mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
This reverts commit 940e4477ab.
Reverted https://github.com/pytorch/pytorch/pull/128599 on behalf of https://github.com/izaitsevfb due to breaking internal APS tests, see D59498864 ([comment](https://github.com/pytorch/pytorch/pull/128599#issuecomment-2218724762))
283 lines
5.8 KiB
Python
283 lines
5.8 KiB
Python
# mypy: allow-untyped-defs
|
|
import math
|
|
|
|
import operator
|
|
|
|
import sympy
|
|
|
|
import torch
|
|
from torch.utils._sympy.functions import (
|
|
_keep_float,
|
|
FloatPow,
|
|
FloatTrueDiv,
|
|
FloorDiv,
|
|
IntTrueDiv,
|
|
Mod,
|
|
OpaqueUnaryFn_exp,
|
|
OpaqueUnaryFn_log,
|
|
OpaqueUnaryFn_sqrt,
|
|
PowByNatural,
|
|
RoundDecimal,
|
|
RoundToInt,
|
|
ToFloat,
|
|
TruncToInt,
|
|
)
|
|
|
|
|
|
# The sympy interpretation of operators. It will also sometimes work with
|
|
# plain int/float, but if you do certain operations you will get out a
|
|
# sympy.Basic in the end. If you want the Python/FX traceable interpretation,
|
|
# check PythonReferenceAnalysis.
|
|
# NB: For magic methods this needs to use normal magic methods
|
|
# so that test_magic_methods works
|
|
class ReferenceAnalysis:
|
|
@staticmethod
|
|
def constant(c, dtype):
|
|
return sympy.sympify(c)
|
|
|
|
@staticmethod
|
|
def or_(a, b):
|
|
return a | b
|
|
|
|
@staticmethod
|
|
def and_(a, b):
|
|
return a & b
|
|
|
|
@staticmethod
|
|
def eq(a, b):
|
|
if isinstance(a, sympy.Expr) or isinstance(b, sympy.Expr):
|
|
return sympy.Eq(a, b)
|
|
return a == b
|
|
|
|
@classmethod
|
|
def ne(cls, a, b):
|
|
return cls.not_(cls.eq(a, b))
|
|
|
|
@staticmethod
|
|
def lt(a, b):
|
|
return a < b
|
|
|
|
@staticmethod
|
|
def gt(a, b):
|
|
return a > b
|
|
|
|
@staticmethod
|
|
def le(a, b):
|
|
return a <= b
|
|
|
|
@staticmethod
|
|
def ge(a, b):
|
|
return a >= b
|
|
|
|
@staticmethod
|
|
def not_(a):
|
|
assert not isinstance(a, bool)
|
|
return ~a
|
|
|
|
@staticmethod
|
|
def reciprocal(x):
|
|
return FloatTrueDiv(1.0, x)
|
|
|
|
@staticmethod
|
|
def square(x):
|
|
return PowByNatural(x, 2)
|
|
|
|
@staticmethod
|
|
def trunc_to_int(x, dtype):
|
|
return TruncToInt(x)
|
|
|
|
@staticmethod
|
|
def ceil_to_int(x, dtype):
|
|
return sympy.ceiling(x)
|
|
|
|
@staticmethod
|
|
def floor_to_int(x, dtype):
|
|
return sympy.floor(x)
|
|
|
|
@staticmethod
|
|
def floor(x):
|
|
return _keep_float(sympy.floor)(x)
|
|
|
|
@staticmethod
|
|
def ceil(x):
|
|
return _keep_float(sympy.ceiling)(x)
|
|
|
|
@staticmethod
|
|
def to_dtype(x, dtype):
|
|
if dtype == torch.float64:
|
|
return ToFloat(x)
|
|
raise NotImplementedError(f"to_dtype {dtype} NYI")
|
|
|
|
@staticmethod
|
|
def mod(x, y):
|
|
return Mod(x, y)
|
|
|
|
@staticmethod
|
|
def abs(x):
|
|
return abs(x)
|
|
|
|
@staticmethod
|
|
def neg(x):
|
|
return -x
|
|
|
|
@staticmethod
|
|
def truediv(a, b):
|
|
return FloatTrueDiv(a, b)
|
|
|
|
@staticmethod
|
|
def int_truediv(a, b):
|
|
return IntTrueDiv(a, b)
|
|
|
|
@staticmethod
|
|
def floordiv(a, b):
|
|
return FloorDiv(a, b)
|
|
|
|
@staticmethod
|
|
def truncdiv(a, b):
|
|
raise NotImplementedError("TODO: truncdiv")
|
|
|
|
@staticmethod
|
|
def add(a, b):
|
|
return _keep_float(operator.add)(a, b)
|
|
|
|
@staticmethod
|
|
def mul(a, b):
|
|
return _keep_float(operator.mul)(a, b)
|
|
|
|
@staticmethod
|
|
def sub(a, b):
|
|
return _keep_float(operator.sub)(a, b)
|
|
|
|
@staticmethod
|
|
def exp(x):
|
|
return OpaqueUnaryFn_exp(x)
|
|
|
|
@staticmethod
|
|
def log(x):
|
|
return OpaqueUnaryFn_log(x)
|
|
|
|
@staticmethod
|
|
def sqrt(x):
|
|
return OpaqueUnaryFn_sqrt(x)
|
|
|
|
@staticmethod
|
|
def pow(a, b):
|
|
return _keep_float(FloatPow)(a, b)
|
|
|
|
@staticmethod
|
|
def pow_by_natural(a, b):
|
|
return PowByNatural(a, b)
|
|
|
|
@staticmethod
|
|
def minimum(a, b):
|
|
return sympy.Min(a, b)
|
|
|
|
@staticmethod
|
|
def maximum(a, b):
|
|
return sympy.Max(a, b)
|
|
|
|
@staticmethod
|
|
def round_to_int(a, dtype):
|
|
return RoundToInt(a)
|
|
|
|
@staticmethod
|
|
def round_decimal(a, b):
|
|
return RoundDecimal(a, b)
|
|
|
|
|
|
# Unlike ReferenceAnalysis, does NOT sympyify, instead, works with plain
|
|
# Python types and is FX traceable. Inheritance here is purely for code
|
|
# sharing (TODO: considering splitting out a BaseReferenceAnalysis).
|
|
class PythonReferenceAnalysis(ReferenceAnalysis):
|
|
@staticmethod
|
|
def constant(c, dtype):
|
|
if dtype is torch.int64:
|
|
return int(c)
|
|
elif dtype is torch.double:
|
|
return float(c)
|
|
elif dtype is torch.bool:
|
|
return bool(c)
|
|
else:
|
|
raise AssertionError(f"unrecognized dtype {dtype}")
|
|
|
|
@staticmethod
|
|
def not_(a):
|
|
return torch.sym_not(a)
|
|
|
|
@staticmethod
|
|
def floordiv(a, b):
|
|
return a // b
|
|
|
|
@staticmethod
|
|
def mod(x, y):
|
|
return x % y
|
|
|
|
@staticmethod
|
|
def truncdiv(a, b):
|
|
return a / b
|
|
|
|
@staticmethod
|
|
def to_dtype(x, dtype):
|
|
if dtype == torch.float64:
|
|
return float(x)
|
|
raise NotImplementedError(f"to_dtype {dtype} NYI")
|
|
|
|
@staticmethod
|
|
def exp(x):
|
|
raise AssertionError("exp is not valid shape sympy expr")
|
|
|
|
@staticmethod
|
|
def log(x):
|
|
raise AssertionError("log is not valid shape sympy expr")
|
|
|
|
@staticmethod
|
|
def sqrt(x):
|
|
return torch._sym_sqrt(x) # type: ignore[attr-defined]
|
|
|
|
@staticmethod
|
|
def minimum(a, b):
|
|
return torch.sym_min(a, b)
|
|
|
|
@staticmethod
|
|
def maximum(a, b):
|
|
return torch.sym_max(a, b)
|
|
|
|
@staticmethod
|
|
def floor_to_int(x, dtype):
|
|
return math.floor(x)
|
|
|
|
@staticmethod
|
|
def ceil_to_int(x, dtype):
|
|
return math.ceil(x)
|
|
|
|
@staticmethod
|
|
def floor(x):
|
|
return float(math.floor(x))
|
|
|
|
@staticmethod
|
|
def ceil(x):
|
|
return float(math.ceil(x))
|
|
|
|
@staticmethod
|
|
def truediv(a, b):
|
|
return a / b
|
|
|
|
@staticmethod
|
|
def pow(a, b):
|
|
return a**b
|
|
|
|
@staticmethod
|
|
def pow_by_natural(a, b):
|
|
# Pray that safe_pow is not needed here lol. In particular, this
|
|
# never participates in VR low/high ranges, so overflow should be
|
|
# unlikely
|
|
return a**b
|
|
|
|
@staticmethod
|
|
def round_to_int(a, dtype):
|
|
return round(a)
|
|
|
|
@staticmethod
|
|
def round_decimal(a, b):
|
|
return round(a, ndigits=b)
|