pytorch/torch/distributed/rpc/_utils.py
Edward Z. Yang 9a8f71f23e Convert logging f-strings to use % format (#98697)
Codemod done with
https://gist.github.com/ezyang/2e8b0463cdc6be278478495b23ff0530 with
assistance from ChatGPT.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98697
Approved by: https://github.com/voznesenskym
2023-04-10 12:19:31 +00:00

38 lines
1.5 KiB
Python

from contextlib import contextmanager
from typing import cast
import logging
from . import api
from . import TensorPipeAgent
logger = logging.getLogger(__name__)
@contextmanager
def _group_membership_management(store, name, is_join):
token_key = "RpcGroupManagementToken"
join_or_leave = "join" if is_join else "leave"
my_token = f"Token_for_{name}_{join_or_leave}"
while True:
# Retrieve token from store to signal start of rank join/leave critical section
returned = store.compare_set(token_key, "", my_token).decode()
if returned == my_token:
# Yield to the function this context manager wraps
yield
# Finished, now exit and release token
# Update from store to signal end of rank join/leave critical section
store.set(token_key, "")
# Other will wait for this token to be set before they execute
store.set(my_token, "Done")
break
else:
# Store will wait for the token to be released
try:
store.wait([returned])
except RuntimeError:
logger.error("Group membership token %s timed out waiting for %s to be released.", my_token, returned)
raise
def _update_group_membership(worker_info, my_devices, reverse_device_map, is_join):
agent = cast(TensorPipeAgent, api._get_current_rpc_agent())
ret = agent._update_group_membership(worker_info, my_devices, reverse_device_map, is_join)
return ret