pytorch/test/cpp/jit/test_schema_matching.cpp
Edward Yang 9d42177a31 Delete OperatorOptions, absorb AliasAnalysisKind into FunctionSchema. (#34160)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34160

I constructed the patch by deleting OperatorOptions and then rerouting
all queries for AliasAnalysisKind to FunctionSchema.  Some of the
behavior is kind of bogus: we really shouldn't be mutating FunctionSchema
after the fact, but that won't get fixed until we actually switch to
true schema merging.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20282846

Pulled By: ezyang

fbshipit-source-id: ba7bca6e8adc3365789639b88e54c4e881b1692e
2020-03-11 07:15:18 -07:00

89 lines
2.2 KiB
C++

#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <torch/jit.h>
#include "test/cpp/jit/test_base.h"
#include "torch/csrc/jit/runtime/custom_operator.h"
#include <sstream>
#include <string>
namespace torch {
namespace jit {
void testSchemaMatching() {
{
RegisterOperators reg({
Operator(
"aten::test_vartype(t[] a, t b) -> (t)",
[](Stack& stack) {
c10::List<double> list;
double a;
pop(stack, list, a);
push(stack, a);
return 0;
}, c10::AliasAnalysisKind::FROM_SCHEMA),
});
script::Module m("m");
m.define(R"(
def test(self):
a = (1.0, 2.0)
return torch.test_vartype(a, 2.0)
)");
auto result = m.run_method("test");
TORCH_INTERNAL_ASSERT(result.toDouble() == 2.0);
const std::string error_example = R"JIT(
def test_2(self):
a = (1.0, 2.0)
non_float = (1, 1)
return torch.test_vartype(a, non_float)
)JIT";
std::string err = "";
try {
m.define(error_example);
} catch (const std::exception &e) {
err = e.what();
}
TORCH_INTERNAL_ASSERT(err.find("previously matched to type") != std::string::npos);
}
{
RegisterOperators reg({
Operator(
"aten::test_vartype2(t a, t[] b) -> (t[])",
[](Stack& stack) {
double a;
c10::List<double> list;
pop(stack, a, list);
push(stack, a);
return 0;
}, AliasAnalysisKind::FROM_SCHEMA),
});
script::Module m("m");
m.define(R"JIT(
def test(self):
a = (1.0, 2.0)
return torch.test_vartype2(3.0, a)
)JIT");
auto result = m.run_method("test");
TORCH_INTERNAL_ASSERT(result.toDouble() == 3.0);
static const auto error_exam2 = R"JIT(
def test_2(self):
a = (1, 2)
return torch.test_vartype2(3.0, a)
)JIT";
std::string err = "";
try {
m.define(error_exam2);
} catch (const std::exception &e) {
err = e.what();
}
TORCH_INTERNAL_ASSERT(err.find("previously matched to type") != std::string::npos);
}
}
} // namespace jit
} // namespace torch