mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
The previous PRs built up to this. We change compiled autograd's initial trace to stop baking in metadata. While tracing, we allocate some weirdly shaped tensors that we can put proxies on. The initial trace should not be accessing any metadata of these tensors (it will likely error out if it does because of how weird the shapes are). This involved fixing some various sites where we do specialize on the metadata, like: - we change CopySlices's apply_with_saved to proxy some calls into the graph (this change is fairly hard to split out by itself). - we stop calling InputBuffer::add - we delete the weird metadata from the graph so that no graph passes can make use of it. Test Plan: - tests Pull Request resolved: https://github.com/pytorch/pytorch/pull/143417 Approved by: https://github.com/jansel, https://github.com/xmfan ghstack dependencies: #143296, #143304, #143387, #143405
1253 lines
48 KiB
Python
1253 lines
48 KiB
Python
# mypy: allow-untyped-defs
|
|
import contextlib
|
|
import functools
|
|
import itertools
|
|
import operator
|
|
import time
|
|
from collections import Counter, defaultdict
|
|
from typing import Any, Optional, TYPE_CHECKING, Union
|
|
|
|
import torch
|
|
import torch.utils._pytree as pytree
|
|
from torch._dynamo.external_utils import (
|
|
call_backward,
|
|
call_hook,
|
|
FakeCompiledAutogradEngine,
|
|
)
|
|
from torch._dynamo.source import GetItemSource, LocalSource
|
|
from torch._dynamo.utils import (
|
|
counters,
|
|
get_chromium_event_logger,
|
|
lazy_format_graph_code,
|
|
set_locals_to_steal,
|
|
)
|
|
from torch._guards import compile_context, CompileContext, CompileId
|
|
from torch._logging import getArtifactLogger, trace_structured
|
|
from torch._prims_common import clone_preserve_strides
|
|
from torch._subclasses import FakeTensorMode
|
|
from torch.fx import GraphModule
|
|
from torch.fx.experimental._backward_state import BackwardState
|
|
from torch.fx.experimental.proxy_tensor import (
|
|
decompose,
|
|
disable_autocast_cache,
|
|
disable_proxy_modes_tracing,
|
|
fetch_object_proxy,
|
|
ProxyTorchDispatchMode,
|
|
PythonKeyTracer,
|
|
track_tensor_tree,
|
|
)
|
|
from torch.fx.experimental.symbolic_shapes import DimDynamic, ShapeEnv
|
|
from torch.fx.traceback import preserve_node_meta, set_stack_trace
|
|
from torch.utils._ordered_set import OrderedSet
|
|
from torch.utils._traceback import CapturedTraceback
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from torch.fx.proxy import Proxy
|
|
|
|
|
|
compiled_autograd_log = getArtifactLogger(__name__, "compiled_autograd")
|
|
verbose_log = getArtifactLogger(__name__, "compiled_autograd_verbose")
|
|
|
|
|
|
def snapshot_verbose_logging_enabled():
|
|
return torch._logging._internal.log_state.is_artifact_enabled(
|
|
"compiled_autograd_verbose"
|
|
)
|
|
|
|
|
|
def snapshot_cudagraph_enabled():
|
|
return torch._inductor.config.triton.cudagraphs
|
|
|
|
|
|
def maybe_clone(x):
|
|
if x is not None:
|
|
return clone_preserve_strides(x)
|
|
return x
|
|
|
|
|
|
# We lazily bind "functional backward" variants for PyTorch built-in autograd
|
|
# nodes to this class. Example: torch._dynamo.compiled_autograd.ops.MulBackward0
|
|
# Each "functional backward" is bound the first time the node's apply_with_saved
|
|
# function is called. It's possible to avoid lazy binding and instead bind
|
|
# all of this upfront (perhaps at import time) via codegen changes.
|
|
class OpNamespace:
|
|
def __init__(self):
|
|
self.custom_function_name_counter: Counter[str] = Counter()
|
|
|
|
def add(self, name, fn, is_custom_function=False):
|
|
if is_custom_function:
|
|
name = "CppNode" + name
|
|
count = self.custom_function_name_counter[name]
|
|
self.custom_function_name_counter[name] += 1
|
|
name = f"{name}{count}"
|
|
else:
|
|
assert not hasattr(self, name)
|
|
|
|
result = Op(name, fn, is_custom_function)
|
|
torch._dynamo.allow_in_graph(result)
|
|
setattr(self, name, result)
|
|
return name
|
|
|
|
def get(self, name):
|
|
return getattr(self, name)
|
|
|
|
|
|
class Op:
|
|
def __init__(self, name, fn, is_custom_function):
|
|
self.fn = fn
|
|
self.is_custom_function = is_custom_function
|
|
self.__name__ = name
|
|
self.__module__ = "torch._dynamo.compiled_autograd.ops"
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return self.fn(*args, **kwargs)
|
|
|
|
def __repr__(self):
|
|
return self.__module__ + "." + self.__name__
|
|
|
|
|
|
ops = OpNamespace()
|
|
|
|
|
|
_graph_placeholders = ["inputs", "sizes", "scalars", "hooks"]
|
|
_impure_targets = OrderedSet(
|
|
[
|
|
call_hook,
|
|
call_backward,
|
|
FakeCompiledAutogradEngine._exec_final_callbacks_stub,
|
|
torch.ops.inductor.accumulate_grad_.default,
|
|
]
|
|
)
|
|
|
|
COMPILE_COUNTER = itertools.count()
|
|
|
|
|
|
def make_compile_context(compiled_autograd_id):
|
|
return compile_context(
|
|
CompileContext(
|
|
CompileId(
|
|
compiled_autograd_id=compiled_autograd_id,
|
|
frame_id=None,
|
|
frame_compile_id=None,
|
|
)
|
|
)
|
|
)
|
|
|
|
|
|
class AutogradCompilerInstance:
|
|
def __init__(self, compiler_fn) -> None:
|
|
self.compiler_fn = compiler_fn
|
|
self.stack = contextlib.ExitStack()
|
|
self.close = self.stack.close
|
|
self.shape_env = ShapeEnv()
|
|
self.fake_tensor_mode = FakeTensorMode(
|
|
allow_fallback_kernels=True,
|
|
allow_non_fake_inputs=True,
|
|
shape_env=self.shape_env,
|
|
)
|
|
self.fx_tracer = PythonKeyTracer()
|
|
self.proxy_mode = ProxyTorchDispatchMode(self.fx_tracer, "symbolic")
|
|
self.hooks_proxy: Optional[Proxy] = None
|
|
|
|
def wrap_fake(self, x, source):
|
|
assert isinstance(x, torch.Tensor)
|
|
return self.fake_tensor_mode.from_tensor(x, source=source)
|
|
|
|
@staticmethod
|
|
def source(name, idx) -> GetItemSource:
|
|
return GetItemSource(LocalSource(name), idx)
|
|
|
|
def begin_capture(
|
|
self,
|
|
inputs: list[torch.Tensor],
|
|
sizes: list[int],
|
|
scalars: list[Union[int, float]],
|
|
origins: list[list[tuple[int, str]]],
|
|
):
|
|
counters["compiled_autograd"]["captures"] += 1
|
|
self.id = next(COMPILE_COUNTER)
|
|
self.compile_context = make_compile_context(self.id)
|
|
self.compile_context.__enter__()
|
|
self.start_time_ns = time.time_ns()
|
|
get_chromium_event_logger().log_event_start(
|
|
"compiled_autograd",
|
|
self.start_time_ns,
|
|
{"graph_id": self.id},
|
|
log_pt2_compile_event=True,
|
|
)
|
|
|
|
self.aot_graph_cls_name: Optional[str] = None
|
|
self.aot_graph_infos: dict[int, dict[str, Any]] = {}
|
|
self.fx_tracer.root = torch.nn.Module()
|
|
self.fx_tracer.graph = torch.fx.Graph(tracer_cls=PythonKeyTracer)
|
|
self.fx_tracer.tensor_attrs = {}
|
|
self.symnode_proxy_lookup = {}
|
|
args_proxy, self.sizes_proxy, self.scalars_proxy, self.hooks_proxy = (
|
|
self.fx_tracer.create_proxy("placeholder", name, (), {})
|
|
for name in _graph_placeholders
|
|
)
|
|
|
|
self.stack.enter_context(preserve_node_meta())
|
|
inputs_origins, sizes_origins, scalars_origins = origins
|
|
# tensor inputs to fake tensors
|
|
inputs = [
|
|
self.wrap_fake(x, self.source("inputs", idx))
|
|
for idx, x in enumerate(inputs)
|
|
]
|
|
self.bind_tensors_to_proxies(inputs, args_proxy, inputs_origins)
|
|
|
|
# size inputs to symints
|
|
sizes = [
|
|
self.shape_env.create_unspecified_symint_and_symbol(
|
|
val,
|
|
self.source("sizes", idx),
|
|
DimDynamic.DYNAMIC,
|
|
)
|
|
for idx, val in enumerate(sizes)
|
|
]
|
|
self.bind_tensors_to_proxies(sizes, self.sizes_proxy, sizes_origins)
|
|
for i, symint in enumerate(sizes):
|
|
self.symnode_proxy_lookup[symint.node] = self.sizes_proxy[i]
|
|
|
|
for idx, val in enumerate(scalars):
|
|
source = self.source("scalars", idx)
|
|
if isinstance(val, int):
|
|
scalars[idx] = self.shape_env.create_unspecified_symint_and_symbol(
|
|
val,
|
|
source,
|
|
DimDynamic.DYNAMIC,
|
|
)
|
|
elif isinstance(val, float):
|
|
scalars[idx] = self.shape_env.create_symfloatnode(
|
|
self.shape_env.create_unspecified_symbol(
|
|
val,
|
|
source=source,
|
|
dynamic_dim=DimDynamic.DYNAMIC,
|
|
),
|
|
hint=val,
|
|
source=source,
|
|
)
|
|
else:
|
|
raise AssertionError("Unexpected scalar type: ", type(val))
|
|
self.bind_tensors_to_proxies(scalars, self.scalars_proxy, scalars_origins)
|
|
for i, symval in enumerate(scalars):
|
|
self.symnode_proxy_lookup[symval.node] = self.scalars_proxy[i] # type: ignore[union-attr]
|
|
|
|
# TODO(jansel): are all these modes needed?
|
|
self.stack.enter_context(decompose({}))
|
|
self.stack.enter_context(self.fake_tensor_mode)
|
|
self.stack.enter_context(self.proxy_mode)
|
|
self.stack.enter_context(disable_autocast_cache())
|
|
# Needed to make sure we don't accidentally specialize any symbols
|
|
assert self.fake_tensor_mode.shape_env is not None
|
|
env = self.fake_tensor_mode.shape_env
|
|
self.stack.enter_context(
|
|
torch.fx.experimental.symbolic_shapes._suppress_guards(env)
|
|
)
|
|
return inputs, sizes, scalars
|
|
|
|
def proxy_call_aot_backward(
|
|
self,
|
|
pinputs,
|
|
psaved_tensors,
|
|
saved_tensors,
|
|
pctx,
|
|
ctx,
|
|
maybe_backward_state_idx,
|
|
):
|
|
# The AOTBackward call consists of three things: the prologue, the
|
|
# backward graph, and the epilogue.
|
|
# Our strategy is:
|
|
# - allow_in_graph the prologue (in the CA graph and Dynamo graph),
|
|
# - copy-paste the backward graph into the CA graph so that CA passes and Dynamo can see it
|
|
# - trace directly through the epilogue. Anything that gets baked in is
|
|
# constant metadata (for example, metadata about the number of outputs, or removing
|
|
# RNG arguments or effect tokens).
|
|
# If Dynamo graph capture were better, then we could add a node for the prologue
|
|
# into the CA graph and have Dynamo trace into it.
|
|
|
|
psymints = [self.to_proxy(e) for e in ctx._get_compiled_autograd_symints()]
|
|
|
|
# NOTE: we should only close over constants
|
|
CompiledFunction = ctx._forward_cls
|
|
metadata = CompiledFunction.metadata
|
|
maybe_subclass_metadata = CompiledFunction.maybe_subclass_metadata
|
|
del CompiledFunction
|
|
|
|
@torch._dynamo.allow_in_graph # type: ignore[misc]
|
|
def call_aot_bwd_prologue(ctx_saved_tensors, ctx_symints, *flat_args):
|
|
out = torch._functorch._aot_autograd.runtime_wrappers._backward_prologue_functional(
|
|
ctx_saved_tensors,
|
|
ctx_symints,
|
|
metadata,
|
|
maybe_subclass_metadata,
|
|
*flat_args,
|
|
)
|
|
return out
|
|
|
|
pgrads = self.fx_tracer.create_proxy(
|
|
kind="call_function",
|
|
target=call_aot_bwd_prologue,
|
|
args=(
|
|
psaved_tensors,
|
|
psymints,
|
|
*pinputs,
|
|
),
|
|
kwargs={},
|
|
)
|
|
|
|
pbackward_state = None
|
|
if maybe_backward_state_idx is not None:
|
|
pbackward_state = self.hooks_proxy[maybe_backward_state_idx] # type: ignore[index]
|
|
|
|
# Copy-paste the AOT backward graph into the compiled autograd graph
|
|
def copy_paste_aot_backward_graph():
|
|
def num_inputs(graph):
|
|
num_args = 0
|
|
for node in graph.nodes:
|
|
if node.op == "placeholder":
|
|
num_args += 1
|
|
continue
|
|
else:
|
|
break
|
|
return num_args
|
|
|
|
# set up the proxy inputs to ctx._bw_module
|
|
# the calling convention is: [*symints, *args (primals and tangents), backward_state]
|
|
num_args = num_inputs(ctx._bw_module.graph)
|
|
pall_args = [
|
|
pgrads[i] for i in range(num_args - int(pbackward_state is not None))
|
|
]
|
|
# replace the symints with our symints
|
|
symints = ctx._get_compiled_autograd_symints()
|
|
assert len(symints) == len(ctx.symints)
|
|
psymints = [self.to_proxy(e) for e in symints]
|
|
pall_args[: len(symints)] = psymints
|
|
# Add backward_state
|
|
if pbackward_state is not None:
|
|
pall_args.append(pbackward_state)
|
|
|
|
# run over all nodes of the aot_backward graph.
|
|
# copy and paste them all into the compiled autograd graph.
|
|
args_idx = 0
|
|
value_remap = {}
|
|
poutputs: Optional[list[torch.fx.Proxy]] = None
|
|
for node in ctx._bw_module.graph.nodes:
|
|
if node.op == "placeholder":
|
|
value_remap[node] = pall_args[args_idx].node
|
|
args_idx += 1
|
|
elif node.op == "output":
|
|
assert len(node.args) == 1
|
|
poutputs = [
|
|
torch.fx.Proxy(value_remap[n], self.fx_tracer)
|
|
if isinstance(n, torch.fx.Node)
|
|
else n
|
|
for n in node.args[0]
|
|
]
|
|
elif node.op == "get_attr":
|
|
name = node.target
|
|
qualname = self.fx_tracer.get_fresh_qualname(name)
|
|
setattr(
|
|
self.fx_tracer.root, qualname, getattr(ctx._bw_module, name)
|
|
)
|
|
result = self.fx_tracer.create_node("get_attr", qualname, (), {})
|
|
value_remap[node] = result
|
|
elif node.op == "call_function":
|
|
result = self.fx_tracer.graph.node_copy(
|
|
node, lambda n: value_remap[n]
|
|
)
|
|
value_remap[node] = result
|
|
else:
|
|
raise AssertionError("shouldn't get here")
|
|
assert poutputs is not None
|
|
|
|
# In general we don't know what the shapes of the outputs are, so allocate
|
|
# some dummy sizes for them.
|
|
def dummy():
|
|
with disable_proxy_modes_tracing():
|
|
return torch.zeros(0, 0, 0, 0, 123)
|
|
|
|
outputs = [
|
|
dummy() if isinstance(o, torch.fx.Proxy) else o for o in poutputs
|
|
]
|
|
self.bind_tensors_to_proxies(outputs, poutputs)
|
|
return outputs
|
|
|
|
outputs = copy_paste_aot_backward_graph()
|
|
|
|
# TODO(rzou): follow-up PR: tracing through backward_epilogue_functional
|
|
# is incorrect if there are any Tensor subclasses.
|
|
# This is a pre-existing problem and will be fixed in a follow-up.
|
|
results = torch._functorch._aot_autograd.runtime_wrappers._backward_epilogue_functional(
|
|
metadata, maybe_subclass_metadata, outputs
|
|
)
|
|
presults = pytree.tree_map(self.to_proxy, results)
|
|
return presults
|
|
|
|
def proxy_call_backward(
|
|
self,
|
|
inputs,
|
|
output_metadatas,
|
|
saved_tensors,
|
|
backward_idx: int,
|
|
ctx: torch.autograd.function.BackwardCFunction,
|
|
maybe_backward_state_idx: Optional[int],
|
|
):
|
|
assert self.hooks_proxy is not None
|
|
pctx = self.hooks_proxy[backward_idx] # type: ignore[index]
|
|
pinputs = self.to_proxy(inputs)
|
|
psaved_tensors = self.to_proxy(saved_tensors)
|
|
if hasattr(ctx._forward_cls, "_aot_id"): # type: ignore[attr-defined]
|
|
# AOT backward
|
|
proxies = self.proxy_call_aot_backward(
|
|
pinputs,
|
|
psaved_tensors,
|
|
saved_tensors,
|
|
pctx,
|
|
ctx,
|
|
maybe_backward_state_idx,
|
|
)
|
|
else:
|
|
proxies = self.fx_tracer.create_proxy(
|
|
kind="call_function",
|
|
target=call_backward,
|
|
args=(
|
|
pctx,
|
|
psaved_tensors,
|
|
*pinputs,
|
|
),
|
|
kwargs={},
|
|
)
|
|
assert proxies is not None
|
|
|
|
with disable_proxy_modes_tracing():
|
|
# create fake Tensors
|
|
grad_ins: list[Optional[torch.Tensor]] = []
|
|
for idx, output_metadata in enumerate(output_metadatas):
|
|
if output_metadata is None or proxies[idx] is None:
|
|
grad_ins.append(None)
|
|
continue
|
|
|
|
layout, device, dtype, size = output_metadata
|
|
grad_ins.append(
|
|
torch.empty(size=size, dtype=dtype, layout=layout, device=device)
|
|
)
|
|
self.bind_tensors_to_proxies(grad_ins, proxies)
|
|
return tuple(grad_ins)
|
|
|
|
def call_copy_slices_prologue(self, inputs, base, view):
|
|
args = (
|
|
inputs,
|
|
base.sizes(),
|
|
base.strides(),
|
|
base.storage_offset(),
|
|
view.sizes(),
|
|
view.strides(),
|
|
view.storage_offset(),
|
|
)
|
|
return self.proxy_call(copy_slices_prologue, args, [None] * 3)
|
|
|
|
def call_copy_slices_epilogue(self, needs_input_grad, result, res, grad_slice):
|
|
return self.proxy_call(
|
|
copy_slices_epilogue,
|
|
(needs_input_grad, result, res, grad_slice),
|
|
[None] * len(needs_input_grad),
|
|
)
|
|
|
|
def allocate_dummy(self):
|
|
with disable_proxy_modes_tracing():
|
|
# Weird quantity so it's easy to grep
|
|
return torch.zeros([0, 123456789])
|
|
|
|
def bind_function(self, fn_name, fn, is_custom_function):
|
|
"""Binds ops.fn_name = fn"""
|
|
return ops.add(fn_name, fn, is_custom_function)
|
|
|
|
def apply_functional(self, fn_name, grads, args, output_metadata):
|
|
"""Proxies a call to ops.fn_name(grads, *args) into the graph"""
|
|
op = ops.get(fn_name)
|
|
return self.proxy_call(op, (grads, *args), output_metadata)
|
|
|
|
def proxy_call(self, fn, args, output_metadata):
|
|
"""Proxies a call to fn(*args) into the graph"""
|
|
flat_args, _ = pytree.tree_flatten(args)
|
|
proxy_args = pytree.tree_map(lambda e: self.to_proxy(e), args)
|
|
proxy_out = self.fx_tracer.create_proxy(
|
|
"call_function", fn, args=proxy_args, kwargs={}
|
|
)
|
|
result = [self.allocate_dummy() for _ in output_metadata]
|
|
self.bind_tensors_to_proxies(result, [proxy_out[i] for i in range(len(result))])
|
|
return result
|
|
|
|
def validate_outputs(self, _, outputs, args, output_metadata):
|
|
"""Proxies a call to ops.validate_outputs(outputs, *args) into the graph"""
|
|
op = ops.get("validate_outputs")
|
|
proxy_args = pytree.tree_map(self.to_proxy, (outputs, *args))
|
|
new_proxy_outputs = self.fx_tracer.create_proxy(
|
|
"call_function", op, args=proxy_args, kwargs={}
|
|
)
|
|
assert len(output_metadata) == len(outputs)
|
|
self.bind_tensors_to_proxies(outputs, new_proxy_outputs)
|
|
return outputs
|
|
|
|
def accumulate(self, old_var, new_var):
|
|
old_var_proxy = self.to_proxy(old_var)
|
|
new_var_proxy = self.to_proxy(new_var)
|
|
proxy_out = self.fx_tracer.create_proxy(
|
|
"call_function", torch.add, args=(old_var_proxy, new_var_proxy), kwargs={}
|
|
)
|
|
result = self.allocate_dummy()
|
|
self.bind_tensors_to_proxies([result], [proxy_out])
|
|
return result
|
|
|
|
def proxy_call_hook(self, hook, *args, **kwargs):
|
|
return self.fx_tracer.create_proxy(
|
|
"call_function",
|
|
call_hook,
|
|
(
|
|
hook,
|
|
*[self.to_proxy(x) for x in args],
|
|
),
|
|
kwargs,
|
|
)
|
|
|
|
def tensor_pre_hook(self, inputs, hook_id, i: int):
|
|
assert self.hooks_proxy is not None
|
|
hook = self.hooks_proxy[hook_id] # type: ignore[index]
|
|
proxy = self.proxy_call_hook(
|
|
hook,
|
|
inputs[i],
|
|
hook_type="tensor_pre_hook",
|
|
)
|
|
with disable_proxy_modes_tracing():
|
|
inputs[i] = maybe_clone(inputs[i])
|
|
self.bind_tensors_to_proxies([inputs[i]], [proxy])
|
|
return inputs
|
|
|
|
def pre_hook(self, inputs, hook_id):
|
|
assert self.hooks_proxy is not None
|
|
hook = self.hooks_proxy[hook_id] # type: ignore[index]
|
|
proxies = self.proxy_call_hook(
|
|
hook,
|
|
inputs,
|
|
hook_type="pre_hook",
|
|
)
|
|
with disable_proxy_modes_tracing():
|
|
inputs = [maybe_clone(x) for x in inputs]
|
|
self.bind_tensors_to_proxies(inputs, proxies)
|
|
return inputs
|
|
|
|
def post_hook(self, outputs, inputs, hook_id):
|
|
assert self.hooks_proxy is not None
|
|
hook = self.hooks_proxy[hook_id] # type: ignore[index]
|
|
proxies = self.proxy_call_hook(
|
|
hook,
|
|
outputs,
|
|
inputs,
|
|
hook_type="post_hook",
|
|
)
|
|
with disable_proxy_modes_tracing():
|
|
outputs = [maybe_clone(x) for x in outputs]
|
|
self.bind_tensors_to_proxies(outputs, proxies)
|
|
return outputs
|
|
|
|
def post_acc_grad_hook(self, input, hook_id):
|
|
assert isinstance(input, torch.Tensor)
|
|
assert self.hooks_proxy is not None
|
|
hook = self.hooks_proxy[hook_id] # type: ignore[index]
|
|
proxy = self.proxy_call_hook(
|
|
hook,
|
|
input,
|
|
hook_type="post_acc_grad_hook",
|
|
)
|
|
with disable_proxy_modes_tracing():
|
|
input = [maybe_clone(input)]
|
|
self.bind_tensors_to_proxies(input, [proxy])
|
|
return input
|
|
|
|
# Note: [Compiled autograd and cudagraphs]
|
|
# Eager autograd backward implements scalars as 0-dim tensors, see DivBackward0::other_.
|
|
# When compiled autograd traces those nodes, it lifts the scalar tensors, resulting in a graph
|
|
# with some cpu 0-dim tensor inputs. To prevent the entire graph from skipping cudagraph, we move the
|
|
# scalars tensors to cuda. This works because ATen/prims ops will accept cuda 0-dim tensors too.
|
|
def move_graph_nodes_to_cuda(self, graph) -> list[int]:
|
|
to_move: dict[int, torch.fx.Node] = {}
|
|
has_cuda_inputs = False
|
|
nodes = list(graph.nodes)
|
|
assert nodes[0].target == "inputs"
|
|
inputs = nodes[0]
|
|
inputs_users = list(inputs.users.keys())
|
|
# input access nodes should immediately follow placeholder nodes
|
|
first_getitem_idx = len(_graph_placeholders)
|
|
assert nodes[first_getitem_idx] == inputs_users[0]
|
|
last_getitem_idx = first_getitem_idx + len(inputs_users) - 1
|
|
assert nodes[last_getitem_idx] == inputs_users[-1]
|
|
# getitem nodes on inputs
|
|
for i, node in enumerate(inputs_users):
|
|
if not has_cuda_inputs and node.meta["val"].device.type == "cuda":
|
|
has_cuda_inputs = True
|
|
continue
|
|
|
|
is_cpu = node.meta["val"].device.type == "cpu"
|
|
is_scalar = len(node.meta["val"].size()) == 0
|
|
if is_cpu and is_scalar:
|
|
node_users = list(node.users.keys())
|
|
# We can only move the cpu scalar if it is not exposed to user code.
|
|
if all(
|
|
(
|
|
isinstance(user.target, torch._ops.OpOverload)
|
|
and user.target.namespace in ("prims", "aten")
|
|
)
|
|
or (
|
|
isinstance(user.target, Op)
|
|
and not user.target.is_custom_function
|
|
)
|
|
for user in node_users
|
|
):
|
|
# all users are prims/aten, can move safely
|
|
to_move[i] = node
|
|
|
|
# only move cpu scalars to cuda if there were cuda activations in this graph,
|
|
# this is to handle the case where cudagraphs is enabled on a cpu-only graph
|
|
if has_cuda_inputs:
|
|
for node in to_move.values():
|
|
verbose_log.debug("Moving node %s from cpu to cuda", node)
|
|
node.meta["val"] = node.meta["val"].cuda()
|
|
|
|
# return runtime indices we need to move to cuda
|
|
return list(to_move.keys())
|
|
|
|
return []
|
|
|
|
def is_sym_node(self, node):
|
|
return (
|
|
isinstance(node, torch.fx.Node)
|
|
and node.op == "call_function"
|
|
and node.target
|
|
in [torch.ops.aten.sym_size.int, torch.ops.aten.sym_numel.default]
|
|
)
|
|
|
|
def dce(self):
|
|
# Most of these removed nodes would have been removed during Dynamo and AOTDispatch
|
|
# Remove some of these nodes earlier to improve compilation speed
|
|
|
|
# Dynamo guards will error instead of creating aliasing guards unless we unpack them in the graph
|
|
unpack_nodes: OrderedSet[torch.fx.Node] = OrderedSet()
|
|
for i, node in enumerate(self.fx_tracer.graph.find_nodes(op="placeholder")):
|
|
unpack_nodes.update(node.users.keys())
|
|
assert i == len(_graph_placeholders) - 1
|
|
|
|
def is_impure(node):
|
|
return (
|
|
node in unpack_nodes
|
|
or node.op == "placeholder"
|
|
or node.op == "output"
|
|
or (node.op == "call_function" and node.target in _impure_targets)
|
|
)
|
|
|
|
before = len(self.fx_tracer.graph.nodes)
|
|
self.fx_tracer.graph.eliminate_dead_code(is_impure)
|
|
after = len(self.fx_tracer.graph.nodes)
|
|
verbose_log.debug("DCE removed %d nodes", before - after)
|
|
|
|
def end_capture(self, outputs):
|
|
self.fx_tracer.create_proxy(
|
|
"call_function",
|
|
FakeCompiledAutogradEngine._exec_final_callbacks_stub,
|
|
(),
|
|
{},
|
|
)
|
|
self.stack.close()
|
|
self.fx_tracer.create_node(
|
|
"output",
|
|
"output",
|
|
(self.fx_tracer.create_arg(self.to_proxy(outputs)),),
|
|
{},
|
|
)
|
|
runtime_inputs_to_move: list[int] = []
|
|
if snapshot_cudagraph_enabled():
|
|
runtime_inputs_to_move = self.move_graph_nodes_to_cuda(self.fx_tracer.graph)
|
|
|
|
# We traced using dummy tensors. Delete all the metadata of the dummy tensors.
|
|
# It's probably better to refactor this class to use a different tracer
|
|
# than the make_fx tracer, but that is a larger change.
|
|
for node in self.fx_tracer.graph.nodes:
|
|
for field in ["tensor_meta", "example_value", "val"]:
|
|
if field in node.meta:
|
|
del node.meta[field]
|
|
|
|
self.rename_aot_dispatcher_nodes()
|
|
self.reorder_tensor_pre_hook_nodes()
|
|
self.reorder_pre_hook_nodes_to_schedule_asap()
|
|
self.reorder_accumulate_grad_nodes()
|
|
self.reorder_pre_hook_nodes_to_mimic_eager()
|
|
self.reorder_post_acc_grad_hook_nodes()
|
|
self.reorder_post_hook_nodes()
|
|
# TODO(yf225): work around: remove dead codes like `sym_size` and `sym_numel` which are not used downstream. e.g.
|
|
# ```
|
|
# sym_numel_default = torch.ops.aten.sym_numel.default(sum_109); sum_109 = None
|
|
# eq_115 = 16 == sym_numel_default; sym_numel_default = eq_115 = None
|
|
# sym_size_int_39 = torch.ops.aten.sym_size.int(getitem_112, 1); getitem_112 = None
|
|
# eq_116 = 16 == sym_size_int_39; eq_116 = None
|
|
# eq_117 = 16 == sym_size_int_39; sym_size_int_39 = eq_117 = None
|
|
# ```
|
|
# Proper fix is Richard's Python compiled autograd effort which will avoid calling make_fx and
|
|
# should prevent these ops from going into the CA graph.
|
|
self.dce()
|
|
|
|
graph = GraphModule(
|
|
self.fx_tracer.root, self.fx_tracer.graph, f"CompiledAutograd{self.id}"
|
|
)
|
|
set_locals_to_steal(graph, ["inputs"])
|
|
lazy_graph_code = lazy_format_graph_code(
|
|
"Compiled autograd graph",
|
|
graph,
|
|
include_device=True,
|
|
include_stride=True,
|
|
colored=True,
|
|
)
|
|
compiled_autograd_log.info("%s", lazy_graph_code)
|
|
verbose_log.debug("%s", lazy_graph_code)
|
|
trace_structured(
|
|
"compiled_autograd_graph",
|
|
payload_fn=lambda: graph.print_readable(print_output=False),
|
|
)
|
|
|
|
def runtime_wrapper(compiled_fn, inputs, sizes, scalars, hooks):
|
|
global in_compiled_autograd_region
|
|
try:
|
|
in_compiled_autograd_region = True
|
|
for i in runtime_inputs_to_move:
|
|
inputs[i] = inputs[i].pin_memory().cuda(non_blocking=True)
|
|
|
|
with _disable(), make_compile_context(self.id):
|
|
return compiled_fn(inputs, sizes, scalars, hooks)
|
|
finally:
|
|
in_compiled_autograd_region = False
|
|
|
|
get_chromium_event_logger().log_event_end(
|
|
"compiled_autograd",
|
|
time.time_ns(),
|
|
{"graph_id": self.id},
|
|
self.start_time_ns,
|
|
log_pt2_compile_event=True,
|
|
)
|
|
self.compile_context.__exit__(None, None, None)
|
|
return runtime_wrapper, self.compiler_fn(graph)
|
|
|
|
def rename_aot_dispatcher_nodes(self):
|
|
"""
|
|
Renames nodes as they appear in the AOTDispatcher backward graphs, prefixed by AOT id
|
|
e.g. AOTDispatcher backward graph X's `sin_Y` -> `aotX_sin_Y`
|
|
"""
|
|
if self.aot_graph_cls_name is None:
|
|
return
|
|
|
|
def is_similar(ca: torch.fx.node.Node, aot: torch.fx.node.Node):
|
|
# 1. comparing using target (for aten ops)
|
|
target_match = ca.target == aot.target
|
|
if not target_match:
|
|
# 2. comparing using name (for HOPs)
|
|
target_match = (
|
|
hasattr(ca.target, "__name__")
|
|
and hasattr(aot.target, "__name__")
|
|
and ca.target.__name__ == aot.target.__name__
|
|
)
|
|
if (
|
|
not target_match
|
|
and hasattr(ca.target, "name")
|
|
and hasattr(aot.target, "name")
|
|
and aot.target.name() == "aten::reshape"
|
|
and hasattr(aot.meta.get("original_aten"), "name")
|
|
):
|
|
# 3. undo view_to_reshape post grad pass
|
|
target_match = ca.target.name() == aot.meta["original_aten"].name()
|
|
|
|
return (
|
|
target_match
|
|
and ca.op == aot.op
|
|
and ca.type == aot.type
|
|
and len(ca.all_input_nodes) == len(aot.all_input_nodes)
|
|
)
|
|
|
|
# number of times we saw this AOT backward graph, used to dedup reused graphs
|
|
aot_id_counter: dict[int, int] = defaultdict(int)
|
|
for nodecall_index, info in self.aot_graph_infos.items():
|
|
ca_node_start_idx = info["ca_node_start_idx"]
|
|
aot_id = info["aot_id"]
|
|
aot_id_postfix = ""
|
|
aot_graph = info["aot_gm"].graph
|
|
if aot_id_counter[aot_id]:
|
|
aot_id_postfix = f"_{aot_id_counter[aot_id]}"
|
|
aot_id_counter[aot_id] += 1
|
|
|
|
# 1. Find the first op from user code in the AOT graph
|
|
aot_it = iter(aot_graph.nodes)
|
|
aot_node = next(aot_it)
|
|
assert aot_node is not None
|
|
try:
|
|
while aot_node.op != "call_function":
|
|
aot_node = next(aot_it)
|
|
except StopIteration:
|
|
continue
|
|
|
|
try:
|
|
# 2. Find the first op in the compiled autograd graph segment
|
|
ca_it = iter(self.fx_tracer.graph.nodes)
|
|
for _ in range(ca_node_start_idx):
|
|
next(ca_it)
|
|
ca_node = next(ca_it)
|
|
|
|
# Graphs should all end with output node
|
|
while ca_node.op != "output" and not is_similar(ca_node, aot_node):
|
|
# The compiled autograd graph may contain lazily inserted ops
|
|
# We skip those when aligning nodes
|
|
ca_node = next(ca_it)
|
|
|
|
# 3. Keep alligned and rename nodes
|
|
while aot_node.op != "output" and ca_node.op != "output":
|
|
if not ca_node.users:
|
|
# TODO: DCE for compiled autograd graph
|
|
ca_node = next(ca_it)
|
|
continue
|
|
|
|
if not is_similar(ca_node, aot_node):
|
|
# There should be no lazily inserted ops in the middle of a match
|
|
# So any deviation is an error
|
|
raise StopIteration
|
|
|
|
ca_node.name = f"aot{aot_id}{aot_id_postfix}_{aot_node.name}"
|
|
for i, inp in enumerate(aot_node.all_input_nodes):
|
|
ca_node.all_input_nodes[
|
|
i
|
|
].name = f"aot{aot_id}{aot_id_postfix}_{inp.name}"
|
|
|
|
aot_node = next(aot_it)
|
|
ca_node = next(ca_it)
|
|
except StopIteration:
|
|
verbose_log.debug(
|
|
"Failed to match %s%s (NodeCall %s) nodes with AOT backward graph %s nodes",
|
|
self.aot_graph_cls_name,
|
|
aot_id,
|
|
nodecall_index,
|
|
aot_id,
|
|
)
|
|
|
|
@staticmethod
|
|
def get_all_nodes(args):
|
|
# filter out non-Node args, like None
|
|
nodes = [n for n in args if type(n) is torch.fx.Node]
|
|
return nodes
|
|
|
|
@staticmethod
|
|
def is_placeholder(node):
|
|
if node.op == "placeholder" or (
|
|
node.op == "call_function"
|
|
and node.target == operator.getitem
|
|
and node.args[0].op == "placeholder"
|
|
):
|
|
return True
|
|
return False
|
|
|
|
def reorder_accumulate_grad_nodes(self):
|
|
"""
|
|
Usage of AOTAutograd causes all the accumulate_grad_ nodes to get pushed to the end of
|
|
the graph. This differs from eager mode, which schedules them as soon as possible. This
|
|
pass attempts to reorder the graph to mimic eager behavior.
|
|
"""
|
|
for node in self.fx_tracer.graph.find_nodes(
|
|
op="call_function", target=torch.ops.inductor.accumulate_grad_.default
|
|
):
|
|
param_node, grad_node = node.args[0], node.args[1]
|
|
getitem_node = None
|
|
if grad_node.target == operator.getitem:
|
|
getitem_node = grad_node
|
|
grad_node = getitem_node.args[0]
|
|
|
|
arg = max([param_node, grad_node]) # last arg
|
|
if arg is not node.prev and not self.is_placeholder(arg):
|
|
arg.append(node)
|
|
if getitem_node is not None:
|
|
arg.append(getitem_node)
|
|
|
|
def reorder_tensor_pre_hook_nodes(self):
|
|
"""
|
|
Usage of AOTAutograd causes all the tensor_pre_hook nodes to get pushed
|
|
to the end of the graph. This differs from eager mode, which schedules
|
|
them as soon as possible. This pass attempts to reorder the graph to
|
|
mimic eager behavior.
|
|
"""
|
|
for node in self.fx_tracer.graph.find_nodes(
|
|
op="call_function", target=call_hook
|
|
):
|
|
if node.kwargs.get("hook_type", None) != "tensor_pre_hook":
|
|
continue
|
|
|
|
getitem_node = node.args[0]
|
|
input_node = node.args[1] # tensor_pre_hook handle only one grad tensor
|
|
|
|
if input_node is not node.prev and not self.is_placeholder(input_node):
|
|
input_node.append(getitem_node)
|
|
getitem_node.append(node)
|
|
|
|
def reorder_pre_hook_nodes_to_schedule_asap(self):
|
|
"""
|
|
In this function, we schedule the pre hooks as soon as possible. This
|
|
does not match eager behavior (schedule pre hook right before its
|
|
registered node), but it can make acc grad be scheduled properly when
|
|
the pre hooks are registered to them. After reordering acc grad node, we
|
|
will reorder the pre hooks again to mimic eager behavior.
|
|
"""
|
|
for node in self.fx_tracer.graph.find_nodes(
|
|
op="call_function", target=call_hook
|
|
):
|
|
if node.kwargs.get("hook_type", None) != "pre_hook":
|
|
continue
|
|
|
|
getitem_node = node.args[0]
|
|
# pre_hook handle a tuple of grad tensors
|
|
input_nodes = self.get_all_nodes(node.args[1])
|
|
|
|
to_remove = []
|
|
to_append = []
|
|
hook_block = [node] # contain the hook and hook args getitem
|
|
for n in input_nodes:
|
|
if n.op == "call_function" and n.target == operator.getitem:
|
|
to_append.append(n.args[0])
|
|
to_remove.append(n)
|
|
hook_block.append(n)
|
|
for a, b in zip(to_remove, to_append):
|
|
input_nodes.remove(a)
|
|
input_nodes.append(b)
|
|
|
|
arg = max(input_nodes) # last input
|
|
if arg is not node.prev and not self.is_placeholder(arg):
|
|
arg.append(getitem_node)
|
|
for n in hook_block:
|
|
getitem_node.append(n)
|
|
|
|
def reorder_pre_hook_nodes_to_mimic_eager(self):
|
|
"""
|
|
Usage of AOTAutograd causes all the pre_hook nodes to get pushed to the
|
|
end of the graph. This differs from eager mode, which schedules them
|
|
right before their registered node execution. This pass attempts to
|
|
reorder the graph to mimic eager behavior.
|
|
"""
|
|
pre_hooks = []
|
|
for node in self.fx_tracer.graph.find_nodes(
|
|
op="call_function", target=call_hook
|
|
):
|
|
if node.kwargs.get("hook_type", None) != "pre_hook":
|
|
continue
|
|
pre_hooks.append(node)
|
|
|
|
for node in reversed(pre_hooks):
|
|
hook_getitem_node = node.args[0]
|
|
|
|
users = list(node.users.keys())
|
|
if len(users) == 0:
|
|
continue
|
|
|
|
# users are all getitem ops and they are used by same registered node
|
|
assert all(
|
|
user.op == "call_function" and user.target == operator.getitem
|
|
for user in users
|
|
)
|
|
registered_node = next(iter(users[0].users.keys()))
|
|
|
|
if registered_node is not node.next:
|
|
registered_node.prepend(hook_getitem_node)
|
|
registered_node.prepend(node)
|
|
for getitem in users:
|
|
registered_node.prepend(getitem)
|
|
|
|
def reorder_post_acc_grad_hook_nodes(self):
|
|
"""
|
|
Usage of AOTAutograd causes all the post_acc_grad_hook nodes to get
|
|
pushed to the end of the graph. This differs from eager mode, which
|
|
schedules them as soon as possible. This pass attempts to reorder the
|
|
graph to mimic eager behavior.
|
|
"""
|
|
post_acc_grad_hooks = []
|
|
for node in self.fx_tracer.graph.find_nodes(
|
|
op="call_function", target=call_hook
|
|
):
|
|
if node.kwargs.get("hook_type", None) != "post_acc_grad_hook":
|
|
continue
|
|
post_acc_grad_hooks.append(node)
|
|
|
|
# nodes in post_acc_grad_hooks are in topo order. For hooks registered
|
|
# to same node, we should keep their relative order
|
|
for node in reversed(post_acc_grad_hooks):
|
|
getitem_node = node.args[0]
|
|
param_node = node.args[1] # post_acc_grad_hook handle one param
|
|
|
|
# find the corresponding acc_grad node
|
|
acc_grad_node = None
|
|
for n in list(param_node.users.keys()):
|
|
if (
|
|
n.op == "call_function"
|
|
and n.target == torch.ops.inductor.accumulate_grad_.default
|
|
):
|
|
acc_grad_node = n
|
|
break
|
|
|
|
assert (
|
|
acc_grad_node is not None
|
|
), "post_acc_grad_hook must have corresponding acc grad node"
|
|
|
|
# append post_acc_grad_hook after acc_grad node
|
|
acc_grad_node.append(getitem_node)
|
|
getitem_node.append(node)
|
|
|
|
def reorder_post_hook_nodes(self):
|
|
"""
|
|
Usage of AOTAutograd causes all the post_hook nodes to get pushed to the
|
|
end of the graph. This differs from eager mode, which schedules them as
|
|
soon as possible. This pass attempts to reorder the graph to mimic eager
|
|
behavior.
|
|
"""
|
|
post_hooks = []
|
|
for node in self.fx_tracer.graph.find_nodes(
|
|
op="call_function", target=call_hook
|
|
):
|
|
if node.kwargs.get("hook_type", None) != "post_hook":
|
|
continue
|
|
post_hooks.append(node)
|
|
|
|
for node in reversed(post_hooks):
|
|
getitem_node = node.args[0]
|
|
output_nodes = node.args[1]
|
|
input_nodes = node.args[2]
|
|
|
|
if len(output_nodes) > 0:
|
|
continue
|
|
|
|
input_nodes_and_users = []
|
|
input_nodes_and_users.extend(list(input_nodes))
|
|
for input_node in input_nodes:
|
|
input_nodes_and_users.extend(
|
|
user
|
|
for user in list(input_node.users.keys())
|
|
if not (
|
|
user.op == "call_function"
|
|
and user.target == call_hook
|
|
and node.kwargs.get("hook_type", None) == "post_hook"
|
|
)
|
|
)
|
|
|
|
arg = max(input_nodes_and_users) # last input users
|
|
if (
|
|
arg.op == "call_function"
|
|
and arg.target == torch.ops.inductor.accumulate_grad_.default
|
|
):
|
|
param_node = arg.args[0]
|
|
post_acc_grad_hook_node = None
|
|
for n in list(param_node.users.keys()):
|
|
if (
|
|
n.op == "call_function"
|
|
and n.target == call_hook
|
|
and n.kwargs.get("hook_type", None) == "post_acc_grad_hook"
|
|
):
|
|
post_acc_grad_hook_node = n
|
|
|
|
if post_acc_grad_hook_node is not None:
|
|
post_acc_grad_hook_node.append(getitem_node)
|
|
getitem_node.append(node)
|
|
continue
|
|
|
|
if arg is not node.prev and not self.is_placeholder(arg):
|
|
arg.append(getitem_node)
|
|
getitem_node.append(node)
|
|
|
|
def to_proxy(self, t):
|
|
if t is None:
|
|
return None
|
|
if isinstance(t, list):
|
|
return [self.to_proxy(x) for x in t]
|
|
if isinstance(t, tuple):
|
|
return tuple(self.to_proxy(x) for x in t)
|
|
if isinstance(t, (torch.SymInt, torch.SymFloat)):
|
|
return self.symnode_proxy_lookup[t.node]
|
|
if not isinstance(t, torch.Tensor):
|
|
# constant types like device, dtype, str
|
|
return t
|
|
proxy_tensor = fetch_object_proxy(self.fx_tracer, t)
|
|
assert isinstance(proxy_tensor, torch.fx.experimental.proxy_tensor._ProxyTensor)
|
|
return proxy_tensor.proxy
|
|
|
|
def bind_tensors_to_proxies(
|
|
self, tensors, proxies, origins: Optional[list[tuple[int, str]]] = None
|
|
):
|
|
if isinstance(proxies, torch.fx.Proxy):
|
|
if origins:
|
|
assert len(origins) == len(tensors)
|
|
bound_proxies = []
|
|
for i in range(len(tensors)):
|
|
nodecall_index, node_name = origins[i]
|
|
self.set_node_origin(node_name, nodecall_index, None)
|
|
bound_proxies.append(proxies[i]) # type: ignore[index]
|
|
proxies = bound_proxies
|
|
else:
|
|
proxies = [proxies[i] for i in range(len(tensors))] # type: ignore[index]
|
|
|
|
assert len(tensors) == len(proxies)
|
|
track_tensor_tree(tensors, proxies, constant=None, tracer=self.fx_tracer)
|
|
|
|
def bind_backward_state(self, index: int):
|
|
assert self.hooks_proxy is not None
|
|
proxy = self.hooks_proxy[index] # type: ignore[index]
|
|
bw_state = BackwardState()
|
|
track_tensor_tree(bw_state, proxy, constant=None, tracer=self.fx_tracer)
|
|
return bw_state
|
|
|
|
def set_node_origin(
|
|
self,
|
|
node_name: str,
|
|
nodecall_index: int,
|
|
pyobj: Optional[torch.autograd.Function],
|
|
):
|
|
maybe_aot_id = ""
|
|
if pyobj is not None:
|
|
forward_cls = pyobj._forward_cls # type: ignore[attr-defined]
|
|
if hasattr(forward_cls, "_aot_id"):
|
|
# backward was created by AOT Dispatcher
|
|
if forward_cls._lazy_backward_info is None:
|
|
raise RuntimeError(
|
|
"""This compiled backward function was saved by AOTAutogradCache, which does not support
|
|
compiled autograd. Please turn off AOTAutogradCache using `TORCHINDUCTOR_AUTOGRAD_CACHE=0`."""
|
|
)
|
|
self.aot_graph_cls_name = node_name
|
|
maybe_aot_id = forward_cls._aot_id
|
|
self.aot_graph_infos[nodecall_index] = {
|
|
"ca_node_start_idx": len(self.fx_tracer.graph.nodes),
|
|
"aot_id": maybe_aot_id,
|
|
"aot_gm": forward_cls._lazy_backward_info.bw_module,
|
|
}
|
|
|
|
new_code = f"{node_name}{maybe_aot_id} (NodeCall {nodecall_index})"
|
|
raw_stack_trace = CapturedTraceback.extract().format()[-1]
|
|
new_stack_trace = raw_stack_trace.replace(
|
|
"raw_stack_trace = CapturedTraceback.extract().format()[-1]", new_code
|
|
)
|
|
set_stack_trace(new_stack_trace)
|
|
|
|
|
|
# state of the autograd engine dispatch, kept in sync by enable/disable context managers
|
|
compiled_autograd_enabled = False
|
|
|
|
# global flag to check if compiled autograd is enabled but Dynamo stance is "force_eager"
|
|
compiled_autograd_enabled_force_eager = False
|
|
|
|
# global flag to check if we are processing graphs produced from a compiled autograd graph
|
|
in_compiled_autograd_region = False
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def _enable(compiler_fn, dynamic=False):
|
|
if dynamic:
|
|
assert type(dynamic) is bool
|
|
|
|
from torch._dynamo import eval_frame
|
|
|
|
if eval_frame._stance.stance == "force_eager":
|
|
# If user explicitly sets Dynamo stance to "force_eager", we want Compiled Autograd
|
|
# to fall back to eager as well.
|
|
global compiled_autograd_enabled_force_eager
|
|
compiled_autograd_enabled_force_eager = True
|
|
try:
|
|
yield
|
|
finally:
|
|
compiled_autograd_enabled_force_eager = False
|
|
else:
|
|
# we need to import this, because user might not have imported it if they directly use this context manager
|
|
# we need to lazily import it, because of circular dependencies
|
|
import torch._inductor.cudagraph_trees
|
|
|
|
(
|
|
prior_compiler,
|
|
prior_dynamic,
|
|
) = torch._C._dynamo.compiled_autograd.set_autograd_compiler(
|
|
functools.partial(AutogradCompilerInstance, compiler_fn), dynamic
|
|
)
|
|
if snapshot_verbose_logging_enabled():
|
|
torch._C._dynamo.compiled_autograd.set_verbose_logger(verbose_log)
|
|
global compiled_autograd_enabled
|
|
compiled_autograd_enabled = True
|
|
try:
|
|
with torch.autograd.set_multithreading_enabled(False):
|
|
yield
|
|
finally:
|
|
if not prior_compiler:
|
|
compiled_autograd_enabled = False
|
|
torch._C._dynamo.compiled_autograd.set_autograd_compiler(
|
|
prior_compiler, prior_dynamic
|
|
)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def _disable():
|
|
(
|
|
prior_compiler,
|
|
prior_dynamic,
|
|
) = torch._C._dynamo.compiled_autograd.set_autograd_compiler(None, False)
|
|
global compiled_autograd_enabled
|
|
compiled_autograd_enabled = False
|
|
try:
|
|
yield
|
|
finally:
|
|
if prior_compiler:
|
|
compiled_autograd_enabled = True
|
|
torch._C._dynamo.compiled_autograd.set_autograd_compiler(
|
|
prior_compiler, prior_dynamic
|
|
)
|
|
|
|
|
|
# return to starting state of a new process
|
|
def reset() -> None:
|
|
global compiled_autograd_enabled
|
|
compiled_autograd_enabled = False
|
|
assert not in_compiled_autograd_region
|
|
torch._C._dynamo.compiled_autograd.set_autograd_compiler(None, False)
|
|
torch._C._dynamo.compiled_autograd.set_verbose_logger(None)
|
|
torch._C._dynamo.compiled_autograd.clear_cache()
|
|
global COMPILE_COUNTER
|
|
COMPILE_COUNTER = itertools.count()
|
|
|
|
|
|
# Reimplementation of part of CopySlices::apply in Python.
|
|
# The shared code is really similar so we're not going to try to deduplicate.
|
|
def copy_slices_prologue(
|
|
inputs,
|
|
base_sizes,
|
|
base_strides,
|
|
base_storage_offset,
|
|
view_sizes,
|
|
view_strides,
|
|
view_storage_offset,
|
|
):
|
|
grad = inputs[0]
|
|
result = grad.new_empty_strided(base_sizes, base_strides)
|
|
assert grad is not None
|
|
result.copy_(grad)
|
|
offset = view_storage_offset - base_storage_offset
|
|
grad_slice = result.as_strided(view_sizes, view_strides, offset)
|
|
return [result, grad_slice, grad_slice.clone(memory_format=torch.contiguous_format)]
|
|
|
|
|
|
# Reimplementation of part of CopySlices::apply in Python.
|
|
# The shared code is really similar so we're not going to try to deduplicate.
|
|
def copy_slices_epilogue(needs_input_grad, result, res, grad_slice):
|
|
grad_inputs = [None] * len(needs_input_grad)
|
|
for i in range(len(needs_input_grad)):
|
|
if needs_input_grad[i]:
|
|
if res[i] is None:
|
|
continue
|
|
if i == 0:
|
|
grad_slice.copy_(res[i])
|
|
grad_inputs[i] = result
|
|
else:
|
|
grad_inputs[i] = res[i]
|
|
return grad_inputs
|