_dict() method to populate its own state_dict, but it doesn't work for some models (e.g. llama3_3_vision) because ExportedProgram's state_dict and an nn.Module's state_dict have some subtle differences semantically. nn.Module's state_dict is about how the state should be serialized, and it reflects the structure of the original user model code. In contrast, export specializes on a “run” of a model, and its state_dict needs to reflect the runtime module hierarchy. One example where these two are different is TorchTune's Llama3_2_vision text decoder. Here, a FusionLayer is added as a local optimization and it is not part of the "static model definition". In runtime, we have mod.layers[3].layer.sa_norm.scale. But in nn.Module's state_dict, the authors of the model added a state_dict hook to remove the "layer" in mod.state_dict() to reflect the static model definition, so we have mod.state_dict()["layers.3.sa_norm.scale"]. In this Diff, we change ExportedProgram to populate its state_dict using named_parameters() and named_buffers() instead. So in ExportedProgram's state_dict, we have "layers.3.layer.sa_norm.scale", which reflects the runtime module hierarchy. Now one problem this presents is weight swapping. Since ExportedProgram's state and the model's state is not the same anymore, weight swapping procedure also needs to change slightly. In internal Ads and RecSys models deployment, weight swapping is where they have one model that is currently being being deployed and serving traffic, and they want to swap out the weights with newly trained model weights without having to redo the whole exporting/lowering process and create a new artifact. So they would move the deployed model’s pointer to the state dict over to the new state dict. Because of this, it’s previously a requirement that the FQNs are matching between the exported and the eager model’s state dict. The new ExportedProgram's state dict still supports weight swapping, but the state_dict to be swapped needs to be obtained from torch.export.exported_program instead of model.state_dict() if the model has state_dict hooks. The new requirement is that the FQNs are matching between the exported’s state dict and the state_dict obtained from `_disabled_load_state_dict_hooks(M)` context manager. One benefit of having this new API is that we are now in full control within export of gathering and updating the model state. If a model doesn't have any state_dict hooks, one can still use model.state_dict() for weight swapping, so it's BC. Test Plan: ``` buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export -- -r test_export_for_training_with_state_dict_hooks ``` Differential Revision: D64080561 Pull Request resolved: https://github.com/pytorch/pytorch/pull/137609 Approved by: https://github.com/angelayi, https://github.com/pianpwk
921 lines
35 KiB
Python
921 lines
35 KiB
Python
# mypy: allow-untyped-defs
|
|
import ast
|
|
import dataclasses
|
|
import inspect
|
|
import math
|
|
import operator
|
|
import re
|
|
from contextlib import contextmanager
|
|
from inspect import Parameter
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Iterable,
|
|
List,
|
|
Optional,
|
|
Tuple,
|
|
Type,
|
|
TYPE_CHECKING,
|
|
)
|
|
|
|
import torch
|
|
from torch._guards import detect_fake_mode
|
|
from torch._subclasses.fake_tensor import FakeTensor
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from torch._export.passes.lift_constants_pass import ConstantAttrMap
|
|
from torch.export import ExportedProgram
|
|
from torch.export.graph_signature import ExportGraphSignature
|
|
|
|
from torch.export.graph_signature import InputKind, OutputKind
|
|
from torch.utils._pytree import (
|
|
_register_pytree_node,
|
|
Context,
|
|
FlattenFunc,
|
|
FromDumpableContextFn,
|
|
GetAttrKey,
|
|
KeyPath,
|
|
keystr,
|
|
MappingKey,
|
|
SequenceKey,
|
|
ToDumpableContextFn,
|
|
tree_flatten_with_path,
|
|
UnflattenFunc,
|
|
)
|
|
|
|
|
|
placeholder_prefixes = {
|
|
InputKind.USER_INPUT: "",
|
|
InputKind.PARAMETER: "p_",
|
|
InputKind.BUFFER: "b_",
|
|
InputKind.CONSTANT_TENSOR: "c_",
|
|
InputKind.CUSTOM_OBJ: "obj_",
|
|
InputKind.TOKEN: "token",
|
|
}
|
|
|
|
|
|
def _collect_and_set_constant_attrs(
|
|
graph_signature, constants, mod
|
|
) -> "ConstantAttrMap":
|
|
# the exported module will store constants & non-persistent buffers such that
|
|
# retracing treats them as persistent buffers, so we inform the constants lifting pass
|
|
# and overwrite the new graph signature using the previous program. This is intended to only be used
|
|
# in run_decompositions where we still have access to original EP.
|
|
from torch._export.passes.lift_constants_pass import ConstantAttrMap
|
|
|
|
constant_attrs = ConstantAttrMap()
|
|
non_persistent_buffers = {
|
|
spec.target
|
|
for spec in graph_signature.input_specs
|
|
if spec.kind == InputKind.BUFFER and not spec.persistent
|
|
}
|
|
for name, value in constants.items():
|
|
if name in non_persistent_buffers:
|
|
continue
|
|
# recursive getattr
|
|
_mod = mod
|
|
*atoms, attr = name.split(".")
|
|
for atom in atoms:
|
|
_mod = getattr(_mod, atom)
|
|
# remove as buffer, reassign as constant/non-persistent buffer
|
|
_mod._buffers.pop(attr, None)
|
|
setattr(_mod, attr, value)
|
|
constant_attrs.add(value, name)
|
|
return constant_attrs
|
|
|
|
|
|
def _overwrite_signature_for_non_persistent_buffers(
|
|
old_sig: "ExportGraphSignature", new_sig: "ExportGraphSignature"
|
|
):
|
|
# overwrite signature for non-persistent buffers
|
|
non_persistent_buffers = {
|
|
spec.target
|
|
for spec in old_sig.input_specs
|
|
if spec.kind == InputKind.BUFFER and not spec.persistent
|
|
}
|
|
|
|
for spec in new_sig.input_specs:
|
|
if spec.kind == InputKind.BUFFER and spec.target in non_persistent_buffers:
|
|
spec.persistent = False
|
|
return new_sig
|
|
|
|
|
|
def _collect_param_buffer_metadata(mod: torch.fx.GraphModule) -> Dict[str, Any]:
|
|
"""
|
|
Param/buffer metadata needs to be saved before lowering to aten IR
|
|
because aten IR lifts them, as a result, automatic preservation doesn't work.
|
|
This is intended to be called on the strict mode tracing right before lowering to
|
|
aten IR OR run_decomposition pass.
|
|
"""
|
|
params_buffers_to_node_meta = {}
|
|
|
|
def _getattr(model: torch.fx.GraphModule, attr_name: str):
|
|
*prefix, field = attr_name.split(".")
|
|
t = model
|
|
for item in prefix:
|
|
t = getattr(t, item, None) # type: ignore[assignment]
|
|
assert t is not None
|
|
|
|
return getattr(t, field)
|
|
|
|
for node in mod.graph.nodes:
|
|
target = node.target
|
|
meta = node.meta
|
|
if node.op == "call_module":
|
|
submodule = _getattr(mod, target)
|
|
if isinstance(submodule, torch.nn.Module):
|
|
for name, _ in submodule.named_parameters(
|
|
recurse=True, remove_duplicate=False
|
|
):
|
|
params_buffers_to_node_meta[target + "." + name] = meta
|
|
|
|
for name, _ in submodule.named_buffers(
|
|
recurse=True, remove_duplicate=False
|
|
):
|
|
params_buffers_to_node_meta[target + "." + name] = meta
|
|
|
|
if node.op == "get_attr":
|
|
submodule = _getattr(mod, target)
|
|
if not isinstance(submodule, torch.fx.GraphModule):
|
|
params_buffers_to_node_meta[target] = meta
|
|
|
|
# If the call_function uses param as input, we also need to update params' meta
|
|
# with this call_function node's meta.
|
|
# This is basically the same flow as torch.fx.traceback.preserve_meta()
|
|
if node.op == "call_function" and not isinstance(
|
|
node.target, torch._ops.HigherOrderOperator
|
|
):
|
|
for arg in node._input_nodes:
|
|
if arg.op == "get_attr":
|
|
for entry in torch.fx.proxy._COPY_META_FIELDS:
|
|
# the custom field should not be copied
|
|
if entry == "custom":
|
|
continue
|
|
if entry in meta:
|
|
params_buffers_to_node_meta[arg.target][entry] = meta[entry]
|
|
|
|
return params_buffers_to_node_meta
|
|
|
|
|
|
def _populate_param_buffer_metadata_to_new_gm(
|
|
params_buffers_to_node_meta: Dict[str, Any],
|
|
gm: torch.fx.GraphModule,
|
|
new_sig: "ExportGraphSignature",
|
|
) -> None:
|
|
"""
|
|
Given that we collected param'buffer metadata before, we put them back in
|
|
newly traced graph module
|
|
"""
|
|
# Don't copy over nn_module_stack, stack_trace metadata for params/buffers nodes
|
|
for metadata in params_buffers_to_node_meta.values():
|
|
metadata.pop("nn_module_stack", None)
|
|
metadata.pop("stack_trace", None)
|
|
|
|
for node in gm.graph.nodes:
|
|
if node.op == "placeholder":
|
|
if node.target in new_sig.inputs_to_parameters:
|
|
param_name = new_sig.inputs_to_parameters[node.target]
|
|
if param_name in params_buffers_to_node_meta:
|
|
for k, v in params_buffers_to_node_meta[param_name].items():
|
|
node.meta[k] = v
|
|
if node.target in new_sig.inputs_to_buffers:
|
|
buffer_name = new_sig.inputs_to_buffers[node.target]
|
|
if buffer_name in params_buffers_to_node_meta:
|
|
for k, v in params_buffers_to_node_meta[buffer_name].items():
|
|
node.meta[k] = v
|
|
|
|
|
|
def _get_shape_env_from_gm(gm: torch.fx.GraphModule):
|
|
vals = [
|
|
node.meta["val"]
|
|
for node in gm.graph.nodes
|
|
if node.meta.get("val", None) is not None
|
|
]
|
|
|
|
fake_mode = _detect_fake_mode_from_gm(gm)
|
|
if fake_mode is not None:
|
|
return fake_mode.shape_env
|
|
for v in vals:
|
|
if isinstance(v, torch.SymInt):
|
|
return v.node.shape_env
|
|
|
|
|
|
def _rename_without_collisions(
|
|
name_map: Dict[str, str],
|
|
orig_name: str,
|
|
name: str,
|
|
is_placeholder: bool = False,
|
|
):
|
|
"""
|
|
Renames nodes to avoid name collisions, with suffixing.
|
|
name_map: map from original name to new name
|
|
orig_name: mapping key
|
|
name: candidate name (potentially suffixed, e.g. mul_2)
|
|
is_placeholder: if the node is a placeholder, avoid detecting suffix
|
|
"""
|
|
if name in name_map.values():
|
|
# non-placeholder nodes may be suffixed with the count
|
|
# instead of adding another suffix, we will try to increment it
|
|
match = re.match(r"(.*)_(\d+)", name)
|
|
if match and not is_placeholder:
|
|
name, n = match.group(1), int(match.group(2))
|
|
else:
|
|
n = 0
|
|
while (dup_name := f"{name}_{n + 1}") in name_map.values():
|
|
n += 1
|
|
name_map[orig_name] = dup_name
|
|
else:
|
|
name_map[orig_name] = name
|
|
return name_map[orig_name]
|
|
|
|
|
|
def _check_input_constraints_for_graph(
|
|
input_placeholders: List[torch.fx.Node], flat_args_with_path, range_constraints
|
|
) -> None:
|
|
def get_keystr(key_path: KeyPath) -> str:
|
|
"""For a given index into the flat_args, return a human readable string
|
|
describing how to access it, e.g. "*args["foo"][0].bar"
|
|
"""
|
|
# Prefix the keypath with "*args" or "**kwargs" to make it clearer where
|
|
# the arguments come from. Ultimately we ought to serialize the
|
|
# original arg names for the best error message here.
|
|
args_kwargs_key_path = key_path[0]
|
|
assert isinstance(args_kwargs_key_path, SequenceKey)
|
|
if args_kwargs_key_path.idx == 0:
|
|
return f"*args{keystr(key_path[1:])}"
|
|
else:
|
|
kwarg_key = key_path[1]
|
|
assert isinstance(kwarg_key, MappingKey)
|
|
name = str(kwarg_key)[1:-1] # get rid of the enclosed []
|
|
return f"{name}{keystr(key_path[2:])}"
|
|
|
|
import sympy
|
|
|
|
from torch._export.passes.add_runtime_assertions_for_constraints_pass import (
|
|
_convert_range_to_int,
|
|
)
|
|
from torch.utils._sympy.solve import try_solve
|
|
|
|
if len(flat_args_with_path) != len(input_placeholders):
|
|
raise RuntimeError(
|
|
"Unexpected number of inputs "
|
|
f"(expected {len(input_placeholders)}, got {len(flat_args_with_path)})"
|
|
)
|
|
# NOTE: export already guarantees that the same symbol is used in metadata
|
|
# for all InputDims related by equality constraints, so we can just unify
|
|
# symbols with given input dimension values to check equality constraints.
|
|
unification_map: Dict[sympy.Symbol, Any] = {}
|
|
for (key_path, arg), node in zip(flat_args_with_path, input_placeholders):
|
|
node_val = node.meta.get("val")
|
|
if isinstance(node_val, FakeTensor):
|
|
if not isinstance(arg, torch.Tensor):
|
|
raise RuntimeError(
|
|
f"Expected input at {get_keystr(key_path)} to be a tensor, but got {type(arg)}",
|
|
)
|
|
|
|
if len(node_val.shape) != len(arg.shape):
|
|
raise RuntimeError(
|
|
f"Unexpected number of dimensions in input at {get_keystr(key_path)}.shape "
|
|
f"(expected {node_val.shape}, got {arg.shape})"
|
|
)
|
|
|
|
for j, (arg_dim, node_dim) in enumerate(zip(arg.shape, node_val.shape)):
|
|
# TODO(avik): Assert the following property in the IR verifier:
|
|
# node_dim is either an int or a SymInt containing an int or a unary sympy.Expr
|
|
if (
|
|
isinstance(node_dim, torch.SymInt)
|
|
and len(node_dim.node.expr.free_symbols) == 1
|
|
):
|
|
symbol = next(iter(node_dim.node.expr.free_symbols))
|
|
if symbol in unification_map:
|
|
existing_dim = node_dim.node.expr.subs(unification_map)
|
|
if arg_dim != existing_dim:
|
|
raise RuntimeError(
|
|
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be equal to "
|
|
f"{existing_dim}, but got {arg_dim}",
|
|
)
|
|
else:
|
|
if (
|
|
isinstance(arg_dim, torch.SymInt)
|
|
and not arg_dim.node.expr.is_number
|
|
):
|
|
# This can happen when, say, arg is a fake tensor.
|
|
# We do not run checks on symbolic shapes of fake inputs as
|
|
# such checks can affect the shape env.
|
|
pass
|
|
else:
|
|
if isinstance(node_dim.node.expr, sympy.Symbol):
|
|
# Short cut for try_solve below. Also useful in cases where
|
|
# sympy.Eq(node_dim.node.expr, arg_dim) would evaluate to False
|
|
# purely because symbol is constrained to be size-like,
|
|
# e.g., when node_dim.node.expr = symbol and arg_dim = 0.
|
|
unification_map[symbol] = int(arg_dim)
|
|
else:
|
|
solution = try_solve(
|
|
sympy.Eq(node_dim.node.expr, arg_dim), symbol
|
|
)
|
|
if solution is None:
|
|
raise RuntimeError( # noqa: B904
|
|
f"Expected input {node.name}.shape[{j}] = {arg_dim} to be "
|
|
f"of the form {node_dim.node.expr}, where {symbol} is an integer"
|
|
)
|
|
else:
|
|
unification_map[symbol] = int(solution[1])
|
|
|
|
if node_dim.node.expr in range_constraints:
|
|
min_val, max_val = _convert_range_to_int(
|
|
range_constraints[node_dim.node.expr]
|
|
)
|
|
# NOTE: we allow dimensions to be 0/1 at runtime
|
|
if min_val > 2:
|
|
if arg_dim < min_val:
|
|
raise RuntimeError(
|
|
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be >= "
|
|
f"{min_val}, but got {arg_dim}",
|
|
)
|
|
if max_val < math.inf:
|
|
if arg_dim > max_val:
|
|
raise RuntimeError(
|
|
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be <= "
|
|
f"{max_val}, but got {arg_dim}",
|
|
)
|
|
else:
|
|
if arg_dim != node_dim:
|
|
if (
|
|
isinstance(node_dim, torch.SymInt)
|
|
and not node_dim.node.expr.is_number
|
|
):
|
|
# this means we deferred a guard from export analysis to runtime, let this pass
|
|
# we'll add a runtime assert checking equality to this replacement expression
|
|
continue
|
|
raise RuntimeError(
|
|
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be equal to "
|
|
f"{node_dim}, but got {arg_dim}",
|
|
)
|
|
elif isinstance(node_val, (int, float, str)):
|
|
if type(arg) != type(node_val) or arg != node_val:
|
|
raise RuntimeError(
|
|
f"Expected input at {get_keystr(key_path)} to be equal to {node_val}, but got {arg}",
|
|
)
|
|
|
|
|
|
def register_dataclass_as_pytree_node(
|
|
cls: Type[Any],
|
|
flatten_fn: Optional[FlattenFunc] = None,
|
|
unflatten_fn: Optional[UnflattenFunc] = None,
|
|
*,
|
|
serialized_type_name: Optional[str] = None,
|
|
to_dumpable_context: Optional[ToDumpableContextFn] = None,
|
|
from_dumpable_context: Optional[FromDumpableContextFn] = None,
|
|
return_none_fields: bool = False,
|
|
) -> None:
|
|
assert dataclasses.is_dataclass(
|
|
cls
|
|
), f"Only dataclasses can be registered with this function: {cls}"
|
|
|
|
def default_flatten_fn(obj: Any) -> Tuple[List[Any], Context]:
|
|
flattened = []
|
|
flat_names = []
|
|
none_names = []
|
|
for f in dataclasses.fields(obj):
|
|
name, val = f.name, getattr(obj, f.name)
|
|
if val is not None or return_none_fields:
|
|
flattened.append(val)
|
|
flat_names.append(name)
|
|
else:
|
|
none_names.append(name)
|
|
return flattened, [flat_names, none_names]
|
|
|
|
def default_unflatten_fn(values: Iterable[Any], context: Context) -> Any:
|
|
flat_names, none_names = context
|
|
return cls(**dict(zip(flat_names, values)), **dict.fromkeys(none_names))
|
|
|
|
def default_flatten_fn_with_keys(obj: Any) -> Tuple[List[Any], Context]:
|
|
flattened, (flat_names, none_names) = flatten_fn(obj) # type: ignore[misc]
|
|
return [(MappingKey(k), v) for k, v in zip(flat_names, flattened)], flat_names
|
|
|
|
flatten_fn = flatten_fn if flatten_fn is not None else default_flatten_fn
|
|
unflatten_fn = unflatten_fn if unflatten_fn is not None else default_unflatten_fn
|
|
|
|
if (to_dumpable_context is None) ^ (from_dumpable_context is None):
|
|
raise ValueError(
|
|
f"Both to_dumpable_context and from_dumpable_context for {cls} must "
|
|
"be None or registered."
|
|
)
|
|
|
|
_register_pytree_node(
|
|
cls,
|
|
flatten_fn,
|
|
unflatten_fn,
|
|
serialized_type_name=serialized_type_name,
|
|
flatten_with_keys_fn=default_flatten_fn_with_keys,
|
|
to_dumpable_context=to_dumpable_context,
|
|
from_dumpable_context=from_dumpable_context,
|
|
)
|
|
|
|
|
|
def is_param(program: "ExportedProgram", node: torch.fx.Node) -> bool:
|
|
"""
|
|
Checks if the given node is a parameter within the exported program
|
|
"""
|
|
|
|
return node.name in program.graph_signature.inputs_to_parameters
|
|
|
|
|
|
def get_param(
|
|
program: "ExportedProgram",
|
|
node: torch.fx.Node,
|
|
) -> Optional[torch.nn.Parameter]:
|
|
"""
|
|
Returns the parameter associated with the given node in the exported program.
|
|
Returns None if the node is not a parameter within the exported program
|
|
"""
|
|
|
|
if is_param(program, node):
|
|
parameter_name = program.graph_signature.inputs_to_parameters[node.name]
|
|
return program.state_dict[parameter_name]
|
|
|
|
return None
|
|
|
|
|
|
def is_buffer(program: "ExportedProgram", node: torch.fx.Node) -> bool:
|
|
"""
|
|
Checks if the given node is a buffer within the exported program
|
|
"""
|
|
|
|
return node.name in program.graph_signature.inputs_to_buffers
|
|
|
|
|
|
def get_buffer(
|
|
program: "ExportedProgram",
|
|
node: torch.fx.Node,
|
|
) -> Optional[torch.Tensor]:
|
|
"""
|
|
Returns the buffer associated with the given node in the exported program.
|
|
Returns None if the node is not a buffer within the exported program
|
|
"""
|
|
|
|
if is_buffer(program, node):
|
|
buffer_name = program.graph_signature.inputs_to_buffers[node.name]
|
|
if buffer_name in program.graph_signature.non_persistent_buffers:
|
|
return program.constants[buffer_name]
|
|
else:
|
|
return program.state_dict[buffer_name]
|
|
|
|
return None
|
|
|
|
|
|
def is_lifted_tensor_constant(
|
|
program: "ExportedProgram",
|
|
node: torch.fx.Node,
|
|
) -> bool:
|
|
"""
|
|
Checks if the given node is a lifted tensor constant within the exported program
|
|
"""
|
|
|
|
return node.name in program.graph_signature.inputs_to_lifted_tensor_constants
|
|
|
|
|
|
def get_lifted_tensor_constant(
|
|
program: "ExportedProgram",
|
|
node: torch.fx.Node,
|
|
) -> Optional[torch.Tensor]:
|
|
"""
|
|
Returns the lifted tensor constant associated with the given node in the exported program.
|
|
Returns None if the node is not a lifted tensor constant within the exported program
|
|
"""
|
|
|
|
if is_lifted_tensor_constant(program, node):
|
|
lifted_tensor_name = program.graph_signature.inputs_to_lifted_tensor_constants[
|
|
node.name
|
|
]
|
|
return program.constants[lifted_tensor_name]
|
|
|
|
return None
|
|
|
|
|
|
def sequential_split(gm: torch.fx.GraphModule, node_call_back) -> torch.fx.GraphModule:
|
|
"""
|
|
sequential_split creates a new graph module that splits the input graph module into multiple submodules
|
|
based on the node_call_back. It doesn't mutate the input graph module. The node_call_back should return
|
|
True if the node is a delimiter. Delimiter will be the first node in the next submodule.
|
|
"""
|
|
from torch.fx.passes.split_module import split_module
|
|
|
|
split_map = {}
|
|
split_id = 0
|
|
for node in gm.graph.nodes:
|
|
if node_call_back(node):
|
|
split_id += 1
|
|
split_map[node] = split_id
|
|
|
|
new_gm = split_module(
|
|
gm,
|
|
gm,
|
|
lambda node: split_map[node],
|
|
keep_original_order=True,
|
|
keep_original_node_name=True,
|
|
)
|
|
# Keep the codegen from original graph module to preserve e.g. pytree info.
|
|
new_gm.graph._codegen = gm.graph._codegen
|
|
new_gm.recompile()
|
|
return new_gm
|
|
|
|
|
|
def nodes_filter(nodes: List[torch.fx.Node], node_call_back) -> List[torch.fx.Node]:
|
|
"""Returns the nodes that match the node_call_back as a list."""
|
|
return [node for node in nodes if node_call_back(node)]
|
|
|
|
|
|
def nodes_first(
|
|
nodes: List[torch.fx.Node], node_call_back=None
|
|
) -> Optional[torch.fx.Node]:
|
|
"""
|
|
Returns the first node that matches the node_call_back. If no node matches, returns None.
|
|
When node_call_back is None, returns the first node in the node list.
|
|
"""
|
|
ret = nodes_filter(nodes, node_call_back if node_call_back else lambda node: True)
|
|
if len(ret) > 0:
|
|
return ret[0]
|
|
return None
|
|
|
|
|
|
def nodes_count(nodes: List[torch.fx.Node], node_call_back) -> int:
|
|
"""Returns the number of nodes that match the node_call_back."""
|
|
return len(nodes_filter(nodes, node_call_back))
|
|
|
|
|
|
def nodes_map(nodes: List[torch.fx.Node], node_call_back) -> List[torch.fx.Node]:
|
|
"""
|
|
Sequentially visit the nodes list and invoke node_call_back on each element.
|
|
Returns the nodes list after the node_call_back is invoked on each element.
|
|
"""
|
|
for node in nodes:
|
|
node_call_back(node)
|
|
return nodes
|
|
|
|
|
|
def node_replace_(old_node: torch.fx.Node, new_node: torch.fx.Node) -> None:
|
|
"""
|
|
Replace all uses of old_node with new_node.
|
|
"""
|
|
old_node.replace_all_uses_with(new_node)
|
|
old_node.users.clear()
|
|
old_node.graph.erase_node(old_node)
|
|
|
|
|
|
def node_inline_(call_mod_node: torch.fx.Node) -> None:
|
|
"""
|
|
Inline the submodule of the given node into the parent module.
|
|
Note: we only support the case where submodule takes tensors inputs.
|
|
"""
|
|
assert call_mod_node.op == "call_module"
|
|
gm = call_mod_node.graph.owning_module
|
|
|
|
assert isinstance(call_mod_node.target, str)
|
|
sub_gm = getattr(gm, call_mod_node.target)
|
|
|
|
phs = (node for node in sub_gm.graph.nodes if node.op == "placeholder")
|
|
body = (
|
|
node for node in sub_gm.graph.nodes if node.op not in ("placeholder", "output")
|
|
)
|
|
output = [node for node in sub_gm.graph.nodes if node.op == "output"]
|
|
|
|
for ph, arg in zip(phs, call_mod_node.args):
|
|
assert isinstance(arg, torch.fx.Node)
|
|
node_replace_(ph, arg)
|
|
|
|
with gm.graph.inserting_before(call_mod_node):
|
|
for node in body:
|
|
new_node = gm.graph.node_copy(node)
|
|
node_replace_(node, new_node)
|
|
|
|
if len(output) > 0:
|
|
assert len(output) == 1 and len(output[0].args) == 1
|
|
new_output = output[0].args[0]
|
|
|
|
if isinstance(new_output, torch.fx.Node):
|
|
# Clear the users of the output node and set
|
|
# the users to be the users of original call_module node.
|
|
new_output.users.clear()
|
|
node_replace_(call_mod_node, new_output)
|
|
elif isinstance(new_output, (list, tuple)):
|
|
# Pop subgraph output node from users.
|
|
for node in new_output:
|
|
node.users.pop(output[0])
|
|
|
|
# Inline the get_item calls for the output node.
|
|
get_item_users = nodes_filter(
|
|
list(call_mod_node.users.keys()),
|
|
lambda node: node.op == "call_function"
|
|
and node.target == operator.getitem,
|
|
)
|
|
# get_item_node.args[1] is the idx referring to new_output[idx]
|
|
nodes_map(
|
|
get_item_users,
|
|
lambda get_item_node: node_replace_(
|
|
get_item_node,
|
|
new_output[get_item_node.args[1]],
|
|
),
|
|
)
|
|
call_mod_node.graph.erase_node(call_mod_node)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Unsupported output type {type(new_output)}. Expect it to be a Node or a list/tuple of Nodes."
|
|
)
|
|
else:
|
|
call_mod_node.graph.erase_node(call_mod_node)
|
|
|
|
gm.delete_all_unused_submodules()
|
|
gm.recompile()
|
|
return gm
|
|
|
|
|
|
def _get_torch_jit_trace_forward_signature(mod: torch.nn.Module):
|
|
"""
|
|
Get source code and parse argument names using AST. The function returns
|
|
a signature of the forward() function.
|
|
|
|
# TODO: Directly provide inspect.signature compatible TS-d module.
|
|
"""
|
|
ast_mod = ast.parse(mod.code)
|
|
ast_func_def: ast.FunctionDef = ast_mod.body[0] # type: ignore[assignment]
|
|
|
|
# FIXME(jiashenc): TorchScript should only allow positional or keywords arguments.
|
|
arg_type_map = {"args": Parameter.POSITIONAL_OR_KEYWORD}
|
|
|
|
# Traverse all argument types in AST tree and create associated parameters.
|
|
param_list = []
|
|
for arg_type, param_type in arg_type_map.items():
|
|
arg_name_list = [a.arg for a in getattr(ast_func_def.args, arg_type)]
|
|
for arg_name in arg_name_list:
|
|
if arg_name == "self":
|
|
continue # Skip self argument.
|
|
param_list.append(inspect.Parameter(arg_name, param_type))
|
|
|
|
return inspect.Signature(parameters=param_list)
|
|
|
|
|
|
def _bind_signature_to_inputs(mod, fake_args, fake_kwargs):
|
|
if isinstance(mod, (torch.jit.ScriptModule, torch.jit.TracedModule)):
|
|
sig = _get_torch_jit_trace_forward_signature(mod)
|
|
|
|
# Sanity check for placeholder names coming from TorchScript.
|
|
assert len(sig.parameters) == len(fake_args) + len(fake_kwargs), (
|
|
"Arguments other than POSITIONAL_OR_KEYWORD kinds in forward() "
|
|
"are not supported in _get_torch_jit_trace_forward_signature"
|
|
)
|
|
else:
|
|
sig = inspect.signature(mod.forward)
|
|
|
|
return sig.bind(*fake_args, **fake_kwargs).arguments
|
|
|
|
|
|
def _name_hoo_subgraph_placeholders(gm: torch.fx.GraphModule) -> None:
|
|
"""
|
|
Propagate placeholder names from the top-level graph into HigherOrderOp subgraphs,
|
|
and handle collisions with non-placeholders by count suffixing.
|
|
Different HOO subgraph types have different input schemas, so we first enumerate them
|
|
and gather the top-level named placeholder nodes.
|
|
"""
|
|
# gather all HOO subgraphs and their top-level named placeholder nodes
|
|
subgraph_ph_tuples: List[Tuple[torch.fx.GraphModule, List[torch.fx.Node]]] = []
|
|
for node in gm.graph.nodes:
|
|
if node.op == "call_function" and isinstance(
|
|
node.target, torch._ops.HigherOrderOperator
|
|
):
|
|
# HOO subgraphs have varying input schemas, so we enumerate them there
|
|
if node.target._name == "cond":
|
|
_, true_graph, false_graph, cond_args = node._args
|
|
subgraph_ph_tuples.append((getattr(gm, true_graph.target), cond_args))
|
|
subgraph_ph_tuples.append((getattr(gm, false_graph.target), cond_args))
|
|
elif node.target._name == "wrap_with_set_grad_enabled":
|
|
subgraph, phs = node._args[1], node._args[2:]
|
|
subgraph_ph_tuples.append((getattr(gm, subgraph.target), phs))
|
|
elif node.target._name == "map_impl":
|
|
body_graph, array, args = node._args
|
|
subgraph_ph_tuples.append(
|
|
(getattr(gm, body_graph.target), array + args)
|
|
)
|
|
|
|
# propagate names
|
|
for subgraph, hoo_phs in subgraph_ph_tuples:
|
|
name_map: Dict[str, str] = {}
|
|
for i, node in enumerate(subgraph.graph.nodes):
|
|
if i < len(hoo_phs): # placeholder, retain name
|
|
name_map[node.name] = hoo_phs[i].name
|
|
node.name = node.target = hoo_phs[i].name
|
|
else: # non-placeholder, check for collisions
|
|
node.name = _rename_without_collisions(name_map, node.name, node.name)
|
|
|
|
# recurse and recompile
|
|
_name_hoo_subgraph_placeholders(subgraph)
|
|
subgraph.recompile()
|
|
|
|
|
|
def placeholder_naming_pass(
|
|
gm: torch.fx.GraphModule,
|
|
export_graph_signature: "ExportGraphSignature",
|
|
mod: torch.nn.Module,
|
|
fake_args,
|
|
fake_kwargs,
|
|
fake_params_buffers,
|
|
constants: Dict[str, Any],
|
|
) -> None:
|
|
"""
|
|
This pass is run at the end of _export_non_strict() to assign better placeholder node names:
|
|
- User inputs:
|
|
These follow the signature of mod.forward(), e.g. forward(x, y) produces nodes x, y.
|
|
For nested inputs from dictionaries, lists, tuples, or dataclasses,
|
|
the names are a concatenation of the path to the tensor.
|
|
e.g. x = {
|
|
'a': torch.randn(),
|
|
'b': [torch.randn(), torch.randn()]
|
|
}
|
|
produces nodes x_a, x_b_0, x_b_1.
|
|
- Parameters/buffers/constants/custom objects:
|
|
These follow the FQN of the object, prefixed by "p", "b", "c", "obj" respectively.
|
|
e.g. self.bar.l0.weight produces "p_bar_l0_weight".
|
|
- Effect tokens:
|
|
These are named token, token_1, ...
|
|
"""
|
|
|
|
def _strip_name(x):
|
|
if x.startswith("L__self___"):
|
|
x = x[len("L__self___") :]
|
|
elif x.startswith("self_"):
|
|
x = x[len("self_") :]
|
|
x = re.sub(r"[^a-zA-Z0-9]", "_", x)
|
|
return x
|
|
|
|
def _extract_pytree_key(x):
|
|
if isinstance(x, MappingKey):
|
|
x = re.sub(r"[^a-zA-Z0-9]", "_", str(x.key))
|
|
return x
|
|
elif isinstance(x, SequenceKey):
|
|
return str(x.idx)
|
|
elif isinstance(x, GetAttrKey):
|
|
return x.name
|
|
else:
|
|
raise RuntimeError(f"Pytree key of type {type(x)} not handled for {x}")
|
|
|
|
name_map: Dict[str, str] = {}
|
|
|
|
# map user input names with mod.forward() signature
|
|
combined_args = _bind_signature_to_inputs(mod, fake_args, fake_kwargs)
|
|
|
|
flat_args_with_path, _ = tree_flatten_with_path(combined_args)
|
|
user_input_names = [
|
|
spec.arg.name
|
|
for spec in export_graph_signature.input_specs
|
|
if spec.kind == InputKind.USER_INPUT
|
|
]
|
|
|
|
# use pytree path to name nested user inputs
|
|
for (arg_path, arg), user_input_name in zip(flat_args_with_path, user_input_names):
|
|
if user_input_name:
|
|
_rename_without_collisions(
|
|
name_map,
|
|
user_input_name,
|
|
placeholder_prefixes[InputKind.USER_INPUT]
|
|
+ "_".join(_extract_pytree_key(x).lower() for x in arg_path),
|
|
is_placeholder=True,
|
|
)
|
|
|
|
# use graph signature input specs to map param/buffer/constant names
|
|
# name effect tokens as token, token_1, ... (these aren't visible to user)
|
|
for spec in export_graph_signature.input_specs:
|
|
if spec.kind == InputKind.USER_INPUT:
|
|
continue
|
|
if spec.kind == InputKind.TOKEN:
|
|
base_name = ""
|
|
else:
|
|
base_name = _strip_name(spec.target).lower()
|
|
base_name = re.sub(r"[^a-zA-Z0-9]", "_", base_name)
|
|
|
|
_rename_without_collisions(
|
|
name_map,
|
|
spec.arg.name,
|
|
placeholder_prefixes[spec.kind] + base_name,
|
|
is_placeholder=True,
|
|
)
|
|
|
|
# handle naming collisions with call_function/get_attr inputs.
|
|
# here, we want to prioritize user input names over call_function names
|
|
# e.g. not have forward(self, mul): lead to a placeholder node called mul_13,
|
|
# so we increment the suffix of call_function nodes as needed
|
|
for node in gm.graph.nodes:
|
|
if node.op == "placeholder":
|
|
continue
|
|
_rename_without_collisions(name_map, node.name, node.name)
|
|
|
|
# assign new node names
|
|
for node in gm.graph.nodes:
|
|
if node.op == "placeholder":
|
|
assert node.name in name_map
|
|
node.name = node.target = name_map[node.name]
|
|
elif node.name in name_map:
|
|
node.name = name_map[node.name]
|
|
|
|
# propagate names to higher order op subgraphs
|
|
_name_hoo_subgraph_placeholders(gm)
|
|
|
|
# re-generate graph module code
|
|
gm.recompile()
|
|
|
|
# modify graph signature (input specs, output specs, user input mutations)
|
|
for spec in export_graph_signature.input_specs:
|
|
assert spec.arg.name in name_map
|
|
spec.arg.name = name_map[spec.arg.name]
|
|
if ( # handle targets for custom objects
|
|
spec.kind == InputKind.CUSTOM_OBJ and spec.target in name_map
|
|
):
|
|
spec.target = name_map[spec.target][4:] # strip obj_ prefix
|
|
|
|
for spec in export_graph_signature.output_specs:
|
|
if spec.arg.name in name_map:
|
|
spec.arg.name = name_map[spec.arg.name]
|
|
if spec.kind == OutputKind.USER_INPUT_MUTATION and spec.target in name_map:
|
|
spec.target = name_map[spec.target]
|
|
|
|
# rename keys in constants dict for custom objects
|
|
for name in list(constants.keys()):
|
|
constant = constants[name]
|
|
if name in name_map and not isinstance(
|
|
constant, torch.Tensor
|
|
): # rename custom objects with generic names
|
|
new_name = name_map[name]
|
|
if (
|
|
new_name != name
|
|
and re.match(r"arg(\d+)_1", name)
|
|
and new_name != placeholder_prefixes[InputKind.CUSTOM_OBJ] + name
|
|
):
|
|
constants[new_name] = constant
|
|
del constants[name]
|
|
|
|
|
|
def remove_proxy_from_state_dict(state_dict: Dict, in_place: bool) -> Dict:
|
|
"""
|
|
If `in_place` is false, return a new copy of `state_dict` with "proxy" removed from `v.__dict__`.
|
|
`v` is the values in the dictionary.
|
|
If `in_place` is true, modify `state_dict` in place.
|
|
"""
|
|
if in_place:
|
|
for k, v in state_dict.items():
|
|
if hasattr(v, "proxy"):
|
|
delattr(state_dict[k], "proxy")
|
|
return state_dict
|
|
else:
|
|
new_state_dict = {}
|
|
for k, v in state_dict.items():
|
|
if hasattr(v, "proxy"):
|
|
new_state_dict[k] = v.clone().detach()
|
|
else:
|
|
new_state_dict[k] = v
|
|
return new_state_dict
|
|
|
|
|
|
def _detect_fake_mode_from_gm(
|
|
gm: torch.fx.GraphModule,
|
|
) -> torch._subclasses.fake_tensor.FakeTensorMode:
|
|
"""
|
|
For a given graph module, we look at the "val" of placeholder nodes to find the fake inputs.
|
|
Additionally, if gm doesn't have placeholders, we further look at the "example_value" or "val" of other nodes.
|
|
If no fake mode is found, we return None for fake_mode.
|
|
"""
|
|
|
|
fake_inps: List[torch.Tensor] = []
|
|
fake_vals: List[torch.Tensor] = []
|
|
for node in gm.graph.nodes:
|
|
if node.op == "placeholder" and "val" in node.meta:
|
|
fake_val = node.meta["val"]
|
|
if fake_val is not None and isinstance(fake_val, torch.Tensor):
|
|
fake_inps.append(fake_val)
|
|
elif len(fake_inps) == 0 and (
|
|
"example_value" in node.meta or "val" in node.meta
|
|
):
|
|
fake_val = None
|
|
if "example_value" in node.meta:
|
|
fake_val = node.meta["example_value"]
|
|
elif "val" in node.meta:
|
|
fake_val = node.meta["val"]
|
|
if fake_val is not None and isinstance(fake_val, torch.Tensor):
|
|
fake_vals.append(fake_val)
|
|
|
|
return detect_fake_mode(fake_inps + fake_vals)
|
|
|
|
|
|
@contextmanager
|
|
def _disable_load_state_dict_hooks(mod: torch.nn.Module):
|
|
state_dict_hooks: Dict[int, Callable] = dict(mod._state_dict_hooks)
|
|
state_dict_pre_hooks: Dict[int, Callable] = dict(mod._state_dict_pre_hooks)
|
|
mod._state_dict_hooks.clear()
|
|
mod._state_dict_pre_hooks.clear()
|
|
try:
|
|
yield
|
|
finally:
|
|
mod._state_dict_hooks = state_dict_hooks
|
|
mod._state_dict_pre_hooks = state_dict_pre_hooks
|