mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Followup to [the serialized test framework](https://github.com/pytorch/pytorch/pull/10594) Round 1 for refactoring tests, starting alphabetically. I added some functionality, so I wanted to send out some of these initial changes sooner. I'm skipping all tests that don't explicitly call assertReferenceChecks. Some tests directly call np.allclose, and others are simply TestCase (rather than HypothesisTestCase). 1. Start alphabetically producing serialized outputs for test functions, annotating those we want to include with `serialized_test_util.given`. So far I've only added one test per operator, but this already does seem to add quite a few tests. 2. Add functionality to allow us to generate outputs using pytest by adding pytest argument options. This allows us to skip adding a `__main__` function to quite a few tests. 3. Catch any exceptions generating the gradient operator and skip serializing/reading it, since certain operators don't have gradients. 4. Add functionality to better handle jagged array inputs, which numpy doesn't handle very well. We simply explicitly do the conversion to dtype=object. 5. Make only one file per test function, rather than 4, to reduce the number of files in the github repo. I also noticed that there is some hypothesis handling that makes `serialized_test_util.given` not compatible with adding more hypothesis decorators on top. For example, there are tests that do ``` settings(...) given(...) def test_my_stuff(...) ``` But there is a hypothesis handler that explicitly checks that `given` is called below `settings`, so we cannot refactor this to `serialized_test_util.given`. I've just avoided decorating these kinds of tests for now, I hope that's alright. Pull Request resolved: https://github.com/pytorch/pytorch/pull/11350 Reviewed By: houseroad Differential Revision: D9693857 Pulled By: ajyu fbshipit-source-id: a9b4279afbe51c90cf2025c5ac6b2db2111f4af7
731 lines
28 KiB
Python
731 lines
28 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import collections
|
|
import functools
|
|
|
|
import numpy as np
|
|
from hypothesis import assume, given
|
|
import hypothesis.strategies as st
|
|
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python import brew, core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
from caffe2.python.model_helper import ModelHelper
|
|
import caffe2.python.serialized_test.serialized_test_util as serial
|
|
import caffe2.python._import_c_extension as C
|
|
|
|
import unittest
|
|
import os
|
|
|
|
|
|
def _cudnn_supports(
|
|
dilation=False,
|
|
nhwc=False,
|
|
backward=False,
|
|
):
|
|
"""Return True if cuDNN supports this configuration."""
|
|
v = workspace.GetCuDNNVersion()
|
|
if backward:
|
|
if nhwc:
|
|
# nhwc isn't supported in backward ops.
|
|
return False
|
|
else:
|
|
# Forward mode.
|
|
if dilation and v < 6000:
|
|
# Dilation not supported until v6
|
|
return False
|
|
if dilation and nhwc:
|
|
# Dilation and NHWC not supported together
|
|
return False
|
|
return True
|
|
|
|
|
|
def _cudnn_convolution_algo_count(direction):
|
|
try:
|
|
if direction == "fwd":
|
|
return st.integers(0, C.cudnn_convolution_fwd_algo_count - 1)
|
|
elif direction == "dgrad":
|
|
return st.integers(0, C.cudnn_convolution_bwd_data_algo_count - 1)
|
|
elif direction == "wgrad":
|
|
return st.integers(0, C.cudnn_convolution_bwd_filter_algo_count - 1)
|
|
else:
|
|
assert False
|
|
except Exception:
|
|
return st.sampled_from([-1])
|
|
|
|
|
|
class TestConvolution(serial.SerializedTestCase):
|
|
# CUDNN does NOT support different padding values and we skip it
|
|
@given(op_type=st.sampled_from(["Conv", "Conv2D"]),
|
|
stride_h=st.integers(1, 3),
|
|
stride_w=st.integers(1, 3),
|
|
pad_t=st.integers(0, 3),
|
|
pad_l=st.integers(0, 3),
|
|
pad_b=st.integers(0, 3),
|
|
pad_r=st.integers(0, 3),
|
|
kernel=st.integers(3, 5),
|
|
size=st.integers(1, 8),
|
|
input_channels=st.integers(1, 3),
|
|
output_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
group=st.integers(1, 2),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
engine=st.sampled_from(["", "EIGEN"]),
|
|
shared_buffer=st.booleans(),
|
|
use_bias=st.booleans(),
|
|
**hu.gcs)
|
|
def test_convolution_separate_stride_pad_gradients(
|
|
self, op_type, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r,
|
|
kernel, size, input_channels, output_channels, batch_size, group,
|
|
order, engine, shared_buffer, use_bias, gc, dc):
|
|
if order == "NHWC":
|
|
group = 1
|
|
|
|
input_channels *= group
|
|
output_channels *= group
|
|
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X", "w", "b"] if use_bias else ["X", "w"],
|
|
["Y"],
|
|
stride_h=stride_h,
|
|
stride_w=stride_w,
|
|
pad_t=pad_t,
|
|
pad_l=pad_l,
|
|
pad_b=pad_b,
|
|
pad_r=pad_r,
|
|
kernel=kernel,
|
|
group=group,
|
|
order=order,
|
|
engine=engine,
|
|
shared_buffer=int(shared_buffer),
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, size, size, input_channels).astype(np.float32) - 0.5
|
|
w = np.random.rand(
|
|
output_channels, kernel, kernel, int(input_channels / group)
|
|
).astype(np.float32) - 0.5
|
|
b = np.random.rand(output_channels).astype(np.float32) - 0.5
|
|
if order == "NCHW":
|
|
X = X.transpose((0, 3, 1, 2))
|
|
w = w.transpose((0, 3, 1, 2))
|
|
|
|
inputs = [X, w, b] if use_bias else [X, w]
|
|
|
|
# Error handling path.
|
|
if size + pad_r + pad_l < kernel or size + pad_t + pad_b < kernel:
|
|
with self.assertRaises(RuntimeError):
|
|
self.assertDeviceChecks(dc, op, inputs, [0])
|
|
return
|
|
|
|
self.assertDeviceChecks(dc, op, inputs, [0])
|
|
for i in range(len(inputs)):
|
|
self.assertGradientChecks(gc, op, inputs, i, [0])
|
|
|
|
# CUDNN does NOT support different padding values and we skip it
|
|
@given(op_type=st.sampled_from(["Conv", "Conv2D"]),
|
|
stride_h=st.integers(1, 3),
|
|
stride_w=st.integers(1, 3),
|
|
pad_t=st.integers(0, 3),
|
|
pad_l=st.integers(0, 3),
|
|
pad_b=st.integers(0, 3),
|
|
pad_r=st.integers(0, 3),
|
|
kernel=st.integers(1, 5),
|
|
size=st.integers(7, 10),
|
|
input_channels=st.integers(1, 8),
|
|
output_channels=st.integers(1, 8),
|
|
batch_size=st.integers(1, 3),
|
|
engine=st.sampled_from(["", "EIGEN"]),
|
|
use_bias=st.booleans(),
|
|
**hu.gcs)
|
|
def test_convolution_separate_stride_pad_layout(
|
|
self, op_type, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r,
|
|
kernel, size, input_channels, output_channels, batch_size, engine,
|
|
use_bias, gc, dc):
|
|
X = np.random.rand(
|
|
batch_size, size, size, input_channels).astype(np.float32) - 0.5
|
|
w = np.random.rand(
|
|
output_channels, kernel, kernel, input_channels
|
|
).astype(np.float32) - 0.5
|
|
b = np.random.rand(output_channels).astype(np.float32) - 0.5
|
|
outputs = {}
|
|
for order in ["NCHW", "NHWC"]:
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X", "w", "b"] if use_bias else ["X", "w"],
|
|
["Y"],
|
|
stride_h=stride_h,
|
|
stride_w=stride_w,
|
|
kernel=kernel,
|
|
pad_t=pad_t,
|
|
pad_l=pad_l,
|
|
pad_b=pad_b,
|
|
pad_r=pad_r,
|
|
order=order,
|
|
engine=engine,
|
|
device_option=gc,
|
|
)
|
|
if order == "NCHW":
|
|
X_f = X.transpose((0, 3, 1, 2))
|
|
w_f = w.transpose((0, 3, 1, 2))
|
|
else:
|
|
X_f = X
|
|
w_f = w
|
|
self.ws.create_blob("X").feed(X_f, device_option=gc)
|
|
self.ws.create_blob("w").feed(w_f, device_option=gc)
|
|
self.ws.create_blob("b").feed(b, device_option=gc)
|
|
self.ws.run(op)
|
|
outputs[order] = self.ws.blobs["Y"].fetch()
|
|
np.testing.assert_allclose(
|
|
outputs["NCHW"],
|
|
outputs["NHWC"].transpose((0, 3, 1, 2)),
|
|
atol=1e-4,
|
|
rtol=1e-4)
|
|
|
|
@given(op_type=st.sampled_from(["Conv", "Conv2D"]),
|
|
stride=st.integers(1, 3),
|
|
pad=st.integers(0, 3),
|
|
kernel=st.integers(1, 5),
|
|
dilation=st.integers(1, 3),
|
|
size=st.integers(7, 10),
|
|
input_channels=st.integers(1, 8),
|
|
output_channels=st.integers(1, 8),
|
|
batch_size=st.integers(1, 3),
|
|
group=st.integers(1, 2),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
engine=st.sampled_from(["", "CUDNN", "MKLDNN"]),
|
|
use_bias=st.booleans(),
|
|
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
|
|
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
|
|
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
|
|
**hu.gcs)
|
|
def test_convolution_gradients(
|
|
self, op_type, stride, pad, kernel, dilation, size, input_channels,
|
|
output_channels, batch_size, group, order, engine, use_bias,
|
|
force_algo_fwd, force_algo_dgrad, force_algo_wgrad, gc, dc):
|
|
if order == "NHWC" or engine == "MKLDNN":
|
|
group = 1
|
|
|
|
input_channels *= group
|
|
output_channels *= group
|
|
dkernel = dilation * (kernel - 1) + 1
|
|
|
|
if engine == 'CUDNN':
|
|
assume(_cudnn_supports(dilation=(dilation > 1),
|
|
nhwc=(order == 'NHWC'),
|
|
backward=True))
|
|
|
|
assume(engine != "MKLDNN" or use_bias is True)
|
|
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X", "w", "b"] if use_bias else ["X", "w"],
|
|
["Y"],
|
|
stride=stride,
|
|
kernel=kernel,
|
|
dilation=dilation,
|
|
pad=pad,
|
|
group=group,
|
|
order=order,
|
|
engine=engine,
|
|
force_algo_fwd=force_algo_fwd,
|
|
force_algo_dgrad=force_algo_dgrad,
|
|
force_algo_wgrad=force_algo_wgrad,
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, size, size, input_channels).astype(np.float32) - 0.5
|
|
w = np.random.rand(
|
|
output_channels, kernel, kernel, int(input_channels / group)
|
|
).astype(np.float32) - 0.5
|
|
b = np.random.rand(output_channels).astype(np.float32) - 0.5
|
|
if order == "NCHW":
|
|
X = X.transpose((0, 3, 1, 2))
|
|
w = w.transpose((0, 3, 1, 2))
|
|
|
|
inputs = [X, w, b] if use_bias else [X, w]
|
|
# Error handling path.
|
|
if size + pad + pad < dkernel or size + pad + pad < dkernel:
|
|
with self.assertRaises(RuntimeError):
|
|
self.assertDeviceChecks(dc, op, inputs, [0])
|
|
return
|
|
|
|
try:
|
|
self.assertDeviceChecks(dc, op, inputs, [0])
|
|
except RuntimeError as e:
|
|
es = str(e)
|
|
# CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM should always have
|
|
# implementation
|
|
if "status == CUDNN_STATUS_SUCCESS" not in es \
|
|
or "CUDNN_STATUS_NOT_SUPPORTED" not in es \
|
|
or force_algo_fwd == 0:
|
|
raise e
|
|
|
|
for i in range(len(inputs)):
|
|
try:
|
|
self.assertGradientChecks(gc, op, inputs, i, [0])
|
|
except RuntimeError as e:
|
|
es = str(e)
|
|
if "status == CUDNN_STATUS_SUCCESS" not in es \
|
|
or "CUDNN_STATUS_NOT_SUPPORTED" not in es:
|
|
raise e
|
|
|
|
def _nd_convolution_nchw(self, n, input_channels, output_channels,
|
|
batch_size, stride, size, kernel, dilation, pad,
|
|
use_bias, force_algo_fwd, force_algo_dgrad,
|
|
force_algo_wgrad, gc, dc):
|
|
dkernel = dilation * (kernel - 1) + 1
|
|
for op_type in ["Conv", "Conv" + str(n) + "D"]:
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X", "w", "b"] if use_bias else ["X", "w"],
|
|
["Y"],
|
|
strides=[stride] * n,
|
|
kernels=[kernel] * n,
|
|
dilations=[dilation] * n,
|
|
pads=[pad] * n * 2,
|
|
order="NCHW",
|
|
engine="",
|
|
force_algo_fwd=force_algo_fwd,
|
|
force_algo_dgrad=force_algo_dgrad,
|
|
force_algo_wgrad=force_algo_wgrad,
|
|
)
|
|
|
|
input_dims = [batch_size, input_channels]
|
|
input_dims.extend([size] * n)
|
|
filter_dims = [output_channels, input_channels]
|
|
filter_dims.extend([kernel] * n)
|
|
|
|
X = np.random.rand(*input_dims).astype(np.float32) - 0.5
|
|
w = np.random.rand(*filter_dims).astype(np.float32) - 0.5
|
|
b = np.random.rand(output_channels).astype(np.float32) - 0.5
|
|
|
|
inputs = [X, w, b] if use_bias else [X, w]
|
|
|
|
if size + pad + pad < dkernel or size + pad + pad < dkernel:
|
|
with self.assertRaises(RuntimeError):
|
|
self.assertDeviceChecks(dc, op, inputs, [0])
|
|
return
|
|
|
|
self.assertDeviceChecks(dc, op, inputs, [0])
|
|
for i in range(len(inputs)):
|
|
self.assertGradientChecks(gc, op, inputs, i, [0])
|
|
|
|
@given(input_channels=st.integers(1, 3),
|
|
output_channels=st.integers(1, 2),
|
|
batch_size=st.integers(1, 3),
|
|
stride=st.integers(1, 3),
|
|
size=st.integers(7, 10),
|
|
kernel=st.integers(1, 2),
|
|
dilation=st.integers(1, 3),
|
|
pad=st.integers(0, 3),
|
|
use_bias=st.booleans(),
|
|
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
|
|
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
|
|
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
|
|
**hu.gcs)
|
|
def test_1d_convolution_nchw(self, input_channels, output_channels,
|
|
batch_size, stride, size, kernel, dilation,
|
|
pad, use_bias,
|
|
force_algo_fwd, force_algo_dgrad,
|
|
force_algo_wgrad,
|
|
gc, dc):
|
|
self._nd_convolution_nchw(
|
|
1, input_channels, output_channels, batch_size, stride, size,
|
|
kernel, dilation, pad, use_bias, force_algo_fwd, force_algo_dgrad,
|
|
force_algo_wgrad, gc, dc
|
|
)
|
|
|
|
@given(input_channels=st.integers(1, 2),
|
|
output_channels=st.integers(1, 2),
|
|
batch_size=st.integers(1, 2),
|
|
stride=st.integers(1, 2),
|
|
size=st.integers(4, 5),
|
|
kernel=st.integers(1, 2),
|
|
dilation=st.integers(1, 2),
|
|
pad=st.integers(0, 2),
|
|
use_bias=st.booleans(),
|
|
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
|
|
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
|
|
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
|
|
**hu.gcs)
|
|
def test_3d_convolution_nchw(self, input_channels, output_channels,
|
|
batch_size, stride, size, kernel, dilation,
|
|
pad, use_bias,
|
|
force_algo_fwd, force_algo_dgrad,
|
|
force_algo_wgrad,
|
|
gc, dc):
|
|
self._nd_convolution_nchw(
|
|
3, input_channels, output_channels, batch_size, stride, size,
|
|
kernel, dilation, pad, use_bias, force_algo_fwd, force_algo_dgrad,
|
|
force_algo_wgrad, gc, dc
|
|
)
|
|
|
|
@given(op_type=st.sampled_from(["Conv", "Conv3D"]),
|
|
batch_size=st.integers(1, 2),
|
|
stride=st.integers(1, 2),
|
|
size=st.integers(3, 5),
|
|
kernel=st.integers(1, 2),
|
|
dilation=st.integers(1, 2),
|
|
pad=st.integers(0, 2),
|
|
use_bias=st.booleans(),
|
|
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
|
|
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
|
|
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
|
|
**hu.gcs)
|
|
def test_3d_convolution_cudnn_nchw(self, op_type, batch_size, stride, size,
|
|
kernel, dilation, pad, use_bias,
|
|
force_algo_fwd, force_algo_dgrad,
|
|
force_algo_wgrad, gc, dc):
|
|
input_channels = 1
|
|
output_channels = 1
|
|
n = 3
|
|
dkernel = dilation * (kernel - 1) + 1
|
|
order = "NCHW"
|
|
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X", "w", "b"] if use_bias else ["X", "w"],
|
|
["Y"],
|
|
strides=[stride] * n,
|
|
kernels=[kernel] * n,
|
|
dilations=[dilation] * n,
|
|
pads=[pad] * n * 2,
|
|
order=order,
|
|
engine="CUDNN",
|
|
force_algo_fwd=force_algo_fwd,
|
|
force_algo_dgrad=force_algo_dgrad,
|
|
force_algo_wgrad=force_algo_wgrad,
|
|
)
|
|
|
|
input_dims = [batch_size, input_channels]
|
|
input_dims.extend([size] * n)
|
|
filter_dims = [output_channels, input_channels]
|
|
filter_dims.extend([kernel] * n)
|
|
X = np.random.rand(*input_dims).astype(np.float32) - 0.5
|
|
w = np.random.rand(*filter_dims).astype(np.float32) - 0.5
|
|
b = np.random.rand(output_channels).astype(np.float32) - 0.5
|
|
|
|
inputs = [X, w, b] if use_bias else [X, w]
|
|
|
|
if size + pad + pad < dkernel or size + pad + pad < dkernel:
|
|
with self.assertRaises(RuntimeError):
|
|
self.assertDeviceChecks(dc, op, inputs, [0])
|
|
return
|
|
|
|
try:
|
|
self.assertDeviceChecks(dc, op, inputs, [0])
|
|
except RuntimeError as e:
|
|
es = str(e)
|
|
# CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM should always have
|
|
# implementation
|
|
if "status == CUDNN_STATUS_SUCCESS" not in es \
|
|
or "CUDNN_STATUS_NOT_SUPPORTED" not in es \
|
|
or force_algo_fwd == 0:
|
|
raise e
|
|
|
|
for i in range(len(inputs)):
|
|
try:
|
|
self.assertGradientChecks(gc, op, inputs, i, [0])
|
|
except RuntimeError as e:
|
|
es = str(e)
|
|
if "status == CUDNN_STATUS_SUCCESS" not in es \
|
|
or "CUDNN_STATUS_NOT_SUPPORTED" not in es:
|
|
raise e
|
|
|
|
@unittest.skipIf("IN_CIRCLECI" in os.environ, "FIXME: flaky test in CircleCI")
|
|
@given(op_type=st.sampled_from(["Conv", "Conv2D"]),
|
|
stride=st.integers(1, 3),
|
|
pad=st.integers(0, 3),
|
|
kernel=st.integers(1, 5),
|
|
dilation=st.integers(1, 3),
|
|
size=st.integers(7, 10),
|
|
input_channels=st.integers(1, 8),
|
|
output_channels=st.integers(1, 8),
|
|
batch_size=st.integers(1, 3),
|
|
use_bias=st.booleans(),
|
|
**hu.gcs)
|
|
def test_convolution_layout(self, op_type, stride, pad, kernel, dilation,
|
|
size, input_channels, output_channels,
|
|
batch_size, use_bias, gc, dc):
|
|
assume(size >= dilation * (kernel - 1) + 1)
|
|
|
|
X = np.random.rand(
|
|
batch_size, size, size, input_channels).astype(np.float32) - 0.5
|
|
w = np.random.rand(
|
|
output_channels, kernel, kernel, input_channels
|
|
).astype(np.float32) - 0.5
|
|
b = np.random.rand(output_channels).astype(np.float32) - 0.5
|
|
Output = collections.namedtuple("Output", ["Y", "engine", "order"])
|
|
outputs = []
|
|
|
|
for order in ["NCHW", "NHWC"]:
|
|
engine_list = ['']
|
|
if _cudnn_supports(dilation=(dilation > 1), nhwc=(order == 'NHWC')):
|
|
engine_list.append('CUDNN')
|
|
|
|
for engine in engine_list:
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X", "w", "b"] if use_bias else ["X", "w"],
|
|
["Y"],
|
|
stride=stride,
|
|
kernel=kernel,
|
|
dilation=dilation,
|
|
pad=pad,
|
|
order=order,
|
|
engine=engine,
|
|
device_option=gc,
|
|
exhaustive_search=True,
|
|
)
|
|
if order == "NCHW":
|
|
X_f = X.transpose((0, 3, 1, 2))
|
|
w_f = w.transpose((0, 3, 1, 2))
|
|
else:
|
|
X_f = X
|
|
w_f = w
|
|
self.assertDeviceChecks(
|
|
dc,
|
|
op,
|
|
[X_f, w_f, b] if use_bias else [X_f, w_f],
|
|
[0])
|
|
self.ws.create_blob("X").feed(X_f, device_option=gc)
|
|
self.ws.create_blob("w").feed(w_f, device_option=gc)
|
|
self.ws.create_blob("b").feed(b, device_option=gc)
|
|
self.ws.run(op)
|
|
outputs.append(Output(
|
|
Y=self.ws.blobs["Y"].fetch(), engine=engine, order=order))
|
|
|
|
def canonical(o):
|
|
if o.order == "NHWC":
|
|
return o.Y.transpose((0, 3, 1, 2))
|
|
else:
|
|
return o.Y
|
|
|
|
for o in outputs:
|
|
np.testing.assert_allclose(
|
|
canonical(outputs[0]),
|
|
canonical(o),
|
|
atol=1e-4,
|
|
rtol=1e-4)
|
|
|
|
@given(num_workers=st.integers(1, 4),
|
|
net_type=st.sampled_from(
|
|
["simple", "dag"] +
|
|
(["async_dag"] if workspace.has_gpu_support or
|
|
workspace.has_hip_support else [])),
|
|
engine=st.sampled_from(["CUDNN", ""]),
|
|
**hu.gcs_no_hip)
|
|
def test_convolution_sync(self, net_type, num_workers, engine, gc, dc):
|
|
m = ModelHelper(name="test_model")
|
|
n = 1
|
|
d = 2
|
|
depth = 3
|
|
iters = 5
|
|
h = 5
|
|
w = 5
|
|
workspace.ResetWorkspace()
|
|
|
|
use_cudnn = (engine == 'CUDNN')
|
|
|
|
np.random.seed(1701)
|
|
# Build a binary tree of conv layers, summing at each node.
|
|
for i in reversed(range(depth)):
|
|
for j in range(2 ** i):
|
|
bottom_1 = "{}_{}".format(i + 1, 2 * j)
|
|
bottom_2 = "{}_{}".format(i + 1, 2 * j + 1)
|
|
mid_1 = "{}_{}_m".format(i + 1, 2 * j)
|
|
mid_2 = "{}_{}_m".format(i + 1, 2 * j + 1)
|
|
top = "{}_{}".format(i, j)
|
|
w1, b1, w2, b2 = np.random.randn(4).tolist()
|
|
brew.conv(
|
|
m, bottom_1, mid_1,
|
|
dim_in=d, dim_out=d,
|
|
kernel=3,
|
|
weight_init=('ConstantFill', dict(value=w1)),
|
|
bias_init=('ConstantFill', dict(value=b1)),
|
|
cudnn_state=np.random.randint(0, 3),
|
|
stride=1,
|
|
pad=1,
|
|
deterministic=1,
|
|
use_cudnn=use_cudnn,
|
|
engine=engine)
|
|
brew.conv(
|
|
m, bottom_2, mid_2,
|
|
dim_in=d, dim_out=d,
|
|
kernel=3,
|
|
stride=1,
|
|
pad=1,
|
|
weight_init=('ConstantFill', dict(value=w2)),
|
|
bias_init=('ConstantFill', dict(value=b2)),
|
|
deterministic=1,
|
|
cudnn_state=np.random.randint(0, 3),
|
|
use_cudnn=use_cudnn,
|
|
engine=engine)
|
|
m.net.Sum([mid_1, mid_2], top)
|
|
|
|
m.net.Flatten(["0_0"], ["0_0_flat"])
|
|
m.net.SquaredL2Distance(["0_0_flat", "label"], "xent")
|
|
m.net.AveragedLoss("xent", "loss")
|
|
input_to_grad = m.AddGradientOperators(["loss"])
|
|
m.Proto().device_option.CopyFrom(gc)
|
|
m.param_init_net.Proto().device_option.CopyFrom(gc)
|
|
m.Proto().type = net_type
|
|
m.Proto().num_workers = num_workers
|
|
self.ws.run(m.param_init_net)
|
|
|
|
def run():
|
|
import numpy as np
|
|
np.random.seed(1701)
|
|
input_blobs = ["{}_{}".format(depth, j) for j in range(2 ** depth)]
|
|
for input_blob in input_blobs:
|
|
self.ws.create_blob(input_blob).feed(
|
|
np.random.randn(n, d, h, w).astype(np.float32),
|
|
device_option=gc)
|
|
self.ws.create_blob("label").feed(
|
|
np.random.randn(n, d * h * w).astype(np.float32),
|
|
device_option=gc)
|
|
self.ws.run(m.net)
|
|
gradients = [
|
|
self.ws.blobs[str(input_to_grad[input_blob])].fetch()
|
|
for input_blob in input_blobs]
|
|
return gradients
|
|
|
|
outputs = [run() for _ in range(iters)]
|
|
for output in outputs[1:]:
|
|
np.testing.assert_array_equal(outputs[0], output)
|
|
np.testing.assert_allclose(
|
|
np.sum(np.square(output)),
|
|
1763719461732352.0,
|
|
rtol=1e-5)
|
|
|
|
def test_use_cudnn_engine_interactions(self):
|
|
"""Make sure the use_cudnn and engine kwargs work as expected."""
|
|
for model_default in [None, True, False]:
|
|
arg_scope = {}
|
|
if model_default is not None:
|
|
arg_scope['use_cudnn'] = model_default
|
|
else:
|
|
model_default = True # the default
|
|
|
|
model = ModelHelper(arg_scope=arg_scope)
|
|
self.assertEqual(model.arg_scope['use_cudnn'], model_default)
|
|
f = functools.partial(brew.conv, model,
|
|
'conv_in', 'conv_out', 10, 10, 5)
|
|
|
|
for op_cudnn in [None, True, False]:
|
|
for op_engine in [None, '', 'CUDNN']:
|
|
kwargs = {}
|
|
if op_cudnn is not None:
|
|
kwargs['use_cudnn'] = op_cudnn
|
|
else:
|
|
op_cudnn = False # the default
|
|
if op_engine is not None:
|
|
kwargs['engine'] = op_engine
|
|
|
|
calculated_cudnn = kwargs.get('use_cudnn', model_default)
|
|
expected_engine = kwargs.get(
|
|
'engine',
|
|
'CUDNN' if calculated_cudnn else '')
|
|
|
|
if ((calculated_cudnn is False and op_engine == 'CUDNN') or
|
|
(calculated_cudnn is True and op_engine == '')):
|
|
with self.assertRaises(ValueError):
|
|
f(**kwargs)
|
|
else:
|
|
f(**kwargs)
|
|
self.assertEqual(model.Proto().op[-1].engine,
|
|
expected_engine)
|
|
|
|
@serial.given(
|
|
op_type=st.sampled_from(["Conv", "Conv2D"]), N=st.integers(1, 4),
|
|
G=st.integers(1, 4), DX=st.integers(1, 4), DY=st.integers(1, 4),
|
|
H=st.integers(1, 4), W=st.integers(1, 4), use_bias=st.booleans(),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
|
|
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
|
|
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
|
|
**hu.gcs)
|
|
def test_1x1_conv(self, op_type, N, G, DX, DY, H, W, use_bias, order,
|
|
force_algo_fwd, force_algo_dgrad,
|
|
force_algo_wgrad, gc, dc):
|
|
if order == "NHWC":
|
|
G = 1
|
|
|
|
C = G * DX
|
|
M = G * DY
|
|
|
|
op = core.CreateOperator(
|
|
op_type,
|
|
["X", "filter", "bias"] if use_bias else ["X", "filter"],
|
|
["Y"],
|
|
stride_h=1,
|
|
stride_w=1,
|
|
pad_t=0,
|
|
pad_l=0,
|
|
pad_b=0,
|
|
pad_r=0,
|
|
kernel=1,
|
|
order=order,
|
|
group=G,
|
|
force_algo_fwd=force_algo_fwd,
|
|
force_algo_dgrad=force_algo_dgrad,
|
|
force_algo_wgrad=force_algo_wgrad,
|
|
)
|
|
|
|
if order == "NCHW":
|
|
X = np.random.randn(N, C, H, W).astype(np.float32)
|
|
filter = np.random.randn(M, DX, 1, 1).astype(np.float32)
|
|
else:
|
|
X = np.random.randn(N, H, W, C).astype(np.float32)
|
|
filter = np.random.randn(M, 1, 1, DX).astype(np.float32)
|
|
bias = np.random.randn(M).astype(np.float32)
|
|
inputs = [X, filter, bias] if use_bias else [X, filter]
|
|
|
|
def conv_1x1_nchw_ref(X, filter, bias=None):
|
|
X = X.reshape(N, G, DX, -1)
|
|
filter = filter.reshape(G, DY, DX)
|
|
Y = np.zeros(shape=(N, G, DY, H * W), dtype=np.float32)
|
|
for i in range(N):
|
|
for j in range(G):
|
|
Y[i, j, :, :] = np.dot(filter[j, :, :], X[i, j, :, :])
|
|
Y = Y.reshape(N, M, H, W)
|
|
if bias is not None:
|
|
bias = bias.reshape(1, M, 1, 1)
|
|
Y = np.add(Y, bias)
|
|
return [Y]
|
|
|
|
def conv_1x1_nhwc_ref(X, filter, bias=None):
|
|
X = X.reshape(N, -1, G, DX)
|
|
filter = filter.reshape(G, DY, DX)
|
|
Y = np.zeros(shape=(N, H * W, G, DY), dtype=np.float32)
|
|
for i in range(N):
|
|
for j in range(G):
|
|
Y[i, :, j, :] = np.dot(
|
|
X[i, :, j, :], filter[j, :, :].transpose())
|
|
Y = Y.reshape(N, H, W, M)
|
|
if bias is not None:
|
|
bias = bias.reshape(1, 1, 1, M)
|
|
Y = np.add(Y, bias)
|
|
return [Y]
|
|
|
|
if order == "NCHW":
|
|
conv_1x1_ref = conv_1x1_nchw_ref
|
|
else:
|
|
conv_1x1_ref = conv_1x1_nhwc_ref
|
|
self.assertReferenceChecks(
|
|
device_option=gc,
|
|
op=op,
|
|
inputs=inputs,
|
|
reference=conv_1x1_ref,
|
|
)
|
|
self.assertDeviceChecks(dc, op, inputs, [0])
|
|
for i in range(len(inputs)):
|
|
self.assertGradientChecks(gc, op, inputs, i, [0])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import unittest
|
|
unittest.main()
|