mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: **Summary** There is often a need to create a Tensor when writing IR by hand for JIT optimisation pass unit tests. The only options for this today are real Tensor creation functions like `aten::ones`. Any test that uses these functions must also use the same default arguments as the Python/C++ API, which means that all of the tests have to be updated when the API is updated. This commit introduces a new primitive, `prim::MakeTestTensor` with schema `() -> Tensor` that should be used in unit tests instead of real Tensor creation functions. This new primitive has no public-facing API, so the maintenance burden is much lower. **Testing** This commit updates the alias analysis and DCE tests to use `prim::MakeTestTensor` instead of `aten::rand`, `aten::ones`, and `aten::zeros`. ``` $ ./bin/test_jit CUDA not available. Disabling CUDA and MultiCUDA tests Note: Google Test filter = *-*_CUDA:*_MultiCUDA [==========] Running 75 tests from 1 test case. [----------] Global test environment set-up. [----------] 75 tests from JitTest [ RUN ] JitTest.ADFormulas [ OK ] JitTest.ADFormulas (82 ms) [ RUN ] JitTest.Attributes [ OK ] JitTest.Attributes (0 ms) ... ... ... [ RUN ] JitTest.LiteInterpreterPrim [ OK ] JitTest.LiteInterpreterPrim (0 ms) [ RUN ] JitTest.LiteInterpreterLoadOrigJit [ OK ] JitTest.LiteInterpreterLoadOrigJit (2 ms) [----------] 75 tests from JitTest (150 ms total) [----------] Global test environment tear-down [==========] 75 tests from 1 test case ran. (150 ms total) [ PASSED ] 75 tests. ``` **Fixes** This pull request fixes https://github.com/pytorch/pytorch/issues/33500. Pull Request resolved: https://github.com/pytorch/pytorch/pull/33914 Differential Revision: D20150304 Pulled By: SplitInfinity fbshipit-source-id: c88f5289055a02dc20b7a5dcdf87469f9816d020
53 lines
1.6 KiB
C++
53 lines
1.6 KiB
C++
#include <test/cpp/jit/test_base.h>
|
|
#include <test/cpp/jit/test_utils.h>
|
|
|
|
#include <torch/csrc/jit/passes/dead_code_elimination.h>
|
|
#include <torch/csrc/jit/testing/file_check.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
void testDCE() {
|
|
auto graph = std::make_shared<Graph>();
|
|
|
|
// Consider the following loop:
|
|
// for i in range(3):
|
|
// tot += a[0][0]
|
|
// b = a[0]
|
|
// b[0] += 1
|
|
// print(tot)
|
|
// We want to check that b[0] and b are properly marked as live and thus not
|
|
// DCE'd.
|
|
const std::string input =
|
|
R"IR(
|
|
graph():
|
|
%48 : None = prim::Constant()
|
|
%50 : bool = prim::Constant[value=1]()
|
|
%0 : int = prim::Constant[value=2]()
|
|
%12 : int = prim::Constant[value=1]()
|
|
%24 : int = prim::Constant[value=3]()
|
|
%31 : int = prim::Constant[value=0]()
|
|
%2 : int[] = prim::ListConstruct(%0, %0)
|
|
%a.1 : Tensor = prim::MakeTestTensor()
|
|
%14 : int[] = prim::ListConstruct(%12)
|
|
%tot.1 : Tensor = prim::MakeTestTensor()
|
|
%tot : Tensor = prim::Loop(%24, %50, %tot.1)
|
|
block0(%i : int, %tot.6 : Tensor):
|
|
%33 : Tensor = aten::select(%a.1, %31, %31)
|
|
%35 : Tensor = aten::select(%33, %31, %31)
|
|
# CHECK: add_
|
|
%tot.3 : Tensor = aten::add_(%tot.6, %35, %12)
|
|
%b.1 : Tensor = aten::select(%a.1, %31, %31)
|
|
%44 : Tensor = aten::select(%b.1, %31, %31)
|
|
# CHECK: add_
|
|
%46 : Tensor = aten::add_(%44, %12, %12)
|
|
-> (%50, %tot.3)
|
|
return (%tot)
|
|
)IR";
|
|
script::parseIR(input, graph.get());
|
|
EliminateDeadCode(graph);
|
|
// Check that dead code elimin
|
|
testing::FileCheck().run(input, *graph);
|
|
}
|
|
} // namespace jit
|
|
} // namespace torch
|