pytorch/benchmarks/operator_benchmark/benchmark_runner.py
Mingzhe Li 9cb8fb61c2 update operator_range discription in op bench (#30170)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30170

as title

Test Plan:
```
buck-out/opt/gen/caffe2/benchmarks/operator_benchmark/benchmark_all_other_test.par --tag_filter all --iterations 1 --operator_range ef
...
ValueError: The correct format for operator_range is <start>-<end>, or <point>, <start>-<end>

buck-out/opt/gen/caffe2/benchmarks/operator_benchmark/benchmark_all_other_test.par --tag_filter all --iterations 1 --operator_range a-b
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : all

# Benchmarking PyTorch: add
# Mode: Eager
# Name: add_M8_N32_K256_cpu
# Input: M: 8, N: 32, K: 256, device: cpu
Forward Execution Time (us) : 60.551

# Benchmarking PyTorch: add
# Mode: Eager
# Name: add_M8_N32_K256_cuda
# Input: M: 8, N: 32, K: 256, device: cuda
Forward Execution Time (us) : 67.716
...

buck-out/opt/gen/caffe2/benchmarks/operator_benchmark/benchmark_all_other_test.par --tag_filter all --iterations 1 --operator_range b,d-f
# ----------------------------------------
# PyTorch/Caffe2 Operator Micro-benchmarks
# ----------------------------------------
# Tag : all

# Benchmarking PyTorch: batchnorm
# Mode: Eager
# Name: batchnorm_M1_N256_K3136_cpu
# Input: M: 1, N: 256, K: 3136, device: cpu
Forward Execution Time (us) : 296.004
...

Reviewed By: hl475

Differential Revision: D18619975

fbshipit-source-id: 08f27ee2aeda47be431385f4b20ef7fbeb797516
2019-11-20 12:07:14 -08:00

165 lines
4.6 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import torch
import benchmark_core
import benchmark_utils
"""Performance microbenchmarks's main binary.
This is the main function for running performance microbenchmark tests.
It also registers existing benchmark tests via Python module imports.
"""
def main():
parser = argparse.ArgumentParser(
description="Run microbenchmarks.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
'--tag_filter',
help='tag_filter can be used to run the shapes which matches the tag. (all is used to run all the shapes)',
default='short')
# This option is used to filter test cases to run.
parser.add_argument(
'--operators',
help='Filter tests based on comma-delimited list of operators to test',
default=None)
parser.add_argument(
'--operator_range',
help='Filter tests based on operator_range(e.g. a-c or b,c-d)',
default=None)
parser.add_argument(
'--test_name',
help='Run tests that have the provided test_name',
default=None)
parser.add_argument(
'--list_ops',
help='List operators without running them',
action='store_true')
parser.add_argument(
'--list_tests',
help='List all test cases without running them',
action='store_true')
parser.add_argument(
"--iterations",
help="Repeat each operator for the number of iterations",
type=int
)
parser.add_argument(
"--num_runs",
help="Run each test for num_runs. Each run executes an operator for number of <--iterations>",
type=int,
default=1,
)
parser.add_argument(
"--min_time_per_test",
help="Set the minimum time (unit: seconds) to run each test",
type=int,
default=0,
)
parser.add_argument(
"--warmup_iterations",
help="Number of iterations to ignore before measuring performance",
default=100,
type=int
)
parser.add_argument(
"--omp_num_threads",
help="Number of OpenMP threads used in PyTorch/Caffe2 runtime",
default=None,
type=int
)
parser.add_argument(
"--mkl_num_threads",
help="Number of MKL threads used in PyTorch/Caffe2 runtime",
default=None,
type=int
)
parser.add_argument(
"--ai_pep_format",
type=benchmark_utils.str2bool,
nargs='?',
const=True,
default=False,
help="Print result when running on AI-PEP"
)
parser.add_argument(
"--use_jit",
type=benchmark_utils.str2bool,
nargs='?',
const=True,
default=False,
help="Run operators with PyTorch JIT mode"
)
parser.add_argument(
"--forward_only",
type=benchmark_utils.str2bool,
nargs='?',
const=True,
default=False,
help="Only run the forward path of operators"
)
parser.add_argument(
'--framework',
help='Comma-delimited list of frameworks to test (Caffe2, PyTorch)',
default="Caffe2,PyTorch")
parser.add_argument(
'--device',
help='Run tests on the provided architecture (cpu, cuda)',
default='None')
parser.add_argument(
'--wipe_cache',
help='Wipe cache before benchmarking each operator',
action='store_true',
default=False
)
args, _ = parser.parse_known_args()
if args.omp_num_threads:
# benchmark_utils.set_omp_threads sets the env variable OMP_NUM_THREADS
# which doesn't have any impact as C2 init logic has already been called
# before setting the env var.
# In general, OMP_NUM_THREADS (and other OMP env variables) needs to be set
# before the program is started.
# From Chapter 4 in OMP standard: https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
# "Modifications to the environment variables after the program has started,
# even if modified by the program itself, are ignored by the OpenMP implementation"
benchmark_utils.set_omp_threads(args.omp_num_threads)
if benchmark_utils.is_pytorch_enabled(args.framework):
torch.set_num_threads(args.omp_num_threads)
if args.mkl_num_threads:
benchmark_utils.set_mkl_threads(args.mkl_num_threads)
benchmark_core.BenchmarkRunner(args).run()
if __name__ == "__main__":
main()