pytorch/test/cpp/jit/tests_setup.py
Xuehai Pan 046e88a291 [BE] [3/3] Rewrite super() calls in test (#94592)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94592
Approved by: https://github.com/ezyang, https://github.com/seemethere
2023-02-12 22:20:53 +00:00

115 lines
2.5 KiB
Python

import sys
import os
import torch
class Setup:
def setup(self):
raise NotImplementedError()
def shutdown(self):
raise NotImplementedError()
class FileSetup:
path = None
def shutdown(self):
if os.path.exists(self.path):
os.remove(self.path)
pass
class EvalModeForLoadedModule(FileSetup):
path = 'dropout_model.pt'
def setup(self):
class Model(torch.jit.ScriptModule):
def __init__(self):
super().__init__()
self.dropout = torch.nn.Dropout(0.1)
@torch.jit.script_method
def forward(self, x):
x = self.dropout(x)
return x
model = Model()
model = model.train()
model.save(self.path)
class SerializationInterop(FileSetup):
path = 'ivalue.pt'
def setup(self):
ones = torch.ones(2, 2)
twos = torch.ones(3, 5) * 2
value = (ones, twos)
torch.save(value, self.path, _use_new_zipfile_serialization=True)
# See testTorchSaveError in test/cpp/jit/tests.h for usage
class TorchSaveError(FileSetup):
path = 'eager_value.pt'
def setup(self):
ones = torch.ones(2, 2)
twos = torch.ones(3, 5) * 2
value = (ones, twos)
torch.save(value, self.path, _use_new_zipfile_serialization=False)
class TorchSaveJitStream_CUDA(FileSetup):
path = 'saved_stream_model.pt'
def setup(self):
if not torch.cuda.is_available():
return
class Model(torch.nn.Module):
def forward(self):
s = torch.cuda.Stream()
a = torch.rand(3, 4, device="cuda")
b = torch.rand(3, 4, device="cuda")
with torch.cuda.stream(s):
is_stream_s = torch.cuda.current_stream(s.device_index()).id() == s.id()
c = torch.cat((a, b), 0).to("cuda")
s.synchronize()
return is_stream_s, a, b, c
model = Model()
# Script the model and save
script_model = torch.jit.script(model)
torch.jit.save(script_model, self.path)
tests = [
EvalModeForLoadedModule(),
SerializationInterop(),
TorchSaveError(),
TorchSaveJitStream_CUDA()
]
def setup():
for test in tests:
test.setup()
def shutdown():
for test in tests:
test.shutdown()
if __name__ == "__main__":
command = sys.argv[1]
if command == "setup":
setup()
elif command == "shutdown":
shutdown()