pytorch/torch/csrc/xpu/Module.cpp
Marko Radmilac 945e359fc1 Initial implementation of host memory stats (#147660)
This is an initial attempt to provide some statistics for the pinned host memory allocations flowing through CachingHostAllocator. Many times in the past we have had inexplicable slowdowns that would be much easier to diagnose if we had some host memory characteristics.

This change tries very hard not to disrupt the initial design of the allocator, and it uses existing locking mechanism, whenever possible, to gather statistics "for free". Only deviation from that is on the "slow path" where we incur CUDA calls anyway, so taking a short lock is not going to hurt the performance much, especially in the steady state where most allocations will come from cache.

As mentioned before, this is the first PR, to introduce the concept and to see if it fits the right paradigm. We can always add more later.

Metrics that would require more involved changes to the code base and locks, like requested memory, have been punted for now. I also tried to reuse the Stat structure used in CUDA caching allocator, in order to maintain symmetry.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147660
Approved by: https://github.com/ngimel
2025-02-28 18:36:44 +00:00

498 lines
17 KiB
C++

#include <ATen/ATen.h>
#include <ATen/xpu/XPUContext.h>
#include <ATen/xpu/XPUGeneratorImpl.h>
#include <c10/xpu/XPUCachingAllocator.h>
#include <c10/xpu/XPUFunctions.h>
#include <torch/csrc/Module.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/utils/device_lazy_init.h>
#include <torch/csrc/utils/pycfunction_helpers.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
#ifndef WIN32
#include <pthread.h>
#endif
using namespace torch;
static bool in_bad_fork = false; // True for children forked after xpu init
#ifndef WIN32
// Called in the forked child if xpu has already been initialized
static void forked_child() {
in_bad_fork = true;
torch::utils::set_requires_device_init(at::kXPU, true);
}
#endif
// Should be called before the first xpu call. It is mainly called in lazy_init.
// Note: This is distinct from initExtension because a stub xpu implementation
// has some working functions (e.g. device_count) but cannot fully initialize.
static void poison_fork() {
#ifndef WIN32
static auto result [[maybe_unused]] =
pthread_atfork(nullptr, nullptr, forked_child);
#endif
}
// XPU management methods
PyObject* THXPModule_getArchFlags(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
#ifdef XPU_ARCH_FLAGS
static const char* flags = C10_STRINGIZE(XPU_ARCH_FLAGS);
return THPUtils_packString(flags);
#else
Py_RETURN_NONE;
#endif
END_HANDLE_TH_ERRORS
}
static PyObject* THXPModule_isInBadFork_wrap(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
return PyBool_FromLong(in_bad_fork);
END_HANDLE_TH_ERRORS
}
PyObject* THXPModule_setDevice_wrap(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to set_device");
auto device_index = THPUtils_unpackDeviceIndex(arg);
c10::xpu::set_device(device_index);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THXPModule_exchangeDevice_wrap(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to exchange_device");
auto device_index = THPUtils_unpackDeviceIndex(arg);
if (device_index < 0) {
return THPUtils_packInt32(-1);
}
torch::utils::device_lazy_init(at::kXPU);
auto current_device = c10::xpu::exchange_device(device_index);
return THPUtils_packDeviceIndex(current_device);
END_HANDLE_TH_ERRORS
}
PyObject* THXPModule_maybeExchangeDevice_wrap(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg), "invalid argument to maybe_exchange_device");
auto device_index = THPUtils_unpackDeviceIndex(arg);
if (device_index < 0) {
return THPUtils_packInt32(-1);
}
torch::utils::device_lazy_init(at::kXPU);
auto current_device = c10::xpu::maybe_exchange_device(device_index);
return THPUtils_packDeviceIndex(current_device);
END_HANDLE_TH_ERRORS
}
PyObject* THXPModule_getDevice_wrap(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto device_index = c10::xpu::current_device();
return THPUtils_packDeviceIndex(device_index);
END_HANDLE_TH_ERRORS
}
PyObject* THXPModule_getDeviceCount_wrap(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
poison_fork();
return THPUtils_packUInt64(at::xpu::device_count());
END_HANDLE_TH_ERRORS
}
PyObject* THXPModule_getCurrentStream_wrap(
PyObject* self,
PyObject* device_index) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(device_index), "invalid argument to current_stream");
auto c10_device_index = THPUtils_unpackDeviceIndex(device_index);
auto stream = at::xpu::getCurrentXPUStream(c10_device_index);
PyObject* output_tuple = PyTuple_New(3);
PyTuple_SetItem(
output_tuple, 0, THPUtils_packInt64(static_cast<int64_t>(stream.id())));
PyTuple_SetItem(
output_tuple, 1, THPUtils_packDeviceIndex(stream.device_index()));
PyTuple_SetItem(
output_tuple,
2,
THPUtils_packInt64(static_cast<int64_t>(stream.device_type())));
return output_tuple;
END_HANDLE_TH_ERRORS
}
PyObject* THXPModule_getCurrentStream_raw(
PyObject* self,
PyObject* device_index) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(device_index),
"invalid argument to getCurrentRawStream");
auto c10_device_index = THPUtils_unpackDeviceIndex(device_index);
return PyLong_FromVoidPtr(
&at::xpu::getCurrentXPUStream(c10_device_index).queue());
END_HANDLE_TH_ERRORS
}
PyObject* THXPModule_setStream_wrap(
PyObject* self,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
int64_t stream_id = 0;
int64_t device_index = 0;
int64_t device_type = 0;
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
constexpr const char* kwlist[] = {
"stream_id", "device_index", "device_type", nullptr};
if (!PyArg_ParseTupleAndKeywords(
args,
kwargs,
"|LLL",
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<char**>(kwlist),
&stream_id,
&device_index,
&device_type)) {
}
auto stream = at::xpu::XPUStream::unpack3(
stream_id,
static_cast<c10::DeviceIndex>(device_index),
static_cast<c10::DeviceType>(device_type));
auto device = c10::xpu::current_device();
if (device != stream.device_index()) {
c10::xpu::set_device(stream.device_index());
}
at::xpu::setCurrentXPUStream(stream);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THXPModule_xpuSynchronize(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to synchronize");
auto device_index = THPUtils_unpackDeviceIndex(arg);
{
pybind11::gil_scoped_release no_gil;
// Only the SYCL queues we have reserved will be synchronized, see Note
// [Synchronize Streams on Device].
c10::xpu::syncStreamsOnDevice(device_index);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THXPModule_emptyCache(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
c10::xpu::XPUCachingAllocator::emptyCache();
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THXPModule_memoryStats(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to memory_stats");
const auto device_index = THPUtils_unpackDeviceIndex(arg);
using c10::CachingAllocator::Stat;
using c10::CachingAllocator::StatArray;
using c10::CachingAllocator::StatType;
using c10::CachingDeviceAllocator::DeviceStats;
const auto statToDict = [](const Stat& stat) {
py::dict dict;
dict["current"] = stat.current;
dict["peak"] = stat.peak;
dict["allocated"] = stat.allocated;
dict["freed"] = stat.freed;
return dict;
};
const auto statArrayToDict = [=](const StatArray& statArray) {
const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)>
statTypeNames = {"all", "small_pool", "large_pool"};
py::dict dict;
for (const auto i : c10::irange(statTypeNames.size())) {
dict[statTypeNames[i]] = statToDict(statArray[i]);
}
return dict;
};
const DeviceStats stats =
c10::xpu::XPUCachingAllocator::getDeviceStats(device_index);
py::dict result;
result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes);
result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes);
result["active_bytes"] = statArrayToDict(stats.active_bytes);
result["requested_bytes"] = statArrayToDict(stats.requested_bytes);
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
PyObject* THXPModule_resetPeakMemoryStats(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats");
const auto device_index = THPUtils_unpackDeviceIndex(arg);
c10::xpu::XPUCachingAllocator::resetPeakStats(device_index);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THXPModule_resetAccumulatedMemoryStats(
PyObject* self,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg),
"invalid argument to reset_accumulated_memory_stats");
const auto device_index = THPUtils_unpackDeviceIndex(arg);
c10::xpu::XPUCachingAllocator::resetAccumulatedStats(device_index);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
// XPU module initialization
static void registerXpuDeviceProperties(PyObject* module) {
// Add _xpuDevicePropertires class to torch._C
using namespace c10::xpu;
auto get_device_type = [](const DeviceProp& prop) {
std::ostringstream stream;
using namespace sycl::info;
switch (prop.device_type) {
case device_type::cpu:
stream << "cpu";
break;
case device_type::gpu:
stream << "gpu";
break;
case device_type::accelerator:
stream << "accelerator";
break;
case device_type::host:
stream << "host";
break;
default:
stream << "unknown device type:"
<< static_cast<typename std::underlying_type_t<device_type>>(
prop.device_type);
break;
}
return stream.str();
};
auto gpu_subslice_count = [](const DeviceProp& prop) {
return (prop.gpu_eu_count / prop.gpu_eu_count_per_subslice);
};
#if SYCL_COMPILER_VERSION >= 20250000
auto get_device_architecture = [](const DeviceProp& prop) {
return static_cast<int64_t>(prop.architecture);
};
#endif
auto m = py::handle(module).cast<py::module>();
#define DEFINE_READONLY_MEMBER(member) \
def_readonly(#member, &DeviceProp::member)
#define THXP_FORALL_DEVICE_PROPERTIES(_) \
py::class_<DeviceProp>(m, "_XpuDeviceProperties") \
._(name) \
._(platform_name) \
._(vendor) \
._(driver_version) \
._(version) \
._(max_compute_units) \
._(gpu_eu_count) \
._(max_work_group_size) \
._(max_num_sub_groups) \
._(sub_group_sizes) \
._(has_fp16) \
._(has_fp64) \
._(has_atomic64) \
._(has_bfloat16_conversions) \
._(has_subgroup_matrix_multiply_accumulate) \
._(has_subgroup_matrix_multiply_accumulate_tensor_float32) \
._(has_subgroup_2d_block_io)
THXP_FORALL_DEVICE_PROPERTIES(DEFINE_READONLY_MEMBER)
.def_readonly("total_memory", &DeviceProp::global_mem_size)
.def_property_readonly("gpu_subslice_count", gpu_subslice_count)
#if SYCL_COMPILER_VERSION >= 20250000
.def_property_readonly("architecture", get_device_architecture)
#endif
.def_property_readonly("type", get_device_type)
.def(
"__repr__",
[&get_device_type, &gpu_subslice_count](const DeviceProp& prop) {
std::ostringstream stream;
stream << "_XpuDeviceProperties(name='" << prop.name
<< "', platform_name='" << prop.platform_name << "', type='"
<< get_device_type(prop) << "', driver_version='"
<< prop.driver_version << "', total_memory="
<< prop.global_mem_size / (1024ull * 1024) << "MB"
<< ", max_compute_units=" << prop.max_compute_units
<< ", gpu_eu_count=" << prop.gpu_eu_count
<< ", gpu_subslice_count=" << gpu_subslice_count(prop)
<< ", max_work_group_size=" << prop.max_work_group_size
<< ", max_num_sub_groups=" << prop.max_num_sub_groups
<< ", sub_group_sizes=[" << prop.sub_group_sizes
<< "], has_fp16=" << prop.has_fp16
<< ", has_fp64=" << prop.has_fp64
<< ", has_atomic64=" << prop.has_atomic64 << ")";
return stream.str();
});
}
static void bindGetDeviceProperties(PyObject* module) {
// Add method to torch.xpu
auto m = py::handle(module).cast<py::module>();
m.def(
"_get_device_properties",
[](c10::DeviceIndex device) -> c10::xpu::DeviceProp* {
return at::xpu::getDeviceProperties(device);
},
py::return_value_policy::reference);
}
static void initXpuMethodBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
m.def("_xpu_getMemoryInfo", [](c10::DeviceIndex device_index) {
#if SYCL_COMPILER_VERSION >= 20250000
auto total = at::xpu::getDeviceProperties(device_index)->global_mem_size;
auto& device = c10::xpu::get_raw_device(device_index);
TORCH_CHECK(
device.has(sycl::aspect::ext_intel_free_memory),
"The device (",
at::xpu::getDeviceProperties(device_index)->name,
") doesn't support querying the available free memory. ",
"You can file an issue at https://github.com/pytorch/pytorch/issues ",
"to help us prioritize its implementation.");
auto free = device.get_info<sycl::ext::intel::info::device::free_memory>();
return std::make_tuple(free, total);
#else
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"torch.xpu.mem_get_info requires PyTorch to be built with SYCL compiler version 2025.0.0 or newer.");
#endif
});
m.def(
"_xpu_getStreamFromExternal",
[](uintptr_t data_ptr, c10::DeviceIndex device_index) {
sycl::queue* ext_queue =
// NOLINTNEXTLINE(performance-no-int-to-ptr)
reinterpret_cast<sycl::queue*>(reinterpret_cast<void*>(data_ptr));
at::xpu::XPUStream stream =
c10::xpu::getStreamFromExternal(ext_queue, device_index);
return std::make_tuple(
stream.id(), stream.device_index(), stream.device_type());
});
}
// Callback for python part. Used for additional initialization of python
// classes
static PyObject* THXPModule_initExtension(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
TORCH_INTERNAL_ASSERT(!in_bad_fork); // Handled at python level
poison_fork();
at::globalContext().lazyInitDevice(c10::DeviceType::XPU);
auto m = THPObjectPtr(PyImport_ImportModule("torch.xpu"));
if (!m)
throw python_error();
auto set_module_attr = [&](const char* name, PyObject* v) {
if (PyObject_SetAttrString(m, name, v) < 0) {
throw python_error();
}
};
auto num_gpus = c10::xpu::device_count();
THPObjectPtr default_xpu_generators(
PyTuple_New(static_cast<Py_ssize_t>(num_gpus)));
for (const auto i : c10::irange(num_gpus)) {
const auto& gen = at::xpu::detail::getDefaultXPUGenerator(i);
auto* cast_gen = THPGenerator_initDefaultGenerator(gen);
PyTuple_SetItem(default_xpu_generators.get(), i, cast_gen);
}
set_module_attr("default_generators", default_xpu_generators.get());
bindGetDeviceProperties(m);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// NOLINTNEXTLINE(*-c-arrays*, *-global-variables)
static struct PyMethodDef _THXPModule_methods[] = {
{"_xpu_init", THXPModule_initExtension, METH_NOARGS, nullptr},
{"_xpu_setDevice", THXPModule_setDevice_wrap, METH_O, nullptr},
{"_xpu_exchangeDevice", THXPModule_exchangeDevice_wrap, METH_O, nullptr},
{"_xpu_maybeExchangeDevice",
THXPModule_maybeExchangeDevice_wrap,
METH_O,
nullptr},
{"_xpu_getDevice", THXPModule_getDevice_wrap, METH_NOARGS, nullptr},
{"_xpu_getDeviceCount",
THXPModule_getDeviceCount_wrap,
METH_NOARGS,
nullptr},
{"_xpu_getArchFlags", THXPModule_getArchFlags, METH_NOARGS, nullptr},
{"_xpu_isInBadFork", THXPModule_isInBadFork_wrap, METH_NOARGS, nullptr},
{"_xpu_getCurrentStream",
THXPModule_getCurrentStream_wrap,
METH_O,
nullptr},
{"_xpu_getCurrentRawStream",
THXPModule_getCurrentStream_raw,
METH_O,
nullptr},
{"_xpu_setStream",
castPyCFunctionWithKeywords(THXPModule_setStream_wrap),
METH_VARARGS | METH_KEYWORDS,
nullptr},
{"_xpu_synchronize", THXPModule_xpuSynchronize, METH_O, nullptr},
{"_xpu_emptyCache", THXPModule_emptyCache, METH_NOARGS, nullptr},
{"_xpu_memoryStats", THXPModule_memoryStats, METH_O, nullptr},
{"_xpu_resetAccumulatedMemoryStats",
THXPModule_resetAccumulatedMemoryStats,
METH_O,
nullptr},
{"_xpu_resetPeakMemoryStats",
THXPModule_resetPeakMemoryStats,
METH_O,
nullptr},
{nullptr}};
PyMethodDef* THXPModule_methods() {
return _THXPModule_methods;
}
namespace torch::xpu {
void initModule(PyObject* module) {
registerXpuDeviceProperties(module);
initXpuMethodBindings(module);
}
} // namespace torch::xpu