mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Adding the option to dedup by object ID so that more frequent objects are not present more than once in the reservoir Reviewed By: chocjy Differential Revision: D5503109 fbshipit-source-id: e36c3ad8eea134d6c10a4c875fceadc0f843c976
98 lines
3.5 KiB
Python
98 lines
3.5 KiB
Python
## @package reservoir_sampling
|
|
# Module caffe2.python.layers.reservoir_sampling
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import core, schema
|
|
from caffe2.python.layers.layers import (
|
|
LayerParameter,
|
|
ModelLayer,
|
|
)
|
|
|
|
|
|
class ReservoirSampling(ModelLayer):
|
|
"""
|
|
Collect samples from input record w/ reservoir sampling. If you have complex
|
|
data, use PackRecords to pack it before using this layer.
|
|
|
|
This layer is not thread safe.
|
|
"""
|
|
|
|
def __init__(self, model, input_record, num_to_collect,
|
|
name='reservoir_sampling', **kwargs):
|
|
super(ReservoirSampling, self).__init__(
|
|
model, name, input_record, **kwargs)
|
|
assert num_to_collect > 0
|
|
self.num_to_collect = num_to_collect
|
|
|
|
self.reservoir = model.net.NextScopedBlob(name + "_reservoir")
|
|
self.num_visited_blob = model.net.NextScopedBlob(
|
|
name + "_num_visited")
|
|
|
|
self.params.append(LayerParameter(
|
|
parameter=self.reservoir,
|
|
initializer=core.CreateOperator(
|
|
'ConstantFill', [], self.reservoir, shape=[0]
|
|
),
|
|
optimizer=model.NoOptim,
|
|
))
|
|
self.params.append(LayerParameter(
|
|
parameter=self.num_visited_blob,
|
|
initializer=core.CreateOperator(
|
|
'ConstantFill',
|
|
[],
|
|
self.num_visited_blob,
|
|
shape=[],
|
|
value=0,
|
|
dtype=core.DataType.INT64,
|
|
),
|
|
optimizer=model.NoOptim,
|
|
))
|
|
|
|
self.extra_input_blobs = []
|
|
self.extra_output_blobs = []
|
|
if 'object_id' in input_record:
|
|
self.extra_input_blobs.append(input_record.object_id())
|
|
object_to_pos = model.net.NextScopedBlob(name + "_object_to_pos")
|
|
pos_to_object = model.net.NextScopedBlob(name + "_pos_to_object")
|
|
self.extra_input_blobs.extend([object_to_pos, pos_to_object])
|
|
self.extra_output_blobs.extend([object_to_pos, pos_to_object])
|
|
self.params.append(LayerParameter(
|
|
parameter=object_to_pos,
|
|
initializer=core.CreateOperator(
|
|
'CreateMap', [], object_to_pos,
|
|
key_dtype=core.DataType.INT64,
|
|
valued_dtype=core.DataType.INT32,
|
|
),
|
|
optimizer=model.NoOptim,
|
|
))
|
|
self.params.append(LayerParameter(
|
|
parameter=pos_to_object,
|
|
initializer=core.CreateOperator(
|
|
'ConstantFill',
|
|
[],
|
|
pos_to_object,
|
|
shape=[0],
|
|
value=0,
|
|
dtype=core.DataType.INT64,
|
|
),
|
|
optimizer=model.NoOptim,
|
|
))
|
|
|
|
self.output_schema = schema.from_blob_list(
|
|
input_record.data, [model.net.NextScopedBlob(name + "_output")])
|
|
|
|
def add_ops(self, net):
|
|
net.ReservoirSampling(
|
|
[self.reservoir, self.num_visited_blob, self.input_record.data()]
|
|
+ self.extra_input_blobs,
|
|
[self.reservoir, self.num_visited_blob] + self.extra_output_blobs,
|
|
num_to_collect=self.num_to_collect,
|
|
)
|
|
# Copy to make sure DAG of record is not broken.
|
|
# Also, the output of this is likely going through a pipeline, which
|
|
# will move data and require us to copy anyway.
|
|
net.Copy(self.reservoir, self.output_schema())
|