mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Using `fsdp.set_` for unsharded_param inplace update causes difficult-to-debug errors when enabling Traceable FSDP2 on TorchTune models. In this PR, we change it to use `fsdp.copy_` which fixes the error and also strictly follows eager semantics (i.e. if user explictly stores an alias of the unsharded_param during execution of the user's module code, that alias will get updated correctly when the unsharded_param is copy_ into; whereas if we just swap out unsharded_param storage via set_, that user-saved alias will not get updated, which is not good). This PR also implements the graph pass to remove the resizes and copy if there is a resize_(full) -> copy_ -> resize_(0) pattern. ------ Test commands: - `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_transformer_backend_inductor` - `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_nested_fully_shard_backend_inductor` - `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_trace_fsdp_copy_` - `pytest -rA test/dynamo/test_repros.py::ReproTests::test_partitioner_cse_respects_mutation_boundaries` - `pytest -rA test/dynamo/test_repros.py::ReproTests::test_fsdp_set_input_mutation_applied_when_input_gets_no_gradients` - `pytest -rA test/inductor/test_pattern_matcher.py::TestPatternMatcher::test_mutation_op_matching` - `python test/inductor/test_distributed_patterns.py DistributedPatternTests.test_fake_distributed_aot_eager` - `PYTORCH_OPINFO_SAMPLE_INPUT_INDEX=1 PYTORCH_TEST_WITH_CROSSREF=1 python test/functorch/test_aotdispatch.py TestEagerFusionOpInfoCPU.test_aot_autograd_exhaustive_norm_cpu_float32` - `python test/distributed/test_inductor_collectives.py TestCollectivesInductor.test_backwards` Pull Request resolved: https://github.com/pytorch/pytorch/pull/133730 Approved by: https://github.com/bdhirsh
1466 lines
51 KiB
Python
1466 lines
51 KiB
Python
# Owner(s): ["module: inductor"]
|
|
import copy
|
|
import itertools
|
|
import os
|
|
import unittest
|
|
|
|
import torch
|
|
import torch._dynamo.config as dynamo_config
|
|
import torch._inductor.config as inductor_config
|
|
import torch._inductor.fx_passes.post_grad
|
|
import torch.nn.functional as F
|
|
from torch._dynamo.utils import count_calls, counters
|
|
from torch._higher_order_ops.out_dtype import out_dtype
|
|
from torch._inductor.fx_passes import joint_graph
|
|
from torch._inductor.pattern_matcher import (
|
|
Arg,
|
|
CallFunction,
|
|
gen_pattern,
|
|
is_mutation_op,
|
|
KeywordArg,
|
|
Match,
|
|
PatternMatcherPass,
|
|
PatternPrettyPrinter,
|
|
register_graph_pattern,
|
|
stable_topological_sort,
|
|
)
|
|
from torch._inductor.test_case import run_tests, TestCase
|
|
from torch._inductor.utils import run_and_get_code
|
|
from torch._inductor.virtualized import V
|
|
from torch.testing import FileCheck
|
|
from torch.testing._internal.common_cuda import SM80OrLater
|
|
from torch.testing._internal.common_utils import IS_LINUX, skipIfRocm
|
|
from torch.testing._internal.inductor_utils import HAS_CUDA, IS_A100, IS_BIG_GPU
|
|
from torch.utils import _pytree as pytree
|
|
|
|
|
|
class TestPatternMatcher(TestCase):
|
|
def common(
|
|
self,
|
|
fn,
|
|
args,
|
|
expected_matches,
|
|
expected_nodes,
|
|
additional_check=lambda code: None,
|
|
reference_in_float=False,
|
|
):
|
|
counters.clear()
|
|
torch.manual_seed(42)
|
|
if reference_in_float:
|
|
ref_inputs = pytree.tree_map_only(
|
|
torch.Tensor, lambda x: x.to(torch.float32), args
|
|
)
|
|
else:
|
|
ref_inputs = args
|
|
expected = fn(*ref_inputs)
|
|
torch.manual_seed(42)
|
|
actual, codes = run_and_get_code(torch.compile(fn), *args)
|
|
if len(codes) == 1:
|
|
codes = codes[0]
|
|
torch.testing.assert_close(actual, expected, check_dtype=not reference_in_float)
|
|
|
|
self.assertEqual(
|
|
counters["inductor"]["pattern_matcher_count"], expected_matches
|
|
)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], expected_nodes)
|
|
additional_check(codes)
|
|
counters.clear()
|
|
|
|
def test_mm_plus_mm(self):
|
|
def fn(a, b, c, d):
|
|
return torch.add(torch.mm(a, b), torch.mm(c, d))
|
|
|
|
# when m1 == n1 and m2 == n2, mm_plus_mm can be matched to fused op
|
|
fusible_args_list = [
|
|
(
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(1, 4, device="cuda"),
|
|
torch.randn(4, 2, device="cuda"),
|
|
torch.randn(1, 5, device="cuda"),
|
|
torch.randn(5, 2, device="cuda"),
|
|
),
|
|
]
|
|
for args in fusible_args_list:
|
|
self.common(fn, args, 1, 3)
|
|
|
|
# if not fusible, it can only match add(mm())
|
|
unfusible_args_list = [
|
|
# https://github.com/pytorch/pytorch/issues/100670.
|
|
(
|
|
torch.randn(1, 4, device="cuda"),
|
|
torch.randn(4, 2, device="cuda"),
|
|
torch.randn(1, 2, device="cuda"),
|
|
torch.randn(2, 1, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(1, 2, device="cuda"),
|
|
torch.randn(2, 1, device="cuda"),
|
|
torch.randn(1, 4, device="cuda"),
|
|
torch.randn(4, 2, device="cuda"),
|
|
),
|
|
]
|
|
for args in unfusible_args_list:
|
|
self.common(fn, args, 1, 2)
|
|
|
|
def _test_fused_int_mm_mul_impl(self, fn, args, fused_int_mm_mul_expected=True):
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
ref = fn(*args)
|
|
test, (code,) = run_and_get_code(torch.compile(fn, mode="max-autotune"), *args)
|
|
self.assertEqual("fused_int_mm_mul" in code, fused_int_mm_mul_expected)
|
|
if fused_int_mm_mul_expected:
|
|
indices = ~ref.isinf()
|
|
torch.testing.assert_close(
|
|
ref[indices], test[indices]
|
|
) # also checks that dtype is correct
|
|
|
|
@skipIfRocm
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@inductor_config.patch(force_fuse_int_mm_with_mul=True)
|
|
def test_fused_int_mm_mul(self):
|
|
def fn1(a, b, c):
|
|
return out_dtype(torch.ops.aten.mm.default, torch.int32, a, b) * c
|
|
|
|
def fn2(a, b, c):
|
|
return (out_dtype(torch.ops.aten.mm.default, torch.int32, a, b) * c).to(
|
|
torch.bfloat16
|
|
)
|
|
|
|
args_list = [
|
|
(
|
|
torch.randint(-128, 127, (32, 32), dtype=torch.int8, device="cuda"),
|
|
torch.randint(-128, 127, (32, 8), dtype=torch.int8, device="cuda"),
|
|
torch.randn((32, 1), dtype=torch.float16, device="cuda") * 0 + 0.5,
|
|
),
|
|
(
|
|
torch.randint(-128, 127, (32, 32), dtype=torch.int8, device="cuda"),
|
|
torch.randint(-128, 127, (32, 8), dtype=torch.int8, device="cuda"),
|
|
torch.randn((1, 8), dtype=torch.bfloat16, device="cuda"),
|
|
),
|
|
(
|
|
torch.randint(-128, 127, (32, 32), dtype=torch.int8, device="cuda"),
|
|
torch.randint(-128, 127, (32, 8), dtype=torch.int8, device="cuda"),
|
|
torch.randn((1, 8), dtype=torch.float32, device="cuda"),
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
self._test_fused_int_mm_mul_impl(fn1, args, True)
|
|
self._test_fused_int_mm_mul_impl(fn2, args, True)
|
|
|
|
@skipIfRocm
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@inductor_config.patch(force_fuse_int_mm_with_mul=True)
|
|
def test_fused_int_mm_mul_gating(self):
|
|
def fn1(a, b, c):
|
|
return out_dtype(torch.ops.aten.mm.default, torch.int32, a, b) * c
|
|
|
|
args1 = (
|
|
torch.randint(-128, 127, (32, 32), dtype=torch.int8, device="cuda"),
|
|
torch.randint(-128, 127, (32, 8), dtype=torch.int8, device="cuda"),
|
|
torch.randn((8), dtype=torch.float32, device="cuda"),
|
|
)
|
|
|
|
args2 = (
|
|
torch.randint(-128, 127, (32, 32), dtype=torch.int8, device="cuda"),
|
|
torch.randint(-128, 127, (32, 8), dtype=torch.int8, device="cuda"),
|
|
torch.randn((32, 1), dtype=torch.float16, device="cuda"),
|
|
)
|
|
self._test_fused_int_mm_mul_impl(fn1, args1, False)
|
|
self._test_fused_int_mm_mul_impl(fn1, [arg.cpu() for arg in args2], False)
|
|
inductor_config.force_fuse_int_mm_with_mul = False
|
|
self._test_fused_int_mm_mul_impl(fn1, args2, False)
|
|
|
|
def _test_mixed_impl(
|
|
self,
|
|
fn,
|
|
args,
|
|
mixed_mm_expected,
|
|
fallback_mixed_mm_expected,
|
|
rtol=None,
|
|
atol=None,
|
|
):
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
ref = fn(*args)
|
|
test, (code,) = run_and_get_code(torch.compile(fn), *args)
|
|
torch.testing.assert_close(ref, test, rtol=rtol, atol=atol)
|
|
self.assertEqual("mixed_mm" in code, mixed_mm_expected)
|
|
self.assertEqual("fallback_mixed_mm" in code, fallback_mixed_mm_expected)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@inductor_config.patch(mixed_mm_choice="triton")
|
|
def test_mixed_mm(self):
|
|
def fn(a, b):
|
|
return torch.mm(a, b.to(a.dtype))
|
|
|
|
args_list = [
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(-128, 127, (8, 8), dtype=torch.int8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 2, device="cuda", dtype=torch.bfloat16),
|
|
torch.randint(-128, 127, (2, 8), dtype=torch.int8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 5, device="cuda", dtype=torch.float16),
|
|
torch.randint(0, 255, (5, 2), dtype=torch.uint8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 8, device="cuda", dtype=torch.float32),
|
|
torch.randn(8, 8, device="cuda", dtype=torch.bfloat16),
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
self._test_mixed_impl(fn, args, True, False)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@inductor_config.patch(mixed_mm_choice="triton")
|
|
def test_mixed_mm_exhaustive_dtypes(self):
|
|
def fn(a, b):
|
|
return torch.mm(a, b.to(a.dtype))
|
|
|
|
dtypes_left = [torch.float16, torch.float32, torch.bfloat16]
|
|
dtypes_right = [torch.int8, torch.uint8]
|
|
dtype_ranges = {torch.uint8: (0, 255), torch.int8: (-128, 127)}
|
|
for dtype_left, dtype_right in itertools.product(dtypes_left, dtypes_right):
|
|
low, high = dtype_ranges[dtype_right]
|
|
args = (
|
|
torch.randn(256, 256, dtype=dtype_left, device="cuda"),
|
|
torch.randint(low, high, (256, 256), dtype=dtype_right, device="cuda"),
|
|
)
|
|
fallback_mixed_mm_expected = (
|
|
dtype_left == torch.bfloat16 and dtype_right == torch.uint8
|
|
)
|
|
self._test_mixed_impl(
|
|
fn, args, True, fallback_mixed_mm_expected, rtol=0.16, atol=1e-4
|
|
)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@inductor_config.patch(mixed_mm_choice="triton")
|
|
def test_mixed_mm_bad_cases(self):
|
|
def fn(a, b):
|
|
return torch.mm(a, b.to(a.dtype))
|
|
|
|
# when b is transposed and not contiguous, we skip triton and use fallback
|
|
args_list = [
|
|
(
|
|
torch.randn(8, 8, device="cuda", dtype=torch.float16),
|
|
torch.randint(-128, 127, (4, 8), dtype=torch.int8, device="cuda").t()[
|
|
:, ::2
|
|
],
|
|
),
|
|
(
|
|
torch.randn(8, 8, device="cuda", dtype=torch.bfloat16),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.uint8, device="cuda").t()[
|
|
:, ::2
|
|
],
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
self._test_mixed_impl(fn, args, True, True)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@inductor_config.patch(mixed_mm_choice="triton", max_autotune_gemm=True)
|
|
def test_mixed_mm_epi_works(self):
|
|
def fn(a, b, c, d):
|
|
return torch.mm(a, b.to(a.dtype)) * c + d
|
|
|
|
args_list = [
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(-128, 127, (8, 8), dtype=torch.int8, device="cuda"),
|
|
torch.randn(8, device="cuda"),
|
|
torch.randn(8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 2, device="cuda", dtype=torch.bfloat16),
|
|
torch.randint(-128, 127, (2, 8), dtype=torch.int8, device="cuda"),
|
|
torch.randn(8, device="cuda", dtype=torch.bfloat16),
|
|
torch.randn(8, device="cuda", dtype=torch.bfloat16),
|
|
),
|
|
(
|
|
torch.randn(8, 5, device="cuda", dtype=torch.float16),
|
|
torch.randint(0, 255, (5, 2), dtype=torch.uint8, device="cuda"),
|
|
torch.randn(2, device="cuda", dtype=torch.float16),
|
|
torch.randn(2, device="cuda", dtype=torch.float16),
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
self._test_mixed_impl(fn, args, True, False)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@unittest.skipIf(not IS_A100, "heuristic only run on Linux A100")
|
|
@unittest.skipIf(not IS_BIG_GPU, "tests fail on small GPU")
|
|
@inductor_config.patch(
|
|
mixed_mm_choice="heuristic",
|
|
autoheuristic_use="",
|
|
fx_graph_cache=False,
|
|
fx_graph_remote_cache=False,
|
|
shape_padding=False,
|
|
)
|
|
def test_mixed_mm_heuristic_no(self):
|
|
def fn(a, b):
|
|
return torch.mm(a, b.to(a.dtype))
|
|
|
|
# examples that should not be selected by handwritten heuristic
|
|
mat1_dtype = torch.float16
|
|
dyn_tensor = torch.randn(4, 4096, dtype=mat1_dtype, device="cuda")
|
|
torch._dynamo.mark_dynamic(dyn_tensor, 0)
|
|
args_list = [
|
|
(
|
|
torch.randn(1, 4097, dtype=mat1_dtype, device="cuda"),
|
|
torch.randint(-128, 127, (4097, 4096), dtype=torch.int8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(1, 4096, dtype=mat1_dtype, device="cuda"),
|
|
torch.randint(-128, 127, (4096, 4097), dtype=torch.int8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 8, dtype=mat1_dtype, device="cuda"),
|
|
torch.randint(-128, 127, (8, 8), dtype=torch.int8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 2048, dtype=mat1_dtype, device="cuda"),
|
|
torch.randint(-128, 127, (2048, 2048), dtype=torch.int8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 2048, dtype=mat1_dtype, device="cuda"),
|
|
torch.randint(
|
|
-128, 127, (2048, 2048), dtype=torch.int8, device="cuda"
|
|
).t(),
|
|
),
|
|
(
|
|
torch.randn(8, 4096, dtype=mat1_dtype, device="cuda"),
|
|
torch.randint(-128, 127, (4096, 4096), dtype=torch.int8, device="cuda")[
|
|
:, ::2
|
|
],
|
|
),
|
|
(
|
|
torch.randn(1, 4096, dtype=torch.float32, device="cuda"),
|
|
torch.randint(-128, 127, (4096, 4096), dtype=torch.int8, device="cuda"),
|
|
),
|
|
(
|
|
dyn_tensor,
|
|
torch.randint(-128, 127, (4096, 4096), dtype=torch.int8, device="cuda"),
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
self._test_mixed_impl(fn, args, True, True)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@unittest.skipIf(not IS_A100, "heuristic only run on Linux A100")
|
|
@unittest.skipIf(not IS_BIG_GPU, "tests fail on small GPU")
|
|
@inductor_config.patch(
|
|
mixed_mm_choice="heuristic",
|
|
autoheuristic_use="",
|
|
fx_graph_cache=False,
|
|
fx_graph_remote_cache=False,
|
|
shape_padding=False,
|
|
)
|
|
def test_mixed_mm_heuristic_yes(self):
|
|
def fn(a, b):
|
|
return torch.mm(a, b.to(a.dtype))
|
|
|
|
mat1_dtype = torch.float16
|
|
# examples that should be selected by handwritten heuristic
|
|
args_list = [
|
|
(
|
|
torch.randn(1, 4096, dtype=mat1_dtype, device="cuda"),
|
|
torch.randint(-128, 127, (4096, 4096), dtype=torch.int8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(4, 4096, dtype=mat1_dtype, device="cuda"),
|
|
torch.randint(-128, 127, (4096, 4096), dtype=torch.int8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 4096, dtype=mat1_dtype, device="cuda"),
|
|
torch.randint(-128, 127, (4096, 4096), dtype=torch.int8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 4096, dtype=mat1_dtype, device="cuda"),
|
|
torch.randint(
|
|
-128, 127, (4096, 4096), dtype=torch.int8, device="cuda"
|
|
).t(),
|
|
),
|
|
(
|
|
torch.randn(16, 4096, dtype=mat1_dtype, device="cuda"),
|
|
torch.randint(
|
|
-128, 127, (8192, 4096), dtype=torch.int8, device="cuda"
|
|
).t(),
|
|
),
|
|
(
|
|
torch.randn(32, 4096, dtype=mat1_dtype, device="cuda"),
|
|
torch.randint(-128, 127, (4096, 8192), dtype=torch.int8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(64, 4096, dtype=mat1_dtype, device="cuda"),
|
|
torch.randint(-128, 127, (4096, 4096), dtype=torch.int8, device="cuda"),
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
self._test_mixed_impl(fn, args, True, False, rtol=0.01, atol=0.04)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
def test_mixed_mm_gating(self):
|
|
def fn(a, b):
|
|
return torch.mm(a, b.to(a.dtype))
|
|
|
|
args = (
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(-128, 127, (8, 8), dtype=torch.int8, device="cuda"),
|
|
)
|
|
# will ignore the mixed_mm code (including fallback)
|
|
with inductor_config.patch(
|
|
{"mixed_mm_choice": "default", "use_mixed_mm": False}
|
|
):
|
|
self._test_mixed_impl(fn, args, False, False)
|
|
|
|
# will use fallback_mixed_mm kernel due to no gemm_autotune
|
|
with inductor_config.patch(
|
|
{"mixed_mm_choice": "default", "use_mixed_mm": True}
|
|
):
|
|
self._test_mixed_impl(fn, args, True, True)
|
|
|
|
# will use mixed_mm kernel
|
|
with inductor_config.patch(
|
|
{"mixed_mm_choice": "triton", "use_mixed_mm": False}
|
|
):
|
|
self._test_mixed_impl(fn, args, True, False)
|
|
|
|
# shows that use_mixed_mm doesn't do anything if foce_mixed_mm is set
|
|
with inductor_config.patch({"mixed_mm_choice": "triton", "use_mixed_mm": True}):
|
|
self._test_mixed_impl(fn, args, True, False)
|
|
|
|
# will use fallback_mixed_mm kernel
|
|
with inductor_config.patch({"mixed_mm_choice": "aten", "use_mixed_mm": False}):
|
|
self._test_mixed_impl(fn, args, True, True)
|
|
|
|
# will use fallback_mixed_mm kernel
|
|
with inductor_config.patch({"mixed_mm_choice": "aten", "use_mixed_mm": True}):
|
|
self._test_mixed_impl(fn, args, True, True)
|
|
|
|
# will use fallback_mixed_mm kernel because fallback is the only choice
|
|
with inductor_config.patch(
|
|
{"mixed_mm_choice": "aten", "use_mixed_mm": True, "max_autotune_gemm": True}
|
|
):
|
|
self._test_mixed_impl(fn, args, True, True)
|
|
|
|
@inductor_config.patch(use_mixed_mm=True)
|
|
def test_mixed_mm_cpu(self):
|
|
def fn(a, b):
|
|
return torch.mm(a, b.to(a.dtype))
|
|
|
|
args = (
|
|
torch.randn(8, 8),
|
|
torch.randint(-128, 127, (8, 8), dtype=torch.int8),
|
|
)
|
|
self._test_mixed_impl(fn, args, False, False)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@inductor_config.patch(use_mixed_mm=True)
|
|
def test_uint4x2_mixed_mm(self):
|
|
def fn(a, b):
|
|
return torch.mm(
|
|
a,
|
|
torch.cat((b & 0xF, b >> 4), 1)
|
|
.reshape(-1, b.shape[1])
|
|
.to(a.dtype)
|
|
.sub(8),
|
|
)
|
|
|
|
def check_uint4x2_mixed_mm(args, expect_mixed_mm):
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
ref = fn(*args)
|
|
test, (code,) = run_and_get_code(torch.compile(fn), *args)
|
|
torch.testing.assert_close(ref, test)
|
|
self.assertEqual("uint4x2_mixed_mm" in code, expect_mixed_mm)
|
|
|
|
args_expect_mixed_mm = [
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.uint8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 8, device="cuda", dtype=torch.float16),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.uint8, device="cuda")
|
|
.t()
|
|
.contiguous()
|
|
.t(),
|
|
),
|
|
]
|
|
|
|
for args in args_expect_mixed_mm:
|
|
check_uint4x2_mixed_mm(args, True)
|
|
|
|
# mixed mm is only enabled when casting from a lower-bitwidth dtype to a higher one
|
|
args_expect_no_mixed_mm = [
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.int32, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.int64, device="cuda"),
|
|
),
|
|
]
|
|
|
|
for args in args_expect_no_mixed_mm:
|
|
check_uint4x2_mixed_mm(args, False)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@inductor_config.patch(use_mixed_mm=True)
|
|
def test_uint4x2_mixed_mm_epi(self):
|
|
def fn(a, b, c, d):
|
|
return (
|
|
torch.mm(
|
|
a,
|
|
torch.cat((b & 0xF, b >> 4), 1)
|
|
.reshape(-1, b.shape[1])
|
|
.to(a.dtype)
|
|
.sub(8),
|
|
)
|
|
* c
|
|
+ d
|
|
)
|
|
|
|
args_list = [
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.uint8, device="cuda"),
|
|
torch.randn(8, device="cuda"),
|
|
torch.randn(8, device="cuda"),
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
ref = fn(*args)
|
|
test, (code,) = run_and_get_code(torch.compile(fn), *args)
|
|
torch.testing.assert_close(ref, test)
|
|
self.assertTrue("uint4x2_mixed_mm" in code)
|
|
self.assertTrue("fused_add_mm_mul" in code)
|
|
|
|
@inductor_config.patch(use_mixed_mm=True)
|
|
def test_uint4x2_mixed_mm_fail_to_match(self):
|
|
def fn(a, b):
|
|
return torch.mm(
|
|
a,
|
|
torch.cat((b & 0xF, b >> 4), 1)
|
|
.reshape(-1, b.shape[1])
|
|
.to(a.dtype)
|
|
.sub(8),
|
|
)
|
|
|
|
args_list = [
|
|
( # cpu
|
|
torch.randn(8, 8),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.uint8),
|
|
),
|
|
( # int8
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(-128, 127, (4, 8), dtype=torch.int8, device="cuda"),
|
|
), # we don't match for int8 since numerics
|
|
] # for int8 bitshifts don't match between triton and pytorch
|
|
|
|
for args in args_list:
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
ref = fn(*args)
|
|
test, (code,) = run_and_get_code(torch.compile(fn), *args)
|
|
torch.testing.assert_close(ref, test)
|
|
self.assertFalse("uint4x2_mixed_mm" in code)
|
|
|
|
@inductor_config.patch(mixed_mm_choice="default")
|
|
@inductor_config.patch(use_mixed_mm=False)
|
|
def test_uint4x2_mixed_mm_gating_works(self):
|
|
def fn(a, b):
|
|
return torch.mm(
|
|
a,
|
|
torch.cat((b & 0xF, b >> 4), 1)
|
|
.reshape(-1, b.shape[1])
|
|
.to(a.dtype)
|
|
.sub(8),
|
|
)
|
|
|
|
args_list = [
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.uint8, device="cuda"),
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
ref = fn(*args)
|
|
test, (code,) = run_and_get_code(torch.compile(fn), *args)
|
|
torch.testing.assert_close(ref, test)
|
|
self.assertFalse("uint4x2_mixed_mm" in code)
|
|
|
|
def test_addmm(self):
|
|
def fn(a, b, c):
|
|
return torch.add(a, torch.mm(b, c)), torch.mm(b, c) + a
|
|
|
|
args_list = [
|
|
(
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
True,
|
|
),
|
|
(
|
|
torch.randn(8, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 8, device="cuda"),
|
|
True,
|
|
),
|
|
(
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(1, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
False,
|
|
),
|
|
(
|
|
torch.randn(1, 16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
False,
|
|
),
|
|
(
|
|
4,
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
False,
|
|
),
|
|
]
|
|
for a, b, c, should_fuse in args_list:
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
args = (a, b, c)
|
|
e1, e2 = fn(*args)
|
|
a1, a2 = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(a1, e1)
|
|
torch.testing.assert_close(a2, e2)
|
|
count, nodes = (2, 4) if should_fuse else (0, 0)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], count)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], nodes)
|
|
|
|
def test_addmm_symbolic_scalar(self):
|
|
def fn(m1, m2):
|
|
bias = m1.size(0)
|
|
return torch.add(bias, torch.mm(m1, m2)), torch.mm(m1, m2) + bias
|
|
|
|
m1 = torch.randn(16, 16, device="cuda")
|
|
m2 = torch.randn(16, 16, device="cuda")
|
|
|
|
counters.clear()
|
|
expect = fn(m1, m2)
|
|
actual = torch.compile(fn, dynamic=True)(m1, m2)
|
|
self.assertEqual(expect, actual)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 0)
|
|
|
|
def test_addmm_broadcasting_bias(self):
|
|
class Model(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear = torch.nn.functional.linear
|
|
self.linear_weight = torch.randn(4, 4).cuda()
|
|
self.bias = torch.randn(1, 4).cuda()
|
|
|
|
def forward(self, x):
|
|
x = self.linear(x, self.linear_weight, self.bias)
|
|
return x
|
|
|
|
input_tensor = torch.randn(1, 3, 4).cuda()
|
|
|
|
func = Model().cuda()
|
|
|
|
res1 = func(input_tensor)
|
|
jit_func = torch.compile(func)
|
|
res2 = jit_func(input_tensor)
|
|
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_cat_mm(self):
|
|
def fn(a, b, c):
|
|
return torch.cat(
|
|
[
|
|
torch.mm(a, b),
|
|
torch.mm(b, c),
|
|
torch.mm(a, c),
|
|
],
|
|
1,
|
|
)
|
|
|
|
args = [
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
]
|
|
self.common(fn, args, 1, 4)
|
|
|
|
def test_cat_addmm(self):
|
|
def fn(a, b, c):
|
|
return torch.cat(
|
|
[
|
|
torch.addmm(a, b, c),
|
|
torch.addmm(b, c, a),
|
|
torch.addmm(c, a, b),
|
|
],
|
|
1,
|
|
)
|
|
|
|
args = [
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
]
|
|
self.common(fn, args, 1, 4)
|
|
|
|
def test_cat_slice_cat_cuda(self):
|
|
def fn(a, b):
|
|
cat_1 = torch.ops.aten.cat.default([a, b], 1)
|
|
slice_1 = torch.ops.aten.slice.Tensor(cat_1, 0, 0, 9223372036854775807)
|
|
slice_2 = torch.ops.aten.slice.Tensor(slice_1, 1, 0, 19)
|
|
return torch.ops.aten.cat.default([cat_1, slice_2], 1)
|
|
|
|
args = [
|
|
torch.randn(2, 32, device="cuda"),
|
|
torch.randn(2, 16, device="cuda"),
|
|
]
|
|
self.common(fn, args, 1, 3)
|
|
|
|
args = [
|
|
torch.randn(2, 8, device="cuda"),
|
|
torch.randn(2, 16, device="cuda"),
|
|
]
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
# We don't recompile for dynamic-shape cases.
|
|
if dynamo_config.assume_static_by_default:
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 1)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 3)
|
|
|
|
# Verify we fallback to non-optimal path for negative `end`.
|
|
def fn(a, b):
|
|
cat_1 = torch.ops.aten.cat.default([a, b], 1)
|
|
slice_1 = torch.ops.aten.slice.Tensor(cat_1, 0, 0, 9223372036854775807)
|
|
slice_2 = torch.ops.aten.slice.Tensor(slice_1, 1, 0, -1)
|
|
return torch.ops.aten.cat.default([cat_1, slice_2], 1)
|
|
|
|
args = [
|
|
torch.randn(2, 8, device="cuda"),
|
|
torch.randn(2, 16, device="cuda"),
|
|
]
|
|
self.common(fn, args, 1, 3)
|
|
|
|
def test_pointless_convert(self):
|
|
def fn1(x):
|
|
x = torch.ops.prims.convert_element_type.default(x, torch.float16)
|
|
x = torch.ops.prims.convert_element_type.default(x, torch.float32)
|
|
return x
|
|
|
|
gm = torch.fx.symbolic_trace(fn1)
|
|
self.assertEqual(count_calls(gm.graph), 2)
|
|
joint_graph.joint_graph_passes(gm)
|
|
self.assertEqual(count_calls(gm.graph), 1)
|
|
|
|
def fn2(x):
|
|
x = torch.ops.prims.convert_element_type.default(x, torch.int32)
|
|
x = torch.ops.prims.convert_element_type.default(x, torch.float32)
|
|
return x
|
|
|
|
gm = torch.fx.symbolic_trace(fn2)
|
|
self.assertEqual(count_calls(gm.graph), 2)
|
|
joint_graph.joint_graph_passes(gm)
|
|
self.assertEqual(count_calls(gm.graph), 2)
|
|
|
|
# Constant folding was explicitly turned off due to issue #108388
|
|
# Turn it back on for test
|
|
@inductor_config.patch(joint_graph_constant_folding=True)
|
|
def test_pointless_cumsum(self):
|
|
def fn1():
|
|
ones = torch.full(
|
|
[1, 128], 1, layout=torch.strided, dtype=torch.float32
|
|
).to(torch.int64)
|
|
return torch.cumsum(ones, 1) * ones
|
|
|
|
def fn2():
|
|
ones = torch.full(
|
|
[55, 10], 1, layout=torch.strided, dtype=torch.float32
|
|
).to(torch.int64)
|
|
return torch.cumsum(ones, 1)
|
|
|
|
def fn3():
|
|
twos = torch.full([5, 4, 3], 2, dtype=torch.int64)
|
|
return torch.cumsum(twos, 0)
|
|
|
|
def fn4():
|
|
x = torch.full([100], 0.1, dtype=torch.float32)
|
|
return torch.cumsum(x, 0)
|
|
|
|
def fn5():
|
|
t1 = torch.full([2, 4], 1)
|
|
t2 = t1.to(dtype=torch.bool)
|
|
return torch.cumsum(t2, 1)
|
|
|
|
def fn6():
|
|
x = torch.full([10, 10], True, dtype=torch.int32)
|
|
return torch.cumsum(x, 1)
|
|
|
|
for fn in (fn1, fn2, fn3, fn4, fn5, fn6):
|
|
result, (code,) = run_and_get_code(torch.compile(fn, fullgraph=True))
|
|
self.assertNotIn("aten.cumsum", code)
|
|
self.assertEqual(result, fn())
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 1)
|
|
counters.clear()
|
|
|
|
def test_splitwithsizes_cat(self):
|
|
# Good case
|
|
def fn(a):
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(a, [8, 24], 1)
|
|
getitem = split_with_sizes[0]
|
|
getitem_1 = split_with_sizes[1]
|
|
cat = torch.ops.aten.cat.default([getitem, getitem_1], 1)
|
|
return cat**2
|
|
|
|
args = [
|
|
torch.randn(2, 32, device="cuda"),
|
|
]
|
|
self.common(fn, args, 1, 4)
|
|
|
|
# Not all getitems are passed to cat
|
|
def fn(a):
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(a, [8, 8, 16], 1)
|
|
getitem = split_with_sizes[0]
|
|
getitem_1 = split_with_sizes[1]
|
|
getitem_2 = split_with_sizes[2]
|
|
cat = torch.ops.aten.cat.default([getitem, getitem_1], 1)
|
|
return cat**2 + getitem_2
|
|
|
|
args = [
|
|
torch.randn(2, 32, device="cuda"),
|
|
]
|
|
self.common(fn, args, 0, 0)
|
|
|
|
# Different dimensions (TODO this case should be handled by replacing with a reshape)
|
|
def fn(a):
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(
|
|
a, [8, 8, 8, 8], 1
|
|
)
|
|
cat = torch.ops.aten.cat.default(split_with_sizes, 0)
|
|
return cat**2
|
|
|
|
args = [
|
|
torch.randn(2, 32, device="cuda"),
|
|
]
|
|
self.common(fn, args, 0, 0)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/99686.
|
|
def fn(a):
|
|
x = torch.ops.aten.split_with_sizes.default(a, [3, 2, 3], dim=1)
|
|
cat = torch.ops.aten.cat.default([x[1], x[0], x[2]], dim=1)
|
|
return cat
|
|
|
|
args = [
|
|
torch.randn(1, 8, device="cuda"),
|
|
]
|
|
self.common(fn, args, 0, 0)
|
|
|
|
def test_cat_splitwithsizes(self):
|
|
# good case
|
|
def fn(a, b, c):
|
|
cat = torch.ops.aten.cat.default([a, b, c], 1)
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(
|
|
cat, [2, 3, 5], 1
|
|
)
|
|
return [s**2 for s in split_with_sizes]
|
|
|
|
args = [
|
|
torch.randn(2, 2, device="cuda"),
|
|
torch.randn(2, 3, device="cuda"),
|
|
torch.randn(2, 5, device="cuda"),
|
|
]
|
|
self.common(fn, args, 1, 2)
|
|
|
|
# cat node has other users
|
|
def fn(a, b, c):
|
|
cat = torch.ops.aten.cat.default([a, b, c], 1)
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(
|
|
cat, [2, 3, 5], 1
|
|
)
|
|
return [s**2 for s in split_with_sizes] + [cat**3]
|
|
|
|
args = [
|
|
torch.randn(2, 2, device="cuda"),
|
|
torch.randn(2, 3, device="cuda"),
|
|
torch.randn(2, 5, device="cuda"),
|
|
]
|
|
self.common(fn, args, 0, 0)
|
|
|
|
# cat and split dims are different
|
|
def fn(a, b, c):
|
|
cat = torch.ops.aten.cat.default([a, b, c], 1)
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(
|
|
cat, [2, 3, 5], 0
|
|
)
|
|
return [s**2 for s in split_with_sizes]
|
|
|
|
args = [
|
|
torch.randn(10, 2, device="cuda"),
|
|
torch.randn(10, 3, device="cuda"),
|
|
torch.randn(10, 5, device="cuda"),
|
|
]
|
|
self.common(fn, args, 0, 0)
|
|
|
|
# cat and split lenghts are different
|
|
def fn(a, b, c):
|
|
cat = torch.ops.aten.cat.default([a, b, c], 1)
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(cat, [5, 5], 1)
|
|
return [s**2 for s in split_with_sizes]
|
|
|
|
args = [
|
|
torch.randn(2, 2, device="cuda"),
|
|
torch.randn(2, 3, device="cuda"),
|
|
torch.randn(2, 5, device="cuda"),
|
|
]
|
|
self.common(fn, args, 0, 0)
|
|
|
|
# cat input sizes and split sizes are different
|
|
def fn(a, b, c):
|
|
cat = torch.ops.aten.cat.default([a, b, c], 1)
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(
|
|
cat, [2, 5, 3], 1
|
|
)
|
|
return [s**2 for s in split_with_sizes]
|
|
|
|
args = [
|
|
torch.randn(2, 2, device="cuda"),
|
|
torch.randn(2, 3, device="cuda"),
|
|
torch.randn(2, 5, device="cuda"),
|
|
]
|
|
self.common(fn, args, 0, 0)
|
|
|
|
def test_symint_pattern_matching(self):
|
|
import torch._inductor.config as config
|
|
from torch._inductor.pattern_matcher import (
|
|
fwd_only,
|
|
PatternMatcherPass,
|
|
register_replacement,
|
|
)
|
|
|
|
saved_graph = None
|
|
|
|
class _CustomPass(PatternMatcherPass):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def __call__(self, g: torch.fx.graph.Graph):
|
|
self.apply(g)
|
|
nonlocal saved_graph
|
|
saved_graph = g
|
|
|
|
with config.patch(
|
|
# leave custom pass only in post_grad_passes()
|
|
pattern_matcher=False,
|
|
# define pattern match as custom post grad opt pass
|
|
post_grad_custom_pre_pass=None,
|
|
post_grad_custom_post_pass=_CustomPass(),
|
|
):
|
|
|
|
def add(x, y):
|
|
return x + y
|
|
|
|
# testing that
|
|
def sym_minus(x, y):
|
|
return (x - (-y.size(0))) - (y * -1) - y.size(0)
|
|
|
|
device = "cpu"
|
|
my_args = [
|
|
torch.empty([8, 1], device=device),
|
|
torch.empty([10], device=device),
|
|
]
|
|
|
|
invoked = False
|
|
|
|
def extra_check(match):
|
|
nonlocal invoked
|
|
invoked = True
|
|
return True
|
|
|
|
register_replacement(
|
|
add,
|
|
sym_minus,
|
|
my_args,
|
|
fwd_only,
|
|
[config.post_grad_custom_post_pass],
|
|
extra_check=extra_check,
|
|
)
|
|
|
|
@torch.compile(dynamic=True)
|
|
def foo(x, y):
|
|
return x + y
|
|
|
|
x = torch.rand([8, 1])
|
|
y = torch.rand([10])
|
|
|
|
self.assertEqual(foo(x, y), x + y)
|
|
|
|
self.assertTrue(invoked)
|
|
# we trace out the y.sym_size in replacement
|
|
FileCheck().check("sym_size_int").check_same("num_users=2").check_same(
|
|
"target=torch.ops.aten.sym_size"
|
|
).run(str(saved_graph))
|
|
|
|
@inductor_config.patch(fx_graph_remote_cache=False)
|
|
def test_match_with_mutation(self):
|
|
counter = 0
|
|
test_pass = PatternMatcherPass(pass_name="test")
|
|
|
|
@register_graph_pattern(
|
|
CallFunction(
|
|
torch.add, KeywordArg("x"), CallFunction(torch.sin, KeywordArg("x"))
|
|
),
|
|
pass_dict=test_pass,
|
|
)
|
|
def _test(match, x):
|
|
nonlocal counter
|
|
counter += 1
|
|
|
|
def fn0(x, y):
|
|
a = torch.sin(x)
|
|
b = torch.add(x, a)
|
|
return b
|
|
|
|
def fn1(x, y):
|
|
a = torch.sin(x)
|
|
x.copy_(y)
|
|
b = torch.add(x, a)
|
|
return b
|
|
|
|
def fn2(x, y):
|
|
a = torch.sin(x)
|
|
with torch.no_grad():
|
|
b = torch.add(x, a)
|
|
return b
|
|
|
|
def fn3(x, y):
|
|
a = torch.sin(x)
|
|
with torch.autocast("cuda"):
|
|
b = torch.add(x, a)
|
|
return b
|
|
|
|
def fn4(x, y):
|
|
a = torch.sin(x)
|
|
torch.manual_seed(1234)
|
|
b = torch.add(x, a)
|
|
return b
|
|
|
|
def fn5(x, y):
|
|
a = torch.sin(x)
|
|
torch.add(y, 1, out=x)
|
|
b = torch.add(x, a)
|
|
return b
|
|
|
|
args = [
|
|
torch.randn(5, 5, device="cuda"),
|
|
torch.randn(5, 5, device="cuda"),
|
|
]
|
|
|
|
with unittest.mock.patch(
|
|
"torch._inductor.fx_passes.pre_grad.config.pre_grad_fusion_options",
|
|
{"test": {}},
|
|
), unittest.mock.patch(
|
|
"torch._inductor.fx_passes.pre_grad.PRE_GRAD_FUSIONS",
|
|
[],
|
|
), unittest.mock.patch(
|
|
"torch._inductor.fx_passes.pre_grad.PRE_GRAD_PATTERNS",
|
|
{"test": test_pass},
|
|
):
|
|
for fn in (fn0, fn1, fn2, fn3, fn4, fn5):
|
|
counter = 0
|
|
expected = fn(*copy.deepcopy(args))
|
|
actual = torch.compile(fn)(*copy.deepcopy(args))
|
|
# should not match
|
|
self.assertEqual(counter, int(fn is fn0))
|
|
torch.testing.assert_close(actual, expected)
|
|
|
|
def test_remove_pointless_clones(self):
|
|
@torch.compile(fullgraph=True)
|
|
def fn(a, b):
|
|
return torch.mm(a, b).clone()
|
|
|
|
result, (code) = run_and_get_code(fn, torch.randn(8, 8), torch.randn(8, 8))
|
|
# clone would create a buf1
|
|
self.assertIn("return (buf0, )", code[0])
|
|
self.assertNotIn("async_compile.cpp", code[0])
|
|
|
|
def test_unfuse_bias_addmm(self):
|
|
args = [
|
|
torch.randn(20, device="cuda"),
|
|
torch.randn(10, 15, device="cuda"),
|
|
torch.randn(15, 20, device="cuda"),
|
|
]
|
|
|
|
@torch.compile()
|
|
def fn(inp, a, b):
|
|
return torch.ops.aten.addmm(inp, a, b)
|
|
|
|
_, (code) = run_and_get_code(fn, args[0], args[1], args[2])
|
|
FileCheck().check("extern_kernels.addmm(").run(code[0])
|
|
|
|
@torch.compile()
|
|
def fn2(inp, a, b):
|
|
return torch.nn.functional.gelu(torch.ops.aten.addmm(inp, a, b))
|
|
|
|
_, (code) = run_and_get_code(fn2, args[0], args[1], args[2])
|
|
FileCheck().check_not("extern_kernels.addmm(").run(code[0])
|
|
|
|
@torch.compile()
|
|
def fn2(inp, a, b):
|
|
return torch.nn.functional.gelu(
|
|
torch.ops.aten.addmm(inp, a, b).unsqueeze(0)
|
|
)
|
|
|
|
# hit the view path
|
|
_, (code) = run_and_get_code(fn2, args[0], args[1], args[2])
|
|
FileCheck().check_not("extern_kernels.addmm(").run(code[0])
|
|
|
|
def test_serialized_patterns_up_to_date(self):
|
|
import torch.utils._pytree as pytree
|
|
from torch._inductor.fx_passes import joint_graph
|
|
from torch._inductor.pattern_matcher import _known_precompiled_patterns
|
|
|
|
# Ensure the patterns are loaded
|
|
os.environ.pop("PYTORCH_GEN_PATTERNS", None)
|
|
joint_graph.lazy_init()
|
|
|
|
with torch._subclasses.FakeTensorMode() as mode:
|
|
for (
|
|
search_fn,
|
|
example_inputs,
|
|
trace_fn,
|
|
scalar_workaround,
|
|
search_fn_pattern,
|
|
) in _known_precompiled_patterns:
|
|
# Because the example_inputs were saved as fake tensors in a
|
|
# different FakeTensorMode we need to update them to our
|
|
# FakeTensorMode().
|
|
def remap_fake_tensor(x):
|
|
if isinstance(x, torch.Tensor):
|
|
return torch._subclasses.FakeTensor.from_tensor(x, mode)
|
|
return x
|
|
|
|
example_inputs = pytree.tree_map(remap_fake_tensor, example_inputs)
|
|
|
|
pattern = gen_pattern(
|
|
search_fn, example_inputs, trace_fn, scalar_workaround
|
|
)
|
|
pattern_pp = PatternPrettyPrinter.run(pattern)
|
|
|
|
self.assertEqual(
|
|
pattern_pp,
|
|
PatternPrettyPrinter.run(search_fn_pattern),
|
|
msg=f"Found mismatched pattern {search_fn.__name__}. Run torchgen/fuse/gen_patterns.py",
|
|
)
|
|
|
|
# Since we've already checked that the serialized patterns match
|
|
# lets verify the serializer by ensuring the generated patterns
|
|
# also match (since search_fn_pattern is the serialized version
|
|
# of search_fn).
|
|
self.assertTrue(pattern.pattern_eq(search_fn_pattern))
|
|
|
|
@inductor_config.patch(fx_graph_remote_cache=False)
|
|
def test_match_equivalent_function_invocations1(self):
|
|
counter = 0
|
|
test_pass = PatternMatcherPass()
|
|
|
|
args = [
|
|
torch.randn(20, device="cuda"),
|
|
torch.randn(10, 15, device="cuda"),
|
|
torch.randn(15, 20, device="cuda"),
|
|
]
|
|
|
|
def f0(inp, a, b):
|
|
return torch.ops.aten.addmm(inp, a, b)
|
|
|
|
def f1(inp, a, b):
|
|
return torch.ops.aten.addmm(inp, a, b, beta=1.0)
|
|
|
|
def f2(inp, a, b):
|
|
return torch.ops.aten.addmm(inp, a, b, beta=1.0, alpha=1.0)
|
|
|
|
# This graph pattern should successfully match all of the above functions
|
|
@register_graph_pattern(
|
|
CallFunction(
|
|
torch.ops.aten.addmm,
|
|
Arg(),
|
|
Arg(),
|
|
Arg(),
|
|
beta=KeywordArg("beta"),
|
|
alpha=KeywordArg("alpha"),
|
|
),
|
|
pass_dict=test_pass,
|
|
)
|
|
def addmm_replacement(match: Match, inp, mat1, mat2, beta, alpha):
|
|
nonlocal counter
|
|
counter += 1
|
|
|
|
def repl(inp, x1, x2):
|
|
return (x1 @ x2) * alpha + inp * beta
|
|
|
|
with V.fake_mode:
|
|
match.replace_by_example(repl, [inp, mat1, mat2])
|
|
|
|
with unittest.mock.patch(
|
|
"torch._inductor.fx_passes.post_grad.pass_patterns",
|
|
torch._inductor.fx_passes.post_grad.pass_patterns + [test_pass],
|
|
):
|
|
for fn in (f0, f1, f2):
|
|
counter = 0
|
|
expected = fn(*copy.deepcopy(args))
|
|
opt_fn = torch.compile(fn)
|
|
actual, (code) = run_and_get_code(opt_fn, args[0], args[1], args[2])
|
|
# pattern should match
|
|
self.assertEqual(counter, 1)
|
|
torch.testing.assert_close(actual, expected)
|
|
# addmm should be replaced
|
|
FileCheck().check_not("extern_kernels.addmm(").run(code[0])
|
|
|
|
@inductor_config.patch(fx_graph_remote_cache=False)
|
|
def test_match_equivalent_function_invocations2(self):
|
|
counter = 0
|
|
test_pass = PatternMatcherPass()
|
|
|
|
args = [
|
|
torch.randn(20, device="cuda"),
|
|
torch.randn(10, 15, device="cuda"),
|
|
torch.randn(15, 20, device="cuda"),
|
|
]
|
|
|
|
def f0(inp, a, b):
|
|
return torch.ops.aten.addmm(inp, a, b)
|
|
|
|
def f1(inp, a, b):
|
|
return torch.ops.aten.addmm(inp, a, b, beta=1.0)
|
|
|
|
def f2(inp, a, b):
|
|
return torch.ops.aten.addmm(inp, a, b, beta=1.0, alpha=1.0)
|
|
|
|
# This graph pattern should only match f0
|
|
@register_graph_pattern(
|
|
CallFunction(torch.ops.aten.addmm, Arg(), Arg(), Arg()),
|
|
pass_dict=test_pass,
|
|
)
|
|
def addmm_replacement(match: Match, inp, mat1, mat2):
|
|
nonlocal counter
|
|
counter += 1
|
|
|
|
def repl(inp, x1, x2):
|
|
return x1 @ x2 + inp
|
|
|
|
with V.fake_mode:
|
|
match.replace_by_example(repl, [inp, mat1, mat2])
|
|
|
|
with unittest.mock.patch(
|
|
"torch._inductor.fx_passes.post_grad.pass_patterns",
|
|
torch._inductor.fx_passes.post_grad.pass_patterns + [test_pass],
|
|
):
|
|
for fn in (f0, f1, f2):
|
|
counter = 0
|
|
expected = fn(*copy.deepcopy(args))
|
|
actual = torch.compile(fn)(*copy.deepcopy(args))
|
|
self.assertEqual(counter, 1)
|
|
torch.testing.assert_close(actual, expected)
|
|
|
|
@inductor_config.patch(fx_graph_remote_cache=False)
|
|
def test_match_equivalent_function_invocations3(self):
|
|
counter = 0
|
|
test_pass = PatternMatcherPass()
|
|
|
|
args = [
|
|
torch.randn(20, device="cuda"),
|
|
torch.randn(10, 15, device="cuda"),
|
|
torch.randn(15, 20, device="cuda"),
|
|
]
|
|
|
|
def f0(inp, a, b):
|
|
return torch.ops.aten.addmm(inp, a, b)
|
|
|
|
def f1(inp, a, b):
|
|
return torch.ops.aten.addmm(inp, a, b, beta=1.0)
|
|
|
|
def f2(inp, a, b):
|
|
return torch.ops.aten.addmm(inp, a, b, beta=1.0, alpha=1.0)
|
|
|
|
# This graph pattern should only match f1
|
|
@register_graph_pattern(
|
|
CallFunction(
|
|
torch.ops.aten.addmm, Arg(), Arg(), Arg(), beta=KeywordArg("beta")
|
|
),
|
|
pass_dict=test_pass,
|
|
)
|
|
def addmm_replacement(match: Match, inp, mat1, mat2, beta):
|
|
nonlocal counter
|
|
counter += 1
|
|
|
|
def repl(inp, x1, x2):
|
|
return x1 @ x2 + inp
|
|
|
|
with V.fake_mode:
|
|
match.replace_by_example(repl, [inp, mat1, mat2])
|
|
|
|
with unittest.mock.patch(
|
|
"torch._inductor.fx_passes.post_grad.pass_patterns",
|
|
torch._inductor.fx_passes.post_grad.pass_patterns + [test_pass],
|
|
):
|
|
for fn in (f0, f1, f2):
|
|
counter = 0
|
|
expected = fn(*copy.deepcopy(args))
|
|
actual = torch.compile(fn)(*copy.deepcopy(args))
|
|
self.assertEqual(counter, 1)
|
|
torch.testing.assert_close(actual, expected)
|
|
|
|
def test_stable_topological_sort(self):
|
|
def fn1(a, b):
|
|
return a + b
|
|
|
|
graph = torch.fx.Graph()
|
|
a = graph.placeholder("x")
|
|
b = graph.placeholder("y")
|
|
c = graph.call_function(fn1, (a, b))
|
|
stable_topological_sort(graph)
|
|
self.assertEqual(list(graph.nodes), [a, b, c])
|
|
|
|
graph = torch.fx.Graph()
|
|
b = graph.placeholder("y")
|
|
a = graph.placeholder("x")
|
|
c = graph.call_function(fn1, (a, b))
|
|
stable_topological_sort(graph)
|
|
self.assertEqual(list(graph.nodes), [b, a, c])
|
|
|
|
graph = torch.fx.Graph()
|
|
a = graph.placeholder("x")
|
|
b = graph.placeholder("y")
|
|
c = graph.call_function(fn1, (b, a))
|
|
c.append(a)
|
|
stable_topological_sort(graph)
|
|
self.assertEqual(list(graph.nodes), [b, a, c])
|
|
|
|
def test_scaled_softmax(self):
|
|
def mul_softmax(a, b):
|
|
return F.softmax(a * b, dim=0)
|
|
|
|
def div_softmax(x, inv_scale):
|
|
return F.softmax(x / inv_scale, dim=0)
|
|
|
|
x = torch.randn(10, 10)
|
|
scale = 1e6
|
|
inv_scale = 1 / scale
|
|
self.common(mul_softmax, (x, scale), 1, 3)
|
|
self.common(mul_softmax, (scale, x), 1, 3)
|
|
self.common(div_softmax, (x, inv_scale), 1, 3)
|
|
|
|
scale = torch.randn(10) * 1e6
|
|
inv_scale = 1 / scale
|
|
self.common(mul_softmax, (x, scale), 1, 3)
|
|
self.common(mul_softmax, (scale, x), 1, 3)
|
|
self.common(div_softmax, (x, inv_scale), 1, 3)
|
|
|
|
scale = torch.randn(1, 10) * 1e6
|
|
inv_scale = 1 / scale
|
|
self.common(mul_softmax, (x, scale), 1, 3)
|
|
self.common(mul_softmax, (scale, x), 1, 3)
|
|
self.common(div_softmax, (x, inv_scale), 1, 3)
|
|
|
|
# Test matching with type promotion
|
|
x = torch.randn(10, 10, dtype=torch.bfloat16)
|
|
scale = torch.randn(10, dtype=torch.bfloat16) * 1e6
|
|
inv_scale = 1 / scale
|
|
self.common(mul_softmax, (x, scale), 1, 4, reference_in_float=True)
|
|
self.common(mul_softmax, (scale, x), 1, 4, reference_in_float=True)
|
|
self.common(div_softmax, (x, inv_scale), 1, 4, reference_in_float=True)
|
|
|
|
# No match if scale changes in softmax dim
|
|
scale = torch.randn(10, 10)
|
|
self.common(mul_softmax, (x, scale), 0, 0)
|
|
self.common(mul_softmax, (scale, x), 0, 0)
|
|
self.common(div_softmax, (x, scale), 0, 0)
|
|
|
|
def test_mutation_op_matching(self):
|
|
def check(type, func_name, args, kwargs, expect=True):
|
|
assert type in ["call_function", "call_method"]
|
|
graph = torch.fx.Graph()
|
|
getattr(graph, type)(func_name, args, kwargs)
|
|
res = is_mutation_op(next(iter(graph.nodes)))
|
|
if expect:
|
|
self.assertTrue(res)
|
|
else:
|
|
self.assertFalse(res)
|
|
|
|
t = torch.randn(1)
|
|
check("call_function", torch._C._set_grad_enabled, (False,), {})
|
|
check("call_method", "copy_", (t, t), {})
|
|
check("call_method", "relu_", (t,), {})
|
|
check("call_function", torch.manual_seed, (0,), {})
|
|
check("call_function", torch.ops.aten.set_.source_Tensor, (t, t), {})
|
|
check(
|
|
"call_function",
|
|
torch.amp.autocast_mode._enter_autocast,
|
|
("cuda", None, True, None),
|
|
{},
|
|
)
|
|
check("call_function", torch.amp.autocast_mode._exit_autocast, (None,), {})
|
|
check(
|
|
"call_function",
|
|
torch.ops._c10d_functional.all_gather_into_tensor_out,
|
|
(t, 2, "0"),
|
|
{"out": t},
|
|
)
|
|
check("call_function", torch.ops.inductor.resize_storage_bytes_, (t, 0), {})
|
|
check(
|
|
"call_function",
|
|
torch.ops.inductor.resize_storage_bytes_.default,
|
|
(t, 0),
|
|
{},
|
|
)
|
|
check(
|
|
"call_function",
|
|
torch.ops.fsdp.split_with_sizes_copy,
|
|
(t, [64, 128, 8, 8]),
|
|
{"dim": 1, "out": [t, t, t, t]},
|
|
)
|
|
check("call_function", torch.ops.fsdp.copy_, (t, t), {})
|
|
check(
|
|
"call_function", torch.ops.aten.__rshift__.Scalar, (t, 2), {}, expect=False
|
|
)
|
|
check(
|
|
"call_function",
|
|
torch.ops._c10d_functional.all_gather_into_tensor,
|
|
(t, 2, "0"),
|
|
{},
|
|
expect=False,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if IS_LINUX and HAS_CUDA:
|
|
run_tests()
|