pytorch/torch/_dynamo/exc.py
Avik Chaudhuri 983f6f36db [user errors] compulsory case names, allow multiple (#110733)
We want to get to a point where most `UserError`s link to `exportdb` examples. This PR makes passing case names non-optional to make this intent clearer and encourage developers who raise `UserError`s to make or point to examples that make fixing such errors more obvious for users.

In addition, sometimes there are multiple examples that are relevant to an error. Thus this PR also enables passing multiple case names.

Differential Revision: [D50020465](https://our.internmc.facebook.com/intern/diff/D50020465/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110733
Approved by: https://github.com/zhxchen17
2023-10-07 01:25:12 +00:00

320 lines
9.9 KiB
Python

import os
import textwrap
from enum import auto, Enum
from traceback import extract_stack, format_exc, format_list, StackSummary
from typing import cast, List, Optional
import torch._guards
from . import config
from .utils import counters
def exportdb_error_message(case_names):
case_names_str = "\n ".join(
"https://pytorch.org/docs/main/generated/exportdb/index.html#"
+ case_name.replace("_", "-")
for case_name in case_names
)
return f"\nFor more information about this error, see:\n {case_names_str}"
import logging
log = logging.getLogger(__name__)
graph_breaks_log = torch._logging.getArtifactLogger(__name__, "graph_breaks")
class TorchDynamoException(RuntimeError):
pass
class InternalTorchDynamoError(TorchDynamoException):
pass
class RestartAnalysis(TorchDynamoException):
pass
class SkipFrame(TorchDynamoException):
pass
class TorchRuntimeError(TorchDynamoException):
pass
class InvalidBackend(TorchDynamoException):
def __init__(self, name):
super().__init__(
f"Invalid backend: {name!r}, see `torch._dynamo.list_backends()` for available backends."
)
class ResetRequired(TorchDynamoException):
def __init__(self):
super().__init__(
textwrap.dedent(
"""
Must call `torch._dynamo.reset()` before changing backends. Detected two calls to
`torch.compile()` with a different backend compiler arguments.
"""
)
)
class BackendCompilerFailed(TorchDynamoException):
def __init__(self, backend_fn, inner_exception):
self.backend_name = getattr(backend_fn, "__name__", "?")
self.inner_exception = inner_exception
msg = f"backend={self.backend_name!r} raised:\n{type(inner_exception).__name__}: {inner_exception}"
super().__init__(msg)
class Unsupported(TorchDynamoException):
def __init__(self, msg):
super().__init__(msg)
self.real_stack = torch._guards.TracingContext.extract_stack()
self.msg = msg
self.category = None
self.add_to_stats()
def remove_from_stats(self):
counters[self.category][self.msg] -= 1
if counters[self.category][self.msg] <= 0:
del counters[self.category][self.msg]
def add_to_stats(self, category="unimplemented"):
self.category = category
counters[category][self.msg] += 1
class RecompileError(TorchDynamoException):
pass
class ArgsMismatchError(Unsupported):
def __init__(self, msg):
super().__init__(msg)
class AttributeMutationError(Unsupported):
def __init__(self, msg):
super().__init__(msg)
class CondOpArgsMismatchError(ArgsMismatchError):
"""
Internal error from cond() due to arguments mismatch.
"""
def __init__(self, msg):
super().__init__(msg)
class UserErrorType(Enum):
DYNAMIC_CONTROL_FLOW = auto()
ANTI_PATTERN = auto()
STANDARD_LIBRARY = auto()
CONSTRAINT_VIOLATION = auto()
DYNAMIC_DIM = auto()
INVALID_INPUT = auto()
class UserError(Unsupported):
def __init__(self, error_type: UserErrorType, msg: str, case_names: List[str]):
"""
Type of errors that would be valid in Eager, but not supported in TorchDynamo.
The error message should tell user about next actions.
error_type: Type of user error
msg: Actionable error message
case_name: Unique names (snake case) for relevant examples in exportdb.
"""
if case_names:
assert all(isinstance(case_name, str) for case_name in case_names)
msg += exportdb_error_message(case_names)
super().__init__(msg)
self.error_type = error_type
self.message = msg
class UncapturedHigherOrderOpError(TorchDynamoException):
pass
class IncorrectUsage(Exception):
pass
# These exceptions are ok to fallback to eager/graph_break.
exceptions_allowed_to_be_fallback = (
torch._subclasses.fake_tensor.DataDependentOutputException,
torch._subclasses.fake_tensor.DynamicOutputShapeException,
torch._subclasses.fake_tensor.UnsupportedOperatorException,
torch._subclasses.fake_tensor.UnsupportedFakeTensorException,
)
def unimplemented_with_warning(e, code, msg):
# This function calls unimplemented internally and eventually graph breaks
# or falls to eager. unimplemented itself does not print any user warnings,
# i.e., its very silent. This helper function is intended when an error is
# encountered in the torch.compile stack which is worth showing as warning
# to the user. For example, if AOT Autograd backend fails with a fake tensor
# exception, its ok to fallback to eager but not silently. Here, we can use
# this function to log the message and the stack trace.
graph_break_msg = format_error_msg_verbose(e, code)
graph_breaks_log.debug("%s", graph_break_msg)
log.warning(msg)
raise unimplemented(msg) from e
def unimplemented(msg: str):
assert msg != os.environ.get("BREAK", False)
raise Unsupported(msg)
def warning(msg: str):
counters["warnings"][msg] += 1
assert msg != os.environ.get("BREAK", False)
# KeyError has special handling for its args
# see https://github.com/python/cpython/blob/3.11/Objects/exceptions.c#L2534 for details
class KeyErrorMsg:
def __init__(self, value):
self.value = value
def __str__(self):
return str(self.value)
def __repr__(self) -> str:
return self.__str__()
def augment_exc_message(exc, msg="\n", export=False):
import traceback
real_stack = get_real_stack(exc)
if real_stack is not None:
msg += (
f"\nfrom user code:\n {''.join(traceback.format_list(get_real_stack(exc)))}"
)
if config.replay_record_enabled and hasattr(exc, "record_filename"):
msg += f"\nLast frame execution written to {exc.record_filename}. To run only this frame while debugging, run\
torch._dynamo.replay('{exc.record_filename}').\n"
if not config.verbose and hasattr(exc, "real_stack"):
msg += '\nSet TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information\n'
if hasattr(exc, "inner_exception") and hasattr(
exc.inner_exception, "minifier_path"
):
if hasattr(exc.inner_exception, "buck_command"):
msg += (
f"\nMinifier script written to {exc.inner_exception.minifier_path}. Run "
f"this buck command to find the smallest traced graph "
f"which reproduces this error: {exc.inner_exception.buck_command}\n"
)
else:
msg += (
f"\nMinifier script written to {exc.inner_exception.minifier_path}. Run "
"this script to find the smallest traced graph which reproduces this error.\n"
)
if not config.suppress_errors and not export:
msg += (
"\n\n"
"You can suppress this exception and fall back to eager by setting:\n"
" import torch._dynamo\n"
" torch._dynamo.config.suppress_errors = True\n"
)
old_msg = "" if len(exc.args) == 0 else str(exc.args[0])
if isinstance(exc, KeyError):
exc.args = (KeyErrorMsg(old_msg + msg),) + exc.args[1:]
else:
new_msg = old_msg + msg
exc.args = (new_msg,) + exc.args[1:]
def get_real_stack(exc, frame=None) -> Optional[StackSummary]:
real_stack = getattr(exc, "real_stack", None)
if real_stack is None:
return None
# NB: it's possible for real_stack to be []; we still attempt to
# report a stack anyway because the stack_above_dynamo may still
# be useful for debugging
stack_above_dynamo = []
if frame is not None:
# NB: frame is PyInterpreterFrame on Python 3.11 and later,
# not a TRUE frame object. You can't actually feed it
# to traceback because it doesn't have enough information.
# To solve this problem, we technically should just materialize
# the frame, the same way _PyFrame_GetFrameObject would do
# (but we cannot actually do this, because this populates
# frame_obj field, which default eval frame doesn't like).
#
# Fortunately, in this case, we can hack it: there's no need
# to actually use the truly top frame, we can just extract
# from where we are right now and rely on filter_stack to
# get rid of all the dynamo frames. For ease of testing
# we apply this behavior to ALL Python versions
stack_above_dynamo = filter_stack(extract_stack())
return cast(StackSummary, stack_above_dynamo + real_stack)
# filter out all frames after entering dynamo
def filter_stack(stack):
user_stack = []
for frame in stack:
if "convert_frame" in frame.filename:
break
if "eval_frame" in frame.filename or "torch._dynamo.optimize(" in frame.line:
continue
user_stack.append(frame)
return user_stack
def format_error_msg_verbose(exc, code, record_filename=None, frame=None):
msg = (
f"WON'T CONVERT {code.co_name} {code.co_filename} line {code.co_firstlineno}\n"
)
msg += "=" * 10 + " TorchDynamo Stack Trace " + "=" * 10 + "\n"
msg += format_exc()
real_stack = get_real_stack(exc, frame)
if real_stack is not None:
msg += (
"\n"
+ "=" * 10
+ " The above exception occurred while processing the following code "
+ "=" * 10
+ "\n\n"
)
msg += "".join(format_list(real_stack))
msg += "\n"
msg += "=" * 10
return msg
def format_error_msg(exc, code, record_filename=None, frame=None):
msg = os.linesep * 2
if config.verbose:
msg = format_error_msg_verbose(exc, code, record_filename, frame)
else:
msg = f"WON'T CONVERT {code.co_name} {code.co_filename}\
line {code.co_firstlineno} \ndue to: \n{format_exc()}"
return msg