mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Differential Revision: D10444104 Original commit changeset: 4c447beeb967 fbshipit-source-id: ead52444aefa27692e3f36dadad986e2313261bd
145 lines
4.3 KiB
C++
145 lines
4.3 KiB
C++
#include "torch/csrc/jit/assertions.h"
|
|
#include "torch/csrc/jit/script/module.h"
|
|
#include "torch/csrc/jit/script/compiler.h"
|
|
#include "torch/csrc/jit/script/error_report.h"
|
|
#include "torch/csrc/jit/export.h"
|
|
#include "torch/csrc/jit/operator.h"
|
|
|
|
namespace torch { namespace jit { namespace script {
|
|
|
|
|
|
struct RecursiveMethodCallError : public std::exception {};
|
|
void placeholderCreator(Method&) {
|
|
throw RecursiveMethodCallError();
|
|
}
|
|
|
|
static FunctionSchema defaultSchemaFor(const Method& method) {
|
|
std::vector<Argument> args;
|
|
std::vector<Argument> returns;
|
|
Graph& g = *method.graph();
|
|
size_t num_inputs = method.num_inputs();
|
|
for(size_t i = 0; i < num_inputs; ++i) {
|
|
const Value* v = g.inputs().at(i);
|
|
std::string name = v->hasUniqueName() ? v->uniqueName() : ("argument_" + std::to_string(i));
|
|
args.push_back({std::move(name), unshapedType(g.inputs()[i]->type())});
|
|
}
|
|
for(size_t i = 0; i < g.outputs().size(); ++i) {
|
|
returns.push_back({"", unshapedType(g.outputs()[i]->type())});
|
|
}
|
|
return { method.name(), std::move(args), std::move(returns) };
|
|
}
|
|
|
|
|
|
const FunctionSchema& Method::getSchema() const {
|
|
if(schema == nullptr) {
|
|
schema.reset(new FunctionSchema(defaultSchemaFor(*this)));
|
|
}
|
|
return *schema;
|
|
}
|
|
|
|
c10::optional<std::vector<Value*>> try_emit_call_to(
|
|
Graph& graph,
|
|
SourceRange loc,
|
|
Method& callee,
|
|
c10::optional<NamedValue> self,
|
|
ArrayRef<NamedValue> args,
|
|
ArrayRef<NamedValue> kwargs,
|
|
std::stringstream& failure_messages,
|
|
Method* caller,
|
|
bool conv_tensors_to_nums) {
|
|
try {
|
|
callee.ensure_defined();
|
|
} catch (RecursiveMethodCallError&) {
|
|
throw ErrorReport(loc) << " method '" << callee.name()
|
|
<< "' is called recursively involving this call site. Recursive calls are not supported";
|
|
}
|
|
auto fn = callee.graph();
|
|
|
|
auto matched_schema = tryMatchSchema(
|
|
callee.getSchema(),
|
|
loc, graph, self, args, kwargs, failure_messages, conv_tensors_to_nums);
|
|
if(!matched_schema)
|
|
return c10::nullopt;
|
|
|
|
// parameters to callee method (which become parameters to _this_ method
|
|
// if they were not already)
|
|
for(at::Tensor* member : callee.params()) {
|
|
if(!caller) {
|
|
throw ErrorReport(loc) << " attempting to call a method with parameters from a raw graph. File a bug report";
|
|
}
|
|
matched_schema->inputs.push_back(caller->get_or_add_parameter(member));
|
|
}
|
|
return inlineCallTo(graph, *callee.graph(), matched_schema->inputs);
|
|
}
|
|
|
|
std::vector<Value*> Method::emit_call_to(SourceRange loc, Method & callee, ArrayRef<NamedValue> args, ArrayRef<NamedValue> kwargs) {
|
|
JIT_ASSERT(!executor);
|
|
std::stringstream failure_messages;
|
|
if (auto result = try_emit_call_to(
|
|
*graph(),
|
|
loc,
|
|
callee,
|
|
c10::nullopt,
|
|
args,
|
|
kwargs,
|
|
failure_messages,
|
|
this,
|
|
/*conv_tensors_to_nums=*/true)) {
|
|
return *result;
|
|
}
|
|
throw ErrorReport(loc) << failure_messages.str();
|
|
}
|
|
|
|
void Method::ensure_defined() {
|
|
if(method_creator) {
|
|
auto creator = method_creator;
|
|
method_creator = placeholderCreator;
|
|
creator(*this);
|
|
method_creator = nullptr;
|
|
}
|
|
}
|
|
|
|
void Module::to(at::Device device, at::ScalarType dtype, bool non_blocking) {
|
|
to_impl(device, dtype, non_blocking);
|
|
}
|
|
|
|
void Module::to(at::ScalarType dtype, bool non_blocking) {
|
|
to_impl(/*device=*/c10::nullopt, dtype, non_blocking);
|
|
}
|
|
|
|
void Module::to(at::Device device, bool non_blocking) {
|
|
to_impl(device, /*dtype=*/c10::nullopt, non_blocking);
|
|
}
|
|
|
|
void Module::save(std::ostream& out) {
|
|
ExportModule(*this, out);
|
|
}
|
|
|
|
void Module::save(const std::string& filename) {
|
|
ExportModule(*this, filename);
|
|
}
|
|
|
|
void Module::to_impl(
|
|
c10::optional<at::Device> device,
|
|
c10::optional<at::ScalarType> dtype,
|
|
bool non_blocking) {
|
|
// First call `to()` on every child module.
|
|
for (auto& child : modules) {
|
|
child->module->to_impl(device, dtype, non_blocking);
|
|
}
|
|
// Then convert every of our parameters.
|
|
for (auto& parameter : parameters) {
|
|
// Need to access the `at::Tensor` as a `Variable` here.
|
|
autograd::Variable variable = *parameter->slot();
|
|
at::Tensor data = variable.data();
|
|
// Use the data's original device or dtype if not supplied here.
|
|
auto new_data = data.to(
|
|
device.value_or(data.device()),
|
|
dtype.value_or(data.dtype()),
|
|
non_blocking);
|
|
variable.set_data(new_data);
|
|
}
|
|
}
|
|
|
|
}}}
|