mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Enables the deduplication of saved entries by load balancing duplicates across ranks.
Tested with existing and modified tests. Additionally tested with the following code snippet, which saves a 20GB DDP model in **~3 seconds on 8 ranks**. Before this PR, the same operation has been measured at ~19 seconds.
```
def run(local_rank, world_size, param_size, num_params, work_dir):
os.environ["RANK"] = str(local_rank)
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355"
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
dist.init_process_group(backend="nccl", rank=local_rank, world_size=world_size)
model = Model(param_size=param_size, num_params=num_params)
model = DistributedDataParallel(model, gradient_as_bucket_view=True)
_patch_model_state_dict(model)
sz = sum(t.nelement() * t.element_size() for t in model.parameters())
rank_0_print(f"Model size: {sz / 1_000_000_000.0} GB")
rank_0_print("Saving the model with DCP...")
checkpointer = _FileSystemCheckpointer(
f"{args.work_dir}/dcp",
sync_files=False,
single_file_per_rank=False,
thread_count=1
)
begin_ts = time.monotonic()
checkpointer.save(state_dict={"model": model})
end_ts = time.monotonic()
rank_0_print(f"Took {end_ts - begin_ts} seconds with DCP")
```
Differential Revision: [D52435926](https://our.internmc.facebook.com/intern/diff/D52435926/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116469
Approved by: https://github.com/fegin, https://github.com/wz337
|
||
|---|---|---|
| .. | ||
| caffe2 | ||
| cpp | ||
| source | ||
| .gitignore | ||
| libtorch.rst | ||
| make.bat | ||
| Makefile | ||
| README.md | ||
| requirements.txt | ||
Please see the Writing documentation section of CONTRIBUTING.md for details on both writing and building the docs.