pytorch/torch/_dynamo/variables/constant.py
Xuehai Pan 5b1cedacde [BE] [2/3] Rewrite super() calls in functorch and torch (#94588)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94588
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-10 21:16:33 +00:00

161 lines
5.3 KiB
Python

import operator
from typing import Dict, List
import torch
from .. import variables
from ..exc import unimplemented
from ..utils import HAS_NUMPY, istype, np
from .base import typestr, VariableTracker
class ConstantVariable(VariableTracker):
def __init__(self, value, **kwargs):
super().__init__(**kwargs)
assert not isinstance(value, torch.Tensor)
assert not isinstance(value, torch.SymInt)
assert not isinstance(value, torch.SymFloat)
if HAS_NUMPY and isinstance(value, np.number):
self.value = value.item()
else:
self.value = value
def as_proxy(self):
return self.value
def __str__(self):
# return f"ConstantVariable({self.value})"
return f"ConstantVariable({type(self.value).__name__})"
def python_type(self):
return type(self.value)
def as_python_constant(self):
return self.value
@property
def items(self):
"""
Need this when adding a BaseListVariable and a ConstantVariable together.
Happens in detectron2.
"""
return self.unpack_var_sequence(tx=None)
def getitem_const(self, arg: VariableTracker):
return ConstantVariable(
self.value[arg.as_python_constant()],
**VariableTracker.propagate([self, arg]),
)
@staticmethod
def is_literal(obj):
if type(obj) in (int, float, bool, type(None), str):
return True
if type(obj) in (list, tuple, set, frozenset):
return all(ConstantVariable.is_literal(x) for x in obj)
return False
def unpack_var_sequence(self, tx):
try:
options = VariableTracker.propagate([self])
return [ConstantVariable(x, **options) for x in self.as_python_constant()]
except TypeError as e:
raise NotImplementedError from e
def const_getattr(self, tx, name):
member = getattr(self.value, name)
if callable(member):
raise NotImplementedError()
return member
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from .tensor import SymNodeVariable
options = VariableTracker.propagate(self, args, kwargs.values())
if istype(self.value, tuple):
# empty tuple constant etc
return variables.TupleVariable(
items=self.unpack_var_sequence(tx), source=self.source, **options
).call_method(tx, name, args, kwargs)
if any([isinstance(x, SymNodeVariable) for x in args]):
# Promote to SymNodeVariable for operations involving dynamic shapes.
return variables.SymNodeVariable(self.as_proxy(), self.value).call_method(
tx, name, args, kwargs
)
try:
const_args = [a.as_python_constant() for a in args]
const_kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
except NotImplementedError:
return super().call_method(tx, name, args, kwargs)
def has_arith_binop(num_ty):
return (
isinstance(self.value, num_ty)
and hasattr(operator, name)
and len(args) == 1
and args[0].is_python_constant()
)
if isinstance(self.value, str) and name in str.__dict__.keys():
assert not kwargs
method = getattr(self.value, name)
return ConstantVariable(method(*const_args, **const_kwargs), **options)
elif has_arith_binop(int) or has_arith_binop(float):
op = getattr(operator, name)
add_target = const_args[0]
if isinstance(add_target, (torch.SymInt, torch.SymFloat)):
from .tensor import SymNodeVariable
# Addition between a non sym and sym makes a sym
# sym_num = tx.output.register_attr_or_module(
# add_target, f"sym_shape_{add_target}", source=None
# )
proxy = tx.output.create_proxy(
"call_function", op, (self.value, add_target), {}
)
return SymNodeVariable.create(tx, proxy, add_target, **options)
return ConstantVariable(op(self.value, add_target), **options)
elif name == "__len__" and not (args or kwargs):
return ConstantVariable(len(self.value), **options)
elif name == "__contains__" and len(args) == 1 and args[0].is_python_constant():
assert not kwargs
search = args[0].as_python_constant()
result = search in self.value
return ConstantVariable(result, **options)
unimplemented(f"const method call {typestr(self.value)}.{name}")
class EnumVariable(VariableTracker):
def __init__(self, value, **kwargs):
super().__init__(**kwargs)
self.value = value
def as_proxy(self):
return self.value
def __str__(self):
return f"EnumVariable({type(self.value)})"
def python_type(self):
return type(self.value)
def as_python_constant(self):
return self.value
def const_getattr(self, tx, name):
member = getattr(self.value, name)
if callable(member):
raise NotImplementedError()
return member