mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This is an initial attempt to provide some statistics for the pinned host memory allocations flowing through CachingHostAllocator. Many times in the past we have had inexplicable slowdowns that would be much easier to diagnose if we had some host memory characteristics. This change tries very hard not to disrupt the initial design of the allocator, and it uses existing locking mechanism, whenever possible, to gather statistics "for free". Only deviation from that is on the "slow path" where we incur CUDA calls anyway, so taking a short lock is not going to hurt the performance much, especially in the steady state where most allocations will come from cache. As mentioned before, this is the first PR, to introduce the concept and to see if it fits the right paradigm. We can always add more later. Metrics that would require more involved changes to the code base and locks, like requested memory, have been punted for now. I also tried to reuse the Stat structure used in CUDA caching allocator, in order to maintain symmetry. Pull Request resolved: https://github.com/pytorch/pytorch/pull/147660 Approved by: https://github.com/ngimel
498 lines
17 KiB
C++
498 lines
17 KiB
C++
#include <ATen/ATen.h>
|
|
#include <ATen/xpu/XPUContext.h>
|
|
#include <ATen/xpu/XPUGeneratorImpl.h>
|
|
#include <c10/xpu/XPUCachingAllocator.h>
|
|
#include <c10/xpu/XPUFunctions.h>
|
|
#include <torch/csrc/Module.h>
|
|
#include <torch/csrc/THP.h>
|
|
#include <torch/csrc/utils/device_lazy_init.h>
|
|
#include <torch/csrc/utils/pycfunction_helpers.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
|
|
#ifndef WIN32
|
|
#include <pthread.h>
|
|
#endif
|
|
|
|
using namespace torch;
|
|
|
|
static bool in_bad_fork = false; // True for children forked after xpu init
|
|
|
|
#ifndef WIN32
|
|
// Called in the forked child if xpu has already been initialized
|
|
static void forked_child() {
|
|
in_bad_fork = true;
|
|
torch::utils::set_requires_device_init(at::kXPU, true);
|
|
}
|
|
#endif
|
|
|
|
// Should be called before the first xpu call. It is mainly called in lazy_init.
|
|
// Note: This is distinct from initExtension because a stub xpu implementation
|
|
// has some working functions (e.g. device_count) but cannot fully initialize.
|
|
static void poison_fork() {
|
|
#ifndef WIN32
|
|
static auto result [[maybe_unused]] =
|
|
pthread_atfork(nullptr, nullptr, forked_child);
|
|
#endif
|
|
}
|
|
|
|
// XPU management methods
|
|
|
|
PyObject* THXPModule_getArchFlags(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
#ifdef XPU_ARCH_FLAGS
|
|
static const char* flags = C10_STRINGIZE(XPU_ARCH_FLAGS);
|
|
return THPUtils_packString(flags);
|
|
#else
|
|
Py_RETURN_NONE;
|
|
#endif
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THXPModule_isInBadFork_wrap(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
return PyBool_FromLong(in_bad_fork);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THXPModule_setDevice_wrap(PyObject* self, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to set_device");
|
|
|
|
auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
c10::xpu::set_device(device_index);
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THXPModule_exchangeDevice_wrap(PyObject* self, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to exchange_device");
|
|
|
|
auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
if (device_index < 0) {
|
|
return THPUtils_packInt32(-1);
|
|
}
|
|
|
|
torch::utils::device_lazy_init(at::kXPU);
|
|
auto current_device = c10::xpu::exchange_device(device_index);
|
|
|
|
return THPUtils_packDeviceIndex(current_device);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THXPModule_maybeExchangeDevice_wrap(PyObject* self, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(
|
|
THPUtils_checkLong(arg), "invalid argument to maybe_exchange_device");
|
|
|
|
auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
if (device_index < 0) {
|
|
return THPUtils_packInt32(-1);
|
|
}
|
|
|
|
torch::utils::device_lazy_init(at::kXPU);
|
|
auto current_device = c10::xpu::maybe_exchange_device(device_index);
|
|
|
|
return THPUtils_packDeviceIndex(current_device);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THXPModule_getDevice_wrap(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
|
|
auto device_index = c10::xpu::current_device();
|
|
|
|
return THPUtils_packDeviceIndex(device_index);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THXPModule_getDeviceCount_wrap(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
poison_fork();
|
|
return THPUtils_packUInt64(at::xpu::device_count());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THXPModule_getCurrentStream_wrap(
|
|
PyObject* self,
|
|
PyObject* device_index) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(
|
|
THPUtils_checkLong(device_index), "invalid argument to current_stream");
|
|
auto c10_device_index = THPUtils_unpackDeviceIndex(device_index);
|
|
auto stream = at::xpu::getCurrentXPUStream(c10_device_index);
|
|
PyObject* output_tuple = PyTuple_New(3);
|
|
PyTuple_SetItem(
|
|
output_tuple, 0, THPUtils_packInt64(static_cast<int64_t>(stream.id())));
|
|
PyTuple_SetItem(
|
|
output_tuple, 1, THPUtils_packDeviceIndex(stream.device_index()));
|
|
PyTuple_SetItem(
|
|
output_tuple,
|
|
2,
|
|
THPUtils_packInt64(static_cast<int64_t>(stream.device_type())));
|
|
return output_tuple;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THXPModule_getCurrentStream_raw(
|
|
PyObject* self,
|
|
PyObject* device_index) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(
|
|
THPUtils_checkLong(device_index),
|
|
"invalid argument to getCurrentRawStream");
|
|
auto c10_device_index = THPUtils_unpackDeviceIndex(device_index);
|
|
return PyLong_FromVoidPtr(
|
|
&at::xpu::getCurrentXPUStream(c10_device_index).queue());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THXPModule_setStream_wrap(
|
|
PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
HANDLE_TH_ERRORS
|
|
int64_t stream_id = 0;
|
|
int64_t device_index = 0;
|
|
int64_t device_type = 0;
|
|
|
|
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
|
|
constexpr const char* kwlist[] = {
|
|
"stream_id", "device_index", "device_type", nullptr};
|
|
if (!PyArg_ParseTupleAndKeywords(
|
|
args,
|
|
kwargs,
|
|
"|LLL",
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
const_cast<char**>(kwlist),
|
|
&stream_id,
|
|
&device_index,
|
|
&device_type)) {
|
|
}
|
|
|
|
auto stream = at::xpu::XPUStream::unpack3(
|
|
stream_id,
|
|
static_cast<c10::DeviceIndex>(device_index),
|
|
static_cast<c10::DeviceType>(device_type));
|
|
|
|
auto device = c10::xpu::current_device();
|
|
if (device != stream.device_index()) {
|
|
c10::xpu::set_device(stream.device_index());
|
|
}
|
|
at::xpu::setCurrentXPUStream(stream);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THXPModule_xpuSynchronize(PyObject* self, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to synchronize");
|
|
auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
{
|
|
pybind11::gil_scoped_release no_gil;
|
|
// Only the SYCL queues we have reserved will be synchronized, see Note
|
|
// [Synchronize Streams on Device].
|
|
c10::xpu::syncStreamsOnDevice(device_index);
|
|
}
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THXPModule_emptyCache(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
c10::xpu::XPUCachingAllocator::emptyCache();
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THXPModule_memoryStats(PyObject* self, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to memory_stats");
|
|
const auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
|
|
using c10::CachingAllocator::Stat;
|
|
using c10::CachingAllocator::StatArray;
|
|
using c10::CachingAllocator::StatType;
|
|
using c10::CachingDeviceAllocator::DeviceStats;
|
|
|
|
const auto statToDict = [](const Stat& stat) {
|
|
py::dict dict;
|
|
|
|
dict["current"] = stat.current;
|
|
dict["peak"] = stat.peak;
|
|
dict["allocated"] = stat.allocated;
|
|
dict["freed"] = stat.freed;
|
|
return dict;
|
|
};
|
|
|
|
const auto statArrayToDict = [=](const StatArray& statArray) {
|
|
const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)>
|
|
statTypeNames = {"all", "small_pool", "large_pool"};
|
|
py::dict dict;
|
|
for (const auto i : c10::irange(statTypeNames.size())) {
|
|
dict[statTypeNames[i]] = statToDict(statArray[i]);
|
|
}
|
|
return dict;
|
|
};
|
|
|
|
const DeviceStats stats =
|
|
c10::xpu::XPUCachingAllocator::getDeviceStats(device_index);
|
|
|
|
py::dict result;
|
|
result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes);
|
|
result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes);
|
|
result["active_bytes"] = statArrayToDict(stats.active_bytes);
|
|
result["requested_bytes"] = statArrayToDict(stats.requested_bytes);
|
|
|
|
return result.release().ptr();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THXPModule_resetPeakMemoryStats(PyObject* self, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(
|
|
THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats");
|
|
const auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
c10::xpu::XPUCachingAllocator::resetPeakStats(device_index);
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THXPModule_resetAccumulatedMemoryStats(
|
|
PyObject* self,
|
|
PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(
|
|
THPUtils_checkLong(arg),
|
|
"invalid argument to reset_accumulated_memory_stats");
|
|
const auto device_index = THPUtils_unpackDeviceIndex(arg);
|
|
c10::xpu::XPUCachingAllocator::resetAccumulatedStats(device_index);
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
// XPU module initialization
|
|
|
|
static void registerXpuDeviceProperties(PyObject* module) {
|
|
// Add _xpuDevicePropertires class to torch._C
|
|
using namespace c10::xpu;
|
|
auto get_device_type = [](const DeviceProp& prop) {
|
|
std::ostringstream stream;
|
|
using namespace sycl::info;
|
|
switch (prop.device_type) {
|
|
case device_type::cpu:
|
|
stream << "cpu";
|
|
break;
|
|
case device_type::gpu:
|
|
stream << "gpu";
|
|
break;
|
|
case device_type::accelerator:
|
|
stream << "accelerator";
|
|
break;
|
|
case device_type::host:
|
|
stream << "host";
|
|
break;
|
|
default:
|
|
stream << "unknown device type:"
|
|
<< static_cast<typename std::underlying_type_t<device_type>>(
|
|
prop.device_type);
|
|
break;
|
|
}
|
|
return stream.str();
|
|
};
|
|
auto gpu_subslice_count = [](const DeviceProp& prop) {
|
|
return (prop.gpu_eu_count / prop.gpu_eu_count_per_subslice);
|
|
};
|
|
#if SYCL_COMPILER_VERSION >= 20250000
|
|
auto get_device_architecture = [](const DeviceProp& prop) {
|
|
return static_cast<int64_t>(prop.architecture);
|
|
};
|
|
#endif
|
|
auto m = py::handle(module).cast<py::module>();
|
|
|
|
#define DEFINE_READONLY_MEMBER(member) \
|
|
def_readonly(#member, &DeviceProp::member)
|
|
|
|
#define THXP_FORALL_DEVICE_PROPERTIES(_) \
|
|
py::class_<DeviceProp>(m, "_XpuDeviceProperties") \
|
|
._(name) \
|
|
._(platform_name) \
|
|
._(vendor) \
|
|
._(driver_version) \
|
|
._(version) \
|
|
._(max_compute_units) \
|
|
._(gpu_eu_count) \
|
|
._(max_work_group_size) \
|
|
._(max_num_sub_groups) \
|
|
._(sub_group_sizes) \
|
|
._(has_fp16) \
|
|
._(has_fp64) \
|
|
._(has_atomic64) \
|
|
._(has_bfloat16_conversions) \
|
|
._(has_subgroup_matrix_multiply_accumulate) \
|
|
._(has_subgroup_matrix_multiply_accumulate_tensor_float32) \
|
|
._(has_subgroup_2d_block_io)
|
|
|
|
THXP_FORALL_DEVICE_PROPERTIES(DEFINE_READONLY_MEMBER)
|
|
.def_readonly("total_memory", &DeviceProp::global_mem_size)
|
|
.def_property_readonly("gpu_subslice_count", gpu_subslice_count)
|
|
#if SYCL_COMPILER_VERSION >= 20250000
|
|
.def_property_readonly("architecture", get_device_architecture)
|
|
#endif
|
|
.def_property_readonly("type", get_device_type)
|
|
.def(
|
|
"__repr__",
|
|
[&get_device_type, &gpu_subslice_count](const DeviceProp& prop) {
|
|
std::ostringstream stream;
|
|
stream << "_XpuDeviceProperties(name='" << prop.name
|
|
<< "', platform_name='" << prop.platform_name << "', type='"
|
|
<< get_device_type(prop) << "', driver_version='"
|
|
<< prop.driver_version << "', total_memory="
|
|
<< prop.global_mem_size / (1024ull * 1024) << "MB"
|
|
<< ", max_compute_units=" << prop.max_compute_units
|
|
<< ", gpu_eu_count=" << prop.gpu_eu_count
|
|
<< ", gpu_subslice_count=" << gpu_subslice_count(prop)
|
|
<< ", max_work_group_size=" << prop.max_work_group_size
|
|
<< ", max_num_sub_groups=" << prop.max_num_sub_groups
|
|
<< ", sub_group_sizes=[" << prop.sub_group_sizes
|
|
<< "], has_fp16=" << prop.has_fp16
|
|
<< ", has_fp64=" << prop.has_fp64
|
|
<< ", has_atomic64=" << prop.has_atomic64 << ")";
|
|
return stream.str();
|
|
});
|
|
}
|
|
|
|
static void bindGetDeviceProperties(PyObject* module) {
|
|
// Add method to torch.xpu
|
|
auto m = py::handle(module).cast<py::module>();
|
|
m.def(
|
|
"_get_device_properties",
|
|
[](c10::DeviceIndex device) -> c10::xpu::DeviceProp* {
|
|
return at::xpu::getDeviceProperties(device);
|
|
},
|
|
py::return_value_policy::reference);
|
|
}
|
|
|
|
static void initXpuMethodBindings(PyObject* module) {
|
|
auto m = py::handle(module).cast<py::module>();
|
|
m.def("_xpu_getMemoryInfo", [](c10::DeviceIndex device_index) {
|
|
#if SYCL_COMPILER_VERSION >= 20250000
|
|
auto total = at::xpu::getDeviceProperties(device_index)->global_mem_size;
|
|
auto& device = c10::xpu::get_raw_device(device_index);
|
|
TORCH_CHECK(
|
|
device.has(sycl::aspect::ext_intel_free_memory),
|
|
"The device (",
|
|
at::xpu::getDeviceProperties(device_index)->name,
|
|
") doesn't support querying the available free memory. ",
|
|
"You can file an issue at https://github.com/pytorch/pytorch/issues ",
|
|
"to help us prioritize its implementation.");
|
|
auto free = device.get_info<sycl::ext::intel::info::device::free_memory>();
|
|
return std::make_tuple(free, total);
|
|
#else
|
|
TORCH_CHECK_NOT_IMPLEMENTED(
|
|
false,
|
|
"torch.xpu.mem_get_info requires PyTorch to be built with SYCL compiler version 2025.0.0 or newer.");
|
|
#endif
|
|
});
|
|
m.def(
|
|
"_xpu_getStreamFromExternal",
|
|
[](uintptr_t data_ptr, c10::DeviceIndex device_index) {
|
|
sycl::queue* ext_queue =
|
|
// NOLINTNEXTLINE(performance-no-int-to-ptr)
|
|
reinterpret_cast<sycl::queue*>(reinterpret_cast<void*>(data_ptr));
|
|
at::xpu::XPUStream stream =
|
|
c10::xpu::getStreamFromExternal(ext_queue, device_index);
|
|
return std::make_tuple(
|
|
stream.id(), stream.device_index(), stream.device_type());
|
|
});
|
|
}
|
|
|
|
// Callback for python part. Used for additional initialization of python
|
|
// classes
|
|
static PyObject* THXPModule_initExtension(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_INTERNAL_ASSERT(!in_bad_fork); // Handled at python level
|
|
poison_fork();
|
|
at::globalContext().lazyInitDevice(c10::DeviceType::XPU);
|
|
|
|
auto m = THPObjectPtr(PyImport_ImportModule("torch.xpu"));
|
|
if (!m)
|
|
throw python_error();
|
|
|
|
auto set_module_attr = [&](const char* name, PyObject* v) {
|
|
if (PyObject_SetAttrString(m, name, v) < 0) {
|
|
throw python_error();
|
|
}
|
|
};
|
|
|
|
auto num_gpus = c10::xpu::device_count();
|
|
THPObjectPtr default_xpu_generators(
|
|
PyTuple_New(static_cast<Py_ssize_t>(num_gpus)));
|
|
for (const auto i : c10::irange(num_gpus)) {
|
|
const auto& gen = at::xpu::detail::getDefaultXPUGenerator(i);
|
|
auto* cast_gen = THPGenerator_initDefaultGenerator(gen);
|
|
PyTuple_SetItem(default_xpu_generators.get(), i, cast_gen);
|
|
}
|
|
set_module_attr("default_generators", default_xpu_generators.get());
|
|
bindGetDeviceProperties(m);
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// NOLINTNEXTLINE(*-c-arrays*, *-global-variables)
|
|
static struct PyMethodDef _THXPModule_methods[] = {
|
|
{"_xpu_init", THXPModule_initExtension, METH_NOARGS, nullptr},
|
|
{"_xpu_setDevice", THXPModule_setDevice_wrap, METH_O, nullptr},
|
|
{"_xpu_exchangeDevice", THXPModule_exchangeDevice_wrap, METH_O, nullptr},
|
|
{"_xpu_maybeExchangeDevice",
|
|
THXPModule_maybeExchangeDevice_wrap,
|
|
METH_O,
|
|
nullptr},
|
|
{"_xpu_getDevice", THXPModule_getDevice_wrap, METH_NOARGS, nullptr},
|
|
{"_xpu_getDeviceCount",
|
|
THXPModule_getDeviceCount_wrap,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_xpu_getArchFlags", THXPModule_getArchFlags, METH_NOARGS, nullptr},
|
|
{"_xpu_isInBadFork", THXPModule_isInBadFork_wrap, METH_NOARGS, nullptr},
|
|
{"_xpu_getCurrentStream",
|
|
THXPModule_getCurrentStream_wrap,
|
|
METH_O,
|
|
nullptr},
|
|
{"_xpu_getCurrentRawStream",
|
|
THXPModule_getCurrentStream_raw,
|
|
METH_O,
|
|
nullptr},
|
|
{"_xpu_setStream",
|
|
castPyCFunctionWithKeywords(THXPModule_setStream_wrap),
|
|
METH_VARARGS | METH_KEYWORDS,
|
|
nullptr},
|
|
{"_xpu_synchronize", THXPModule_xpuSynchronize, METH_O, nullptr},
|
|
{"_xpu_emptyCache", THXPModule_emptyCache, METH_NOARGS, nullptr},
|
|
{"_xpu_memoryStats", THXPModule_memoryStats, METH_O, nullptr},
|
|
{"_xpu_resetAccumulatedMemoryStats",
|
|
THXPModule_resetAccumulatedMemoryStats,
|
|
METH_O,
|
|
nullptr},
|
|
{"_xpu_resetPeakMemoryStats",
|
|
THXPModule_resetPeakMemoryStats,
|
|
METH_O,
|
|
nullptr},
|
|
{nullptr}};
|
|
|
|
PyMethodDef* THXPModule_methods() {
|
|
return _THXPModule_methods;
|
|
}
|
|
|
|
namespace torch::xpu {
|
|
|
|
void initModule(PyObject* module) {
|
|
registerXpuDeviceProperties(module);
|
|
initXpuMethodBindings(module);
|
|
}
|
|
|
|
} // namespace torch::xpu
|