mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28384 ghstack-source-id: 92340259 Test Plan: buck test caffe2/test:quantization -- 'test_fusion_sequential_model_train \(test_quantization\.FusionTest\)' --print-passing-details buck test caffe2/test:quantization -- 'test_fusion_sequential_model_eval \(test_quantization\.FusionTest\)' --print-passing-details Differential Revision: D18047293 fbshipit-source-id: 7e18b1aa76cc0fd26e8ee48a70c3a45688e73549
358 lines
14 KiB
Python
358 lines
14 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import copy
|
|
import itertools
|
|
import warnings
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.intrinsic as nni
|
|
import torch.nn.quantized as nnq
|
|
|
|
from .default_mappings import (DEFAULT_DYNAMIC_MODULE_MAPPING,
|
|
DEFAULT_MODULE_MAPPING,
|
|
DEFAULT_QAT_MODULE_MAPPING,
|
|
DEFAULT_QCONFIG_PROPAGATE_WHITE_LIST)
|
|
from .stubs import DeQuantStub, QuantWrapper
|
|
from .qconfig import default_dynamic_qconfig, float16_dynamic_qconfig
|
|
|
|
def _propagate_qconfig_helper(module, qconfig_dict, white_list=None,
|
|
qconfig_parent=None, prefix=''):
|
|
r"""This is a helper function for `propagate_qconfig_`
|
|
|
|
Args:
|
|
module: input module
|
|
qconfig_dict: dictionary that maps from name of submodule to quantization
|
|
configuration
|
|
white_list: list of quantizable modules
|
|
qconfig_parent: quantization config of parent module, we will fallback to
|
|
this config when there is no specified config for current
|
|
module
|
|
prefix: corresponding prefix of the current module, used as key in
|
|
qconfig_dict
|
|
|
|
Return:
|
|
None, module is modified inplace with qconfig attached
|
|
"""
|
|
# TODO: Add test
|
|
if white_list is None:
|
|
white_list = DEFAULT_QCONFIG_PROPAGATE_WHITE_LIST
|
|
|
|
module_qconfig = qconfig_dict.get(type(module), qconfig_parent)
|
|
module_qconfig = qconfig_dict.get(prefix, module_qconfig)
|
|
module_qconfig = getattr(module, 'qconfig', module_qconfig)
|
|
|
|
if type(module) in white_list:
|
|
module.qconfig = module_qconfig
|
|
for name, child in module.named_children():
|
|
module_prefix = prefix + '.' + name if prefix else name
|
|
_propagate_qconfig_helper(child, qconfig_dict, white_list,
|
|
module_qconfig, module_prefix)
|
|
|
|
# TODO(jerryzh): expose white_list
|
|
def propagate_qconfig_(module, qconfig_dict=None):
|
|
r"""Propagate qconfig through the module hierarchy and assign `qconfig`
|
|
attribute on each leaf module
|
|
|
|
Args:
|
|
module: input module
|
|
qconfig_dict: dictionary that maps from name or type of submodule to
|
|
quantization configuration, qconfig applies to all submodules of a
|
|
given module unless qconfig for the submodules are specified (when
|
|
the submodule already has qconfig attribute)
|
|
|
|
Return:
|
|
None, module is modified inplace with qconfig attached
|
|
"""
|
|
if qconfig_dict is None:
|
|
qconfig_dict = {}
|
|
_propagate_qconfig_helper(module, qconfig_dict)
|
|
|
|
def _observer_forward_hook(self, input, output):
|
|
r"""Forward hook that calls observer on the output
|
|
"""
|
|
return self.activation_post_process(output)
|
|
|
|
def add_observer_(module):
|
|
r"""Add observer for the leaf child of the module.
|
|
|
|
This function insert observer module to all leaf child module that
|
|
has a valid qconfig attribute.
|
|
|
|
Args:
|
|
module: input module with qconfig attributes for all the leaf modules that we want to quantize
|
|
|
|
Return:
|
|
None, module is modified inplace with added observer modules and forward_hooks
|
|
"""
|
|
for child in module.children():
|
|
if type(child) == nnq.FloatFunctional:
|
|
if hasattr(child, 'qconfig') and child.qconfig is not None:
|
|
child.activation_post_process = child.qconfig.activation()
|
|
else:
|
|
add_observer_(child)
|
|
|
|
# Insert observers only for leaf nodes, note that this observer is for
|
|
# the output of the module, for input QuantStub will observe them
|
|
if hasattr(module, 'qconfig') and module.qconfig is not None and \
|
|
len(module._modules) == 0 and not isinstance(module, torch.nn.Sequential):
|
|
# observer and hook will be gone after we swap the module
|
|
module.add_module('activation_post_process', module.qconfig.activation())
|
|
module.register_forward_hook(_observer_forward_hook)
|
|
|
|
def add_quant_dequant(module):
|
|
r"""Wrap the leaf child module in QuantWrapper if it has a valid qconfig
|
|
Note that this function will modify the children of module inplace and it
|
|
can return a new module which wraps the input module as well.
|
|
|
|
Args:
|
|
module: input module with qconfig attributes for all the leaf modules
|
|
that we want to quantize
|
|
|
|
Return:
|
|
Either the inplace modified module with submodules wrapped in
|
|
`QuantWrapper` based on qconfig or a new `QuantWrapper` module which
|
|
wraps the input module, the latter case only happens when the input
|
|
module is a leaf module and we want to quantize it.
|
|
"""
|
|
if len(module._modules) == 0 and hasattr(module, 'qconfig') and module.qconfig:
|
|
return QuantWrapper(module)
|
|
|
|
for name, child in module.named_children():
|
|
module._modules[name] = add_quant_dequant(child)
|
|
return module
|
|
|
|
def prepare(model, qconfig_dict=None, inplace=False):
|
|
r"""Prepares a copy of the model for quantization calibration or quantization-aware training.
|
|
|
|
Quantization configuration can be passed as an `qconfig_dict` or assigned preemptively
|
|
to individual submodules in `.qconfig` attribute.
|
|
|
|
The model will be attached with observer or fake quant modules, and qconfig
|
|
will be propagated.
|
|
|
|
Args:
|
|
model: input model to be modified in-place
|
|
qconfig_dict: dictionary that maps from name or type of submodule to quantization
|
|
configuration, qconfig applies to all submodules of a given
|
|
module unless qconfig for the submodules are specified (when the
|
|
submodule already has qconfig attribute)
|
|
inplace: carry out model transformations in-place, the original module is mutated
|
|
"""
|
|
if not inplace:
|
|
model = copy.deepcopy(model)
|
|
propagate_qconfig_(model)
|
|
# sanity check common API misusage
|
|
if not any(hasattr(m, 'qconfig') and m.qconfig for m in model.modules()):
|
|
warnings.warn("None of the submodule got qconfig applied. Make sure you "
|
|
"passed correct configuration through `qconfig_dict` or "
|
|
"by assigning the `.qconfig` attribute directly on submodules")
|
|
add_observer_(model)
|
|
return model
|
|
|
|
def quantize(model, run_fn, run_args, mapping=None, inplace=False):
|
|
r"""Converts a float model to quantized model.
|
|
|
|
First it will prepare the model for calibration or training, then it calls
|
|
`run_fn` which will run the calibration step or training step,
|
|
after that we will call `convert` which will convert the model to a
|
|
quantized model.
|
|
|
|
Args:
|
|
model: input model
|
|
run_fn: a function for evaluating the prepared model, can be a
|
|
function that simply runs the prepared model or a training loop
|
|
run_args: positional arguments for `run_fn`
|
|
inplace: carry out model transformations in-place, the original module is mutated
|
|
mapping: correspondence between original module types and quantized counterparts
|
|
|
|
Return:
|
|
Quantized model.
|
|
"""
|
|
if mapping is None:
|
|
mapping = DEFAULT_MODULE_MAPPING
|
|
if not inplace:
|
|
model = copy.deepcopy(model)
|
|
model.eval()
|
|
prepare(model, inplace=True)
|
|
run_fn(model, run_args)
|
|
convert(model, mapping, inplace=True)
|
|
return model
|
|
|
|
def quantize_dynamic(model, qconfig_spec=None, dtype=torch.qint8,
|
|
mapping=None, inplace=False):
|
|
r"""Converts a float model to dynamic (i.e. weights-only) quantized model.
|
|
|
|
Replaces specified modules with dynamic weight-only quantized versions and output the quantized model.
|
|
|
|
For simplest usage provide `dtype` argument that can be float16 or qint8. Weight-only quantization
|
|
by default is performed for layers with large weights size - i.e. Linear and RNN variants.
|
|
|
|
Fine grained control is possible with `qconfig` and `mapping` that act similarly to `quantize()`.
|
|
If `qconfig` is provided, the `dtype` argument is ignored.
|
|
|
|
Args:
|
|
module: input model
|
|
qconfig_spec: Either:
|
|
|
|
- A dictionary that maps from name or type of submodule to quantization
|
|
configuration, qconfig applies to all submodules of a given
|
|
module unless qconfig for the submodules are specified (when the
|
|
submodule already has qconfig attribute). Entries in the dictionary
|
|
need to be QConfigDynamic instances.
|
|
|
|
- A set of types and/or submodule names to apply dynamic quantization to,
|
|
in which case the `dtype` argument is used to specifiy the bit-width
|
|
|
|
inplace: carry out model transformations in-place, the original module is mutated
|
|
mapping: maps type of a submodule to a type of corresponding dynamically quantized version
|
|
with which the submodule needs to be replaced
|
|
|
|
"""
|
|
if qconfig_spec is None:
|
|
if dtype == torch.qint8:
|
|
qconfig_spec = {
|
|
nn.Linear : default_dynamic_qconfig,
|
|
nn.LSTM : default_dynamic_qconfig,
|
|
}
|
|
elif dtype == torch.float16:
|
|
qconfig_spec = {
|
|
# TODO: uncomment when float16 Linear support is added
|
|
# nn.Linear : default_dynamic_qconfig,
|
|
nn.LSTM : float16_dynamic_qconfig,
|
|
}
|
|
else:
|
|
raise ValueError(
|
|
"Don't know how to quantize with default settings for {}. Provide full qconfig please".format(dtype))
|
|
elif isinstance(qconfig_spec, set):
|
|
if dtype is torch.qint8:
|
|
default_qconfig = default_dynamic_qconfig
|
|
elif dtype is torch.float16:
|
|
default_qconfig = float16_dynamic_qconfig
|
|
else:
|
|
raise RuntimeError('Unknown dtype specified for quantize_dynamic: ', str(dtype))
|
|
qconfig_spec = dict(zip(qconfig_spec, itertools.repeat(default_qconfig)))
|
|
|
|
if mapping is None:
|
|
mapping = DEFAULT_DYNAMIC_MODULE_MAPPING
|
|
|
|
if not inplace:
|
|
model = copy.deepcopy(model)
|
|
model.eval()
|
|
propagate_qconfig_(model, qconfig_spec)
|
|
convert(model, mapping, inplace=True)
|
|
return model
|
|
|
|
def prepare_qat(model, mapping=None, inplace=False):
|
|
r"""
|
|
Prepares a copy of the model for quantization calibration or
|
|
quantization-aware training and convers it to quantized version.
|
|
|
|
Quantization configuration can be passed as an `qconfig_dict` or assigned
|
|
preemptively to individual submodules in `.qconfig` attribute.
|
|
|
|
Args:
|
|
model: input model to be modified in-place
|
|
mapping: dictionary that maps float modules to quantized modules to be
|
|
replaced.
|
|
inplace: carry out model transformations in-place, the original module
|
|
is mutated
|
|
"""
|
|
if mapping is None:
|
|
mapping = DEFAULT_QAT_MODULE_MAPPING
|
|
model = prepare(model, inplace=inplace)
|
|
convert(model, mapping, inplace=True)
|
|
return model
|
|
|
|
def quantize_qat(model, run_fn, run_args, inplace=False):
|
|
r"""Do quantization aware training and output a quantized model
|
|
|
|
Args:
|
|
model: input model
|
|
run_fn: a function for evaluating the prepared model, can be a
|
|
function that simply runs the prepared model or a training
|
|
loop
|
|
run_args: positional arguments for `run_fn`
|
|
|
|
Return:
|
|
Quantized model.
|
|
"""
|
|
if not inplace:
|
|
model = copy.deepcopy(model)
|
|
model.train()
|
|
prepare_qat(model, inplace=True)
|
|
run_fn(model, run_args)
|
|
convert(model, inplace=True)
|
|
return model
|
|
|
|
def convert(module, mapping=None, inplace=False):
|
|
r"""Converts the float module with observers (where we can get quantization
|
|
parameters) to a quantized module.
|
|
|
|
Args:
|
|
module: calibrated module with observers
|
|
mapping: a dictionary that maps from float module type to quantized
|
|
module type, can be overwrritten to allow swapping user defined
|
|
Modules
|
|
inplace: carry out model transformations in-place, the original module
|
|
is mutated
|
|
|
|
"""
|
|
if mapping is None:
|
|
mapping = DEFAULT_MODULE_MAPPING
|
|
if not inplace:
|
|
module = copy.deepcopy(module)
|
|
reassign = {}
|
|
# TODO(jerryzh): remove after deciding on the impl of intrinsic modules
|
|
# This is required because intrinsic modules right now are implemented as
|
|
# nn.Sequential and we don't want to swap their constituents
|
|
SWAPPABLE_MODULES = (nni.ConvBn2d,
|
|
nni.ConvBnReLU2d,
|
|
nni.LinearReLU,
|
|
nni.ConvReLU2d)
|
|
|
|
for name, mod in module.named_children():
|
|
if type(mod) not in SWAPPABLE_MODULES:
|
|
convert(mod, mapping, inplace=True)
|
|
reassign[name] = swap_module(mod, mapping)
|
|
|
|
for key, value in reassign.items():
|
|
module._modules[key] = value
|
|
|
|
return module
|
|
|
|
def swap_module(mod, mapping):
|
|
r"""Swaps the module if it has a quantized counterpart and it has an
|
|
`observer` attached.
|
|
|
|
Args:
|
|
mod: input module
|
|
mapping: a dictionary that maps from nn module to nnq module
|
|
|
|
Return:
|
|
The corresponding quantized module of `mod`
|
|
"""
|
|
new_mod = mod
|
|
# Always replace dequantstub with dequantize
|
|
if hasattr(mod, 'qconfig') and mod.qconfig is not None or type(mod) == DeQuantStub:
|
|
if type(mod) in mapping:
|
|
new_mod = mapping[type(mod)].from_float(mod)
|
|
return new_mod
|
|
|
|
def get_observer_dict(mod, target_dict, prefix=""):
|
|
r"""Traverse the modules and save all observers into dict.
|
|
This is mainly used for quantization accuracy debug
|
|
Args:
|
|
mod: the top module we want to save all observers
|
|
prefix: the prefix for the current module
|
|
target_dict: the dictionary used to save all the observers
|
|
"""
|
|
def get_prefix(prefix):
|
|
return prefix if prefix == "" else prefix + '.'
|
|
|
|
if hasattr(mod, 'activation_post_process'):
|
|
target_dict[get_prefix(prefix) + 'activation_post_process'] = mod.activation_post_process
|
|
for name, child in mod.named_children():
|
|
module_prefix = get_prefix(prefix) + name if prefix else name
|
|
get_observer_dict(child, target_dict, module_prefix)
|