pytorch/test/cpp/tensorexpr/test_loopnest.cpp
Nick Gibson 944ac133d0 [NNC] Remove VarBinding and go back to Let stmts (#42634)
Summary:
Awhile back when commonizing the Let and LetStmt nodes, I ended up removing both and adding a separate VarBinding section the Block. At the time I couldn't find a counter example, but I found it today: Local Vars and Allocations dependencies may go in either direction and so we need to support interleaving of those statements.

So, I've removed all the VarBinding logic and reimplemented Let statements. ZolotukhinM I think you get to say "I told you so". No new tests, existing tests should cover this.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42634

Reviewed By: mruberry

Differential Revision: D22969771

Pulled By: nickgg

fbshipit-source-id: a46c5193357902d0f59bf30ab103fe123b1503f1
2020-08-07 10:50:38 -07:00

1711 lines
46 KiB
C++

#include <test/cpp/tensorexpr/test_base.h>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <unordered_map>
#include <test/cpp/tensorexpr/padded_buffer.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/bounds_inference.h>
#include <torch/csrc/jit/tensorexpr/buffer.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/function.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/csrc/jit/testing/file_check.h>
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
void testExprSimple01() {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f", {{16, "X"}, {5, "y"}}, [](const VarHandle& x, const VarHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
});
LoopNest l({tensor});
For* x_outer;
For* x_inner;
For* x_tail;
std::vector<For*> loops = l.getLoopStmtsFor(tensor);
l.splitWithTail(loops[0], 2, &x_outer, &x_inner, &x_tail);
For* x_2;
For* x_1;
For* x_tail_2;
l.splitWithTail(x_outer, 2, &x_2, &x_1, &x_tail_2);
}
void testExprLower01() {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f", {{16, "x"}, {5, "y"}}, [](const VarHandle& x, const VarHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
});
LoopNest l({tensor});
Stmt* stmt = l.root_stmt();
std::ostringstream oss;
oss << *stmt;
ASSERT_GT(oss.str().size(), 20);
ASSERT_LT(oss.str().size(), 200);
}
void testExprSimple02() {
KernelScope kernel_scope;
auto func = [](const ExprHandle& x, const ExprHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
};
Tensor* tensor = Compute("f", {{26, "x"}, {5, "y"}}, func);
LoopNest l({tensor});
For* x_outer;
For* x_inner;
For* x_tail;
std::vector<For*> loops = l.getLoopStmtsFor(tensor);
l.splitWithTail(loops[0], 4, &x_outer, &x_inner, &x_tail);
Stmt* stmt = l.root_stmt();
std::ostringstream oss;
oss << *stmt;
ASSERT_GT(oss.str().size(), 200);
ASSERT_LT(oss.str().size(), 600);
{
// Compare to a reference loop structure structure.
VarHandle x_outer("x_outer", kInt);
VarHandle x_inner("x_inner", kInt);
VarHandle y("y", kInt);
VarHandle x_tail("x_tail", kInt);
BufHandle f("f", {26, 5}, kFloat);
ExprHandle x_1 = x_outer * 4 + x_inner;
ExprHandle x_outer_end = (ExprHandle(26) - 0) / 4;
For* stmt1 = For::make(
x_outer,
0,
x_outer_end,
For::make(
x_inner,
0,
4,
For::make(y, 0, 5, Store::make(f, {x_1, y}, func(x_1, y), 1))));
ExprHandle x_2 = x_tail + x_outer_end * 4;
For* stmt2 = For::make(
x_tail,
0,
(ExprHandle(26) - 0) % 4,
For::make(y, 0, 5, Store::make(f, {x_2, y}, func(x_2, y), 1)));
Stmt* stmt = Block::make({stmt1, stmt2});
std::ostringstream oss_ref;
oss_ref << *stmt;
ASSERT_EQ(oss.str(), oss_ref.str());
}
{
PaddedBuffer<float> f_v(26, 5, "f_v");
PaddedBuffer<float> f_ref(26, 5, "f_res");
stmt = FlattenIndexes(stmt);
SimpleIREvaluator ir_eval(stmt, tensor);
ir_eval(f_v);
for (int x = 0; x < 26; x++) {
for (int y = 0; y < 5; y++) {
f_ref(x, y) = 1 + x * x + y * y;
}
}
ExpectAllNear(f_v, f_ref, 1e-5);
}
}
void testExprSplitWithTail() {
KernelScope kernel_scope;
auto func = [](const ExprHandle& x) {
return ExprHandle(1.0f) + cast<float>(x);
};
Tensor* tensor = Compute("f", {{199, "x"}}, func);
LoopNest l({tensor});
For* x_outer;
For* x_inner;
For* x_tail;
std::vector<For*> loops = l.getLoopStmtsFor(tensor);
l.splitWithTail(loops[0], 17, &x_outer, &x_inner, &x_tail);
For* a;
For* b;
For* c;
l.splitWithTail(x_outer, 7, &a, &b, &c);
Stmt* stmt = l.root_stmt();
Stmt* simplified = IRSimplifier::simplify(stmt);
Block* body = dynamic_cast<Block*>(simplified);
ASSERT_EQ(body->nstmts(), 3);
auto biter = body->begin();
// Verify that the split loops are ordered correctly.
For* loop = dynamic_cast<For*>(*biter);
++biter;
ASSERT_NE(loop, nullptr);
const IntImm* bound = dynamic_cast<const IntImm*>(loop->stop());
ASSERT_NE(bound, nullptr);
ASSERT_EQ(bound->value(), 7);
loop = dynamic_cast<For*>(*biter);
++biter;
ASSERT_NE(loop, nullptr);
bound = dynamic_cast<const IntImm*>(loop->stop());
ASSERT_NE(bound, nullptr);
ASSERT_EQ(bound->value(), 4);
loop = dynamic_cast<For*>(*biter);
ASSERT_NE(loop, nullptr);
bound = dynamic_cast<const IntImm*>(loop->stop());
ASSERT_NE(bound, nullptr);
ASSERT_EQ(bound->value(), 12);
}
void testExprSplitWithTailNone() {
KernelScope kernel_scope;
auto func = [](const ExprHandle& x, const ExprHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
};
Tensor* tensor = Compute("f", {{24, "x"}, {5, "y"}}, func);
LoopNest l({tensor});
For* x_outer;
For* x_inner;
For* x_tail;
std::vector<For*> loops = l.getLoopStmtsFor(tensor);
l.splitWithTail(loops[0], 4, &x_outer, &x_inner, &x_tail);
Stmt* stmt = l.root_stmt();
std::ostringstream oss;
oss << *stmt;
ASSERT_GT(oss.str().size(), 200);
ASSERT_LT(oss.str().size(), 600);
{
// Compare to a reference loop structure structure.
VarHandle x_outer("x_outer", kInt);
VarHandle x_inner("x_inner", kInt);
VarHandle y("y", kInt);
VarHandle x_tail("x_tail", kInt);
BufHandle f("f", {24, 5}, kFloat);
ExprHandle x_1 = x_outer * 4 + x_inner;
ExprHandle x_outer_end = (ExprHandle(24) - 0) / 4;
Stmt* stmt = new Block({For::make(
x_outer,
0,
x_outer_end,
For::make(
x_inner,
0,
4,
For::make(y, 0, 5, Store::make(f, {x_1, y}, func(x_1, y), 1))))});
std::ostringstream oss_ref;
oss_ref << *stmt;
ASSERT_EQ(oss.str(), oss_ref.str());
}
{
PaddedBuffer<float> f_v(24, 5, "f_v");
PaddedBuffer<float> f_ref(24, 5, "f_res");
SimpleIREvaluator ir_eval(stmt, tensor);
ir_eval(f_v);
for (int x = 0; x < 24; x++) {
for (int y = 0; y < 5; y++) {
f_ref(x, y) = 1 + x * x + y * y;
}
}
ExpectAllNear(f_v, f_ref, 1e-5);
}
}
void testExprSplitWithMask01() {
KernelScope kernel_scope;
const int M = 26;
const int N = 5;
Buffer a_buf("a", kFloat, {M, N});
Buffer b_buf("b", kFloat, {M, N});
Tensor* tensor = Compute(
"f", {{M, "m"}, {N, "n"}}, [&](const ExprHandle& m, const ExprHandle& n) {
return a_buf(m, n) + b_buf(m, n) + 1.0f;
});
For* n_outer;
For* n_inner;
LoopNest l({tensor});
std::vector<For*> loops = l.getLoopStmtsFor(tensor);
l.splitWithMask(loops[1], 4, &n_outer, &n_inner);
Stmt* stmt = l.root_stmt();
PaddedBuffer<float> a_v(M, N, "a");
PaddedBuffer<float> b_v(M, N, "b");
PaddedBuffer<float> c_v(M, N, "c");
PaddedBuffer<float> c_ref(M, N, "c_ref");
for (int m = 0; m < M; m++) {
for (int n = 0; n < N; n++) {
a_v(m, n) = 2 * m;
b_v(m, n) = 3 * n;
c_ref(m, n) = a_v(m, n) + b_v(m, n) + 1.0f;
}
}
SimpleIREvaluator(stmt, a_buf, b_buf, tensor)(a_v, b_v, c_v);
ExpectAllNear(c_v, c_ref, 1e-5);
}
void testSplitWithTailWithLoopOptions() {
KernelScope kernel_scope;
const int M = 21;
Buffer a_buf("a", kFloat, {M});
Buffer b_buf("b", kFloat, {M});
Tensor* tensor = Compute("f", {{M, "m"}}, [&](const ExprHandle& m) {
return a_buf(m) + b_buf(m) + 1.0f;
});
For *outer, *inner, *tail;
LoopNest l({tensor});
auto loops = NodeFinder<For>::find(l.root_stmt());
ASSERT_GT(loops.size(), 0);
l.setGPUBlockIndex(loops[0], LoopOptions::IDX_Y);
l.splitWithTail(loops[0], 4, &outer, &inner, &tail);
ASSERT_NE(outer, nullptr);
ASSERT_NE(inner, nullptr);
ASSERT_NE(tail, nullptr);
// Outer loop carries loop axis bindings.
ASSERT_TRUE(outer->loop_options().is_gpu_block_index());
ASSERT_EQ(outer->loop_options().gpu_block_index(), LoopOptions::IDX_Y);
// Inner loop has none.
ASSERT_TRUE(inner->loop_options().isDefault());
// Tail loop has none.
ASSERT_TRUE(tail->loop_options().isDefault());
}
void testSplitWithMaskWithLoopOptions() {
KernelScope kernel_scope;
const int M = 21;
Buffer a_buf("a", kFloat, {M});
Buffer b_buf("b", kFloat, {M});
Tensor* tensor = Compute("f", {{M, "m"}}, [&](const ExprHandle& m) {
return a_buf(m) + b_buf(m) + 1.0f;
});
For *outer, *inner;
LoopNest l({tensor});
auto loops = NodeFinder<For>::find(l.root_stmt());
l.setGPUBlockIndex(loops[0], LoopOptions::IDX_Y);
l.splitWithMask(loops[0], 4, &outer, &inner);
// Outer loop carries loop axis bindings.
ASSERT_TRUE(outer->loop_options().is_gpu_block_index());
ASSERT_EQ(outer->loop_options().gpu_block_index(), LoopOptions::IDX_Y);
// Inner loop has none.
ASSERT_TRUE(inner->loop_options().isDefault());
}
void testScheduleBroadcastAddBuffer() {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Buffer a_buf("a", kFloat, {M, N});
Buffer b_buf("b", kFloat, {N, K});
Tensor* c = Compute(
"broadcast_add",
{{M, "m"}, {N, "n"}, {K, "k"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf(m, n) + b_buf(n, k);
});
LoopNest l({c});
Stmt* stmt = l.root_stmt();
PaddedBuffer<float> a_v(M, N, "a_v");
for (int m = 0; m < M; m++) {
for (int n = 0; n < N; n++) {
a_v(m, n) = 7 * m * n;
}
}
a_v.Backup();
PaddedBuffer<float> b_v(N, K, "b_v");
for (int n = 0; n < N; n++) {
for (int k = 0; k < K; k++) {
b_v(n, k) = 11 * n * k;
}
}
b_v.Backup();
PaddedBuffer<float> c_v(M, N, K, "c_buf");
SimpleIREvaluator ir_eval(stmt, a_buf, b_buf, c);
ir_eval(a_v, b_v, c_v);
a_v.CheckBackup();
b_v.CheckBackup();
PaddedBuffer<float> c_ref(M, N, K, "c_ref");
for (int m = 0; m < M; m++) {
for (int n = 0; n < N; n++) {
for (int k = 0; k < K; k++) {
c_ref(m, n, k) = 7 * m * n + 11 * n * k;
}
}
}
ExpectAllNear(c_v, c_ref, 1e-5);
}
void testScheduleFunctionCall01() {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Buffer a_buf("a", kFloat, {M, N});
Buffer b_buf("b", kFloat, {N, K});
Tensor* c = Compute(
"broadcast_add",
{{M, "m"}, {N, "n"}, {K, "k"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf(m, n) + b_buf(n, k);
});
Tensor* d = Compute(
"d",
{{M, "m"}, {N, "n"}, {K, "k"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return c->call(m, n, k) + 1;
});
LoopNest l({d});
l.prepareForCodegen();
Stmt* stmt = l.root_stmt();
std::ostringstream oss;
oss << *stmt;
ASSERT_GT(oss.str().size(), 100);
PaddedBuffer<float> a_v(M, N);
PaddedBuffer<float> b_v(N, K);
PaddedBuffer<float> c_v(M, N, K);
PaddedBuffer<float> d_v(M, N, K);
PaddedBuffer<float> d_ref(M, N, K);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
a_v(i, j) = i * i;
}
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < K; j++) {
b_v(i, j) = j * j;
}
}
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
for (int k = 0; k < K; k++) {
d_ref(i, j, k) = a_v(i, j) + b_v(j, k) + 1;
}
}
}
SimpleIREvaluator eval(stmt, a_buf, b_buf, d);
eval(a_v, b_v, d_v);
ExpectAllNear(d_v, d_ref, 1e-5);
}
static std::string remove_space(const std::string& str) {
std::string str_new = str;
str_new.erase(
remove_if(str_new.begin(), str_new.end(), isspace), str_new.end());
return str_new;
}
void InlineFunc01Helper(const std::vector<std::string>& inline_order) {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Buffer a_buf("a", kFloat, {M, N});
Buffer b_buf("b", kFloat, {N, K});
Buffer c_buf("c", kFloat, {M, N});
Buffer d_buf("d", kFloat, {M, K});
Tensor* x = Compute(
"x",
{{M, "m1"}, {N, "n1"}, {K, "k1"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf(m, n) * b_buf(n, k);
});
Tensor* y = Compute(
"y",
{{M, "m2"}, {N, "n2"}, {K, "k2"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return c_buf(m, n) * d_buf(m, k) + x->call(m, n, k);
});
Tensor* z = Compute(
"z",
{{M, "m3"}, {N, "n3"}, {K, "k3"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return x->call(m, n, k) + y->call(m, n, k);
});
LoopNest l({z});
for (const std::string& order : inline_order) {
if (order == "x") {
l.computeInline(l.getLoopBodyFor(x));
} else if (order == "y") {
l.computeInline(l.getLoopBodyFor(y));
} else {
throw std::runtime_error("Invalid order: " + order);
}
}
l.prepareForCodegen();
Stmt* stmt = l.root_stmt();
std::ostringstream oss;
oss << *stmt;
std::string str1 = remove_space(oss.str());
{
PaddedBuffer<float> a_v(M, N);
PaddedBuffer<float> b_v(N, K);
PaddedBuffer<float> c_v(M, N);
PaddedBuffer<float> d_v(M, K);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
a_v(i, j) = i * i;
}
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < K; j++) {
a_v(i, j) = j * j;
}
}
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
c_v(i, j) = i + j;
}
}
for (int i = 0; i < M; i++) {
for (int j = 0; j < K; j++) {
d_v(i, j) = i * j;
}
}
PaddedBuffer<float> z_v(M, N, K);
PaddedBuffer<float> z_ref(M, N, K);
for (int m = 0; m < M; m++) {
for (int n = 0; n < N; n++) {
for (int k = 0; k < K; k++) {
z_ref(m, n, k) = a_v(m, n) * b_v(n, k) * 2 + c_v(m, n) * d_v(m, k);
}
}
}
SimpleIREvaluator eval(stmt, a_buf, b_buf, c_buf, d_buf, z);
eval(a_v, b_v, c_v, d_v, z_v);
ExpectAllNear(z_v, z_ref, 1e-5);
}
if (inline_order.size() == 2) {
Tensor* z2 = Compute(
"z",
{{M, "m3"}, {N, "n3"}, {K, "k3"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf(m, n) * b_buf(n, k) +
(c_buf(m, n) * d_buf(m, k) + a_buf(m, n) * b_buf(n, k));
});
LoopNest l2({z2});
l2.prepareForCodegen();
Stmt* stmt2 = l2.root_stmt();
std::ostringstream oss2;
oss2 << *stmt2;
std::string str2 = remove_space(oss2.str());
ASSERT_EQ(str1, str2);
ASSERT_GT(str1.size(), 100);
}
}
void testScheduleInlineFunc01() {
InlineFunc01Helper({"x", "y"});
InlineFunc01Helper({"y", "x"});
InlineFunc01Helper({"x"});
InlineFunc01Helper({"y"});
InlineFunc01Helper({});
}
void testScheduleFuserStyle() {
KernelScope kernel_scope;
const int kVectorSize = 8;
const int kVectorCount = 128;
const int kTotalSize = kVectorSize * kVectorCount;
Buffer a_buf(BufHandle("A", {ExprHandle(kTotalSize)}, kFloat));
Tensor* b = Compute(
"f", {{kTotalSize, "i"}}, [&](const std::vector<VarHandle>& axes) {
return a_buf(axes[0]) + 11.0f;
});
Tensor* c = Compute(
"g", {{kTotalSize, "i"}}, [&](const std::vector<VarHandle>& axes) {
return b->call(axes[0]) + 1.0f;
});
LoopNest l({b, c});
l.prepareForCodegen();
Stmt* s = l.root_stmt();
std::vector<float> a_data(kTotalSize, 7.0f);
std::vector<float> b_data(kTotalSize, 0.0f);
std::vector<float> c_data(kTotalSize, 0.0f);
SimpleIREvaluator(s, a_buf, b, c)(a_data, b_data, c_data);
for (int i = 0; i < kTotalSize; i++) {
ASSERT_EQ(b_data[i], 18.0f);
ASSERT_EQ(c_data[i], 19.0f);
}
}
void testScheduleFuserThreeArg() {
KernelScope kernel_scope;
const int kVectorSize = 8;
const int kVectorCount = 128;
const int kTotalSize = kVectorSize * kVectorCount;
Buffer a(BufHandle("A", {ExprHandle(kTotalSize)}, kFloat));
Buffer b(BufHandle("B", {ExprHandle(kTotalSize)}, kFloat));
Buffer c(BufHandle("C", {ExprHandle(kTotalSize)}, kFloat));
Buffer d(BufHandle("D", {ExprHandle(kTotalSize)}, kFloat));
Tensor* e = Compute("e", {{kTotalSize, "i"}}, [&](const VarHandle& i) {
return a(i) + b(i);
});
Tensor* f = Compute("f", {{kTotalSize, "i"}}, [&](const VarHandle& i) {
return (*e)(i) + c(i);
});
Tensor* g = Compute("g", {{kTotalSize, "i"}}, [&](const VarHandle& i) {
return (*f)(i) + d(i);
});
LoopNest l({g});
l.computeInline(l.getLoopBodyFor(e));
l.computeInline(l.getLoopBodyFor(f));
l.prepareForCodegen();
Stmt* s = l.root_stmt();
std::vector<float> a_data(kTotalSize, 1.0f);
std::vector<float> b_data(kTotalSize, 2.0f);
std::vector<float> c_data(kTotalSize, 3.0f);
std::vector<float> d_data(kTotalSize, 4.0f);
std::vector<float> g_data(kTotalSize, 0.0f);
SimpleIREvaluator(s, a, b, c, d, g)(a_data, b_data, c_data, d_data, g_data);
for (int i = 0; i < kTotalSize; i++) {
ASSERT_EQ(g_data[i], 10.0f);
}
}
void testScheduleDynamicShape2D() {
KernelScope kernel_scope;
auto testWithSize = [](int32_t M, int32_t N) {
VarHandle m("m", kInt);
VarHandle n("n", kInt);
Buffer a(BufHandle("a", {m, n}, kFloat));
Buffer b(BufHandle("b", {m, n}, kFloat));
Tensor* c = Compute(
"c", {{m, "m"}, {n, "n"}}, [&](const VarHandle& i, const VarHandle& j) {
return a(i, j) + b(i, j);
});
LoopNest l({c});
Stmt* s = l.root_stmt();
SimpleIREvaluator cg(s, {a, b, c, m, n});
std::vector<float> aData(M * N, 1.0f);
std::vector<float> bData(M * N, 2.0f);
std::vector<float> cData(M * N, 0.0f);
cg.call({aData, bData, cData, M, N});
ExpectAllNear(cData, std::vector<float>(M * N, 3.0f), 1e-7);
};
testWithSize(1, 8);
testWithSize(16, 32);
testWithSize(37, 11);
}
void testLoopNestComputeAt_1() {
// Verify that compute_at works on the following example:
//
// for (int i_a = 0; i_a < N; i_a++) {
// A[i_a] = i_a * i_a
// }
// for (int i_b = 0; i_b < N; i_b++) {
// B[i_b] = A[i_b]
// }
//
// After the transformation the i_b loop should have an allocation for a temp
// buffer and that buffer should be used in computation of B. No use of A
// should be in that loop after the transformation. Also, computation of A
// should not be inlined into B. Instead, it should be computed into the temp,
// and the temp should be used in B.
KernelScope kernel_scope;
VarHandle N("N", kInt);
Tensor* A = Compute(
"A", {{N, "i_a"}}, [&](const VarHandle& i_a) { return i_a * i_a; });
Tensor* B = Compute(
"B", {{N, "i_b"}}, [&](const VarHandle& i_b) { return A->call(i_b); });
LoopNest l({B});
std::vector<For*> loops = l.getLoopStmtsFor(B);
l.computeAt(l.getLoopBodyFor(A), loops[0]);
l.prepareForCodegen();
Stmt* s = l.root_stmt();
std::ostringstream oss;
oss << *s;
const std::string& verification_pattern =
R"IR(
# CHECK: for (int i_b = 0; i_b < N; i_b++)
# CHECK: Allocate(temp, int, {1})
# CHECK: temp[
# CHECK-NOT: A[
# CHECK: B[i_b] = temp[0]
# CHECK: Free(temp))IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// Now check that the loop still produces the correct result.
std::vector<int> b_data(100, 0);
SimpleIREvaluator cg(s, {B, N});
cg.call({b_data, 100});
std::vector<int> b_ref(100, 0);
for (int i = 0; i < 100; i++) {
b_ref[i] = i * i;
}
assertAllEqual(b_data, b_ref);
}
void testLoopNestComputeAt_2() {
// Verify that compute_at works on the following example:
//
// for (int py = 0; py < H+1; py++) {
// for (int px = 0; px < W+1; px++) {
// p[py, px] = py*px
// }
// }
// for (int cy = 0; cy < H; cy++) {
// for (int cx = 0; cx < W; cx++) {
// c[py, px] = p[cy,cx] + p[cy+1,cx] +
// p[cy,cx+1] + p[cy+1,cx+1]
// }
// }
KernelScope kernel_scope;
const int kW = 16, kH = 16;
VarHandle W("W", kInt);
VarHandle H("H", kInt);
Tensor* p = Compute(
"prod",
{{H + 1, "py"}, {W + 1, "px"}},
[&](const VarHandle& py, const VarHandle& px) { return px * py; });
Tensor* c = Compute(
"cons",
{{H, "cy"}, {W, "cx"}},
[&](const VarHandle& y, const VarHandle& x) {
return p->call(y, x) + p->call(y + 1, x) + p->call(y, x + 1) +
p->call(y + 1, x + 1);
});
std::vector<int> c_ref(kW * kH, 0);
for (int y = 0; y < kH; y++) {
for (int x = 0; x < kW; x++) {
c_ref[y * kW + x] = y * x + (y + 1) * x + y * (x + 1) + (y + 1) * (x + 1);
}
}
{
// First let's try to compute P at axis cy (the outer loop)
LoopNest l({c});
std::vector<For*> loops = l.getLoopStmtsFor(c);
l.computeAt(l.getLoopBodyFor(p), loops[0]);
l.prepareForCodegen();
Stmt* s = l.root_stmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for (int cy = 0; cy < H; cy++)
# CHECK: Allocate(temp, int, {2, W + 1})
# CHECK: for
# CHECK: for
# CHECK: for (int cx = 0; cx < W; cx++)
# CHECK-NOT: prod[
# CHECK: cons[
# CHECK: Free(temp))IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// Now check that the loop still produces the correct result.
std::vector<int> c_data(kW * kH, 0);
SimpleIREvaluator cg(s, {c, W, H});
cg.call({c_data, kW, kH});
assertAllEqual(c_data, c_ref);
}
{
// Now let's try to compute P at axis cx (the inner loop)
LoopNest l({c});
std::vector<For*> loops = l.getLoopStmtsFor(c);
l.computeAt(l.getLoopBodyFor(p), loops[1]);
l.prepareForCodegen();
Stmt* s = l.root_stmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for (int cy = 0; cy < H; cy++)
# CHECK: for (int cx = 0; cx < W; cx++)
# CHECK: Allocate(temp, int, {2, 2})
# CHECK: for
# CHECK: for
# CHECK-NOT: prod[
# CHECK: cons[
# CHECK: Free(temp))IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// Now check that the loop still produces the correct result.
std::vector<int> c_data(kW * kH, 0);
SimpleIREvaluator cg(s, {c, W, H});
cg.call({c_data, kW, kH});
assertAllEqual(c_data, c_ref);
}
}
void testLoopNestComputeAt_3() {
// Verify that compute_at works on the following example:
//
// A(x,y) = x*y
// B(x,y) = A(x, y)
// C(x,y) = B(x+1, y)
// D(x,y) = A(x, y+1) + C(x, y)
//
// i.e. when 'A' comes to 'D' directly and indirectly through 'C'.
KernelScope kernel_scope;
const int kW = 16, kH = 16;
VarHandle W("W", kInt);
VarHandle H("H", kInt);
Tensor* A = Compute(
"A",
{{H + 1, "ay"}, {W + 1, "ax"}},
[&](const VarHandle& ay, const VarHandle& ax) { return ax * ay; });
Tensor* B = Compute(
"B",
{{H + 1, "by"}, {W + 1, "bx"}},
[&](const VarHandle& by, const VarHandle& bx) {
return A->call(by, bx);
});
Tensor* C = Compute(
"C",
{{H, "cy"}, {W, "cx"}},
[&](const VarHandle& cy, const VarHandle& cx) {
return B->call(cy, cx + 1);
});
Tensor* D = Compute(
"D",
{{H, "dy"}, {W, "dx"}},
[&](const VarHandle& dy, const VarHandle& dx) {
return A->call(dy + 1, dx) + C->call(dy, dx);
});
std::vector<int> c_ref(kW * kH, 0);
for (int y = 0; y < kH; y++) {
for (int x = 0; x < kW; x++) {
c_ref[y * kW + x] = (y + 1) * x + y * (x + 1);
}
}
{
// First let's try to compute A at axis dy (the outer loop)
LoopNest l({D});
std::vector<For*> loops = l.getLoopStmtsFor(D);
l.computeAt(l.getLoopBodyFor(A), loops[0]);
l.prepareForCodegen();
Stmt* s = l.root_stmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for (int ay = 0; ay < H + 1; ay++)
# CHECK: for (int ax = 0; ax < W + 1; ax++)
# CHECK: A[
# CHECK: for (int by = 0; by < H + 1; by++)
# CHECK: for (int bx = 0; bx < W + 1; bx++)
# CHECK: B[
# CHECK: for (int cy = 0; cy < H; cy++)
# CHECK: for (int cx = 0; cx < W; cx++)
# CHECK: C[
# CHECK: for (int dy = 0; dy < H; dy++)
# CHECK: Allocate(temp, int, {1, W})
# CHECK: for (int dx = 0; dx < W; dx++)
# CHECK-NOT: A[)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// Now check that the loop still produces the correct result.
std::vector<int> c_data(kW * kH, 0);
SimpleIREvaluator cg(s, {D, W, H});
cg.call({c_data, kW, kH});
assertAllEqual(c_data, c_ref);
}
{
// Now let's try to compute A at axis dx (the inner loop)
LoopNest l({D});
std::vector<For*> loops = l.getLoopStmtsFor(D);
l.computeAt(l.getLoopBodyFor(A), loops[1]);
l.prepareForCodegen();
Stmt* s = l.root_stmt();
std::ostringstream oss;
oss << *s;
// Check the IR we produced
const std::string& verification_pattern =
R"IR(
# CHECK: for (int ay = 0; ay < H + 1; ay++)
# CHECK: for (int ax = 0; ax < W + 1; ax++)
# CHECK: A[
# CHECK: for (int by = 0; by < H + 1; by++)
# CHECK: for (int bx = 0; bx < W + 1; bx++)
# CHECK: B[
# CHECK: for (int cy = 0; cy < H; cy++)
# CHECK: for (int cx = 0; cx < W; cx++)
# CHECK: C[
# CHECK: for (int dy = 0; dy < H; dy++)
# CHECK: for (int dx = 0; dx < W; dx++)
# CHECK: Allocate(temp, int, {1, 1})
# CHECK-NOT: A[)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
// Now check that the loop still produces the correct result.
std::vector<int> c_data(kW * kH, 0);
SimpleIREvaluator cg(s, {D, W, H});
cg.call({c_data, kW, kH});
assertAllEqual(c_data, c_ref);
}
}
void testLoopNestComputeAt_4() {
// TODO: Verify that computeAt works with reduction axis
}
class LoopOrderHelper : public IRVisitor {
std::stringstream ordering;
public:
std::string getOrder(Stmt* s) {
ordering.str("");
s->accept(this);
return ordering.str();
}
void visit(const For* v) {
ordering << v->var()->name_hint() << ",";
IRVisitor::visit(v);
}
};
void testLoopNestReorderAxis1() {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f", {{2, "x"}, {3, "y"}}, [](const VarHandle& x, const VarHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
});
LoopNest l({tensor});
Stmt* stmt1 = Stmt::clone(l.root_stmt());
std::vector<int> stmt1_output(6, 0);
SimpleIREvaluator cg(stmt1, {tensor});
cg.call({stmt1_output});
auto loops = l.getLoopStmtsFor(tensor);
l.reorderAxis(loops[0], loops[1]);
Stmt* stmt2 = Stmt::clone(l.root_stmt());
ASSERT_NE(stmt1, stmt2);
LoopOrderHelper loopOrderHelper;
std::string order1 = loopOrderHelper.getOrder(stmt1);
std::string order2 = loopOrderHelper.getOrder(stmt2);
ASSERT_EQ(order1, "x,y,");
ASSERT_EQ(order2, "y,x,");
std::vector<int> stmt2_output(6, 0);
SimpleIREvaluator cg2(stmt2, {tensor});
cg.call({stmt2_output});
for (int i = 0; i < 6; ++i) {
ASSERT_EQ(stmt1_output[i], stmt2_output[i]);
}
// Reorder them back.
loops = l.getLoopStmtsFor(tensor);
l.reorderAxis(loops[0], loops[1]);
Stmt* stmt3 = l.root_stmt();
std::string order3 = loopOrderHelper.getOrder(stmt3);
ASSERT_EQ(order3, order1);
std::ostringstream oss1, oss2;
oss1 << *stmt1;
oss2 << *stmt3;
// Should be identical to the unreordered statement.
ASSERT_EQ(oss1.str(), oss2.str());
}
void testLoopNestReorderPartialAxes() {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f",
{{2, "x"}, {3, "y"}, {4, "z"}},
[](const VarHandle& x, const VarHandle& y, const VarHandle& z) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y +
cast<float>(z) * z;
});
LoopNest l({tensor});
LoopOrderHelper loopOrderHelper;
Stmt* stmt1 = Stmt::clone(l.root_stmt());
ASSERT_EQ(loopOrderHelper.getOrder(stmt1), "x,y,z,");
std::vector<int> stmt1_output(24, 0);
SimpleIREvaluator cg(stmt1, {tensor});
cg.call({stmt1_output});
auto loops = l.getLoopStmtsFor(tensor);
l.reorderAxis(loops[0], loops[1]);
ASSERT_EQ(loopOrderHelper.getOrder(l.root_stmt()), "y,x,z,");
Stmt* stmt2 = Stmt::clone(l.root_stmt());
std::vector<int> stmt2_output(24, 0);
SimpleIREvaluator cg2(stmt2, {tensor});
cg2.call({stmt2_output});
for (int i = 0; i < 24; ++i) {
ASSERT_EQ(stmt1_output[i], stmt2_output[i]);
}
loops = l.getLoopStmtsFor(tensor);
l.reorderAxis(loops[1], loops[2]);
ASSERT_EQ(loopOrderHelper.getOrder(l.root_stmt()), "y,z,x,");
Stmt* stmt3 = Stmt::clone(l.root_stmt());
std::vector<int> stmt3_output(24, 0);
SimpleIREvaluator cg3(stmt3, {tensor});
cg3.call({stmt3_output});
for (int i = 0; i < 24; ++i) {
ASSERT_EQ(stmt1_output[i], stmt3_output[i]);
}
}
void testLoopNestReorderInternalAxis() {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f",
{{1, "w"}, {2, "x"}, {3, "y"}, {4, "z"}},
[](const VarHandle& w,
const VarHandle& x,
const VarHandle& y,
const VarHandle& z) {
return ExprHandle(1.0f) + w + cast<float>(x) * x + cast<float>(y) * y +
cast<float>(z) * z;
});
LoopNest l({tensor});
LoopOrderHelper loopOrderHelper;
Stmt* stmt1 = Stmt::clone(l.root_stmt());
ASSERT_EQ(loopOrderHelper.getOrder(stmt1), "w,x,y,z,");
std::vector<int> stmt1_output(24, 0);
SimpleIREvaluator cg(stmt1, {tensor});
cg.call({stmt1_output});
auto loops = l.getLoopStmtsFor(tensor);
l.reorderAxis(loops[2], loops[1]);
ASSERT_EQ(loopOrderHelper.getOrder(l.root_stmt()), "w,y,x,z,");
Stmt* stmt2 = l.root_stmt();
std::vector<int> stmt2_output(24, 0);
SimpleIREvaluator cg2(stmt2, {tensor});
cg2.call({stmt2_output});
for (int i = 0; i < 24; ++i) {
ASSERT_EQ(stmt1_output[i], stmt2_output[i]);
}
}
void testLoopNestReorderEnclosingAxis() {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f",
{{1, "w"}, {2, "x"}, {3, "y"}, {4, "z"}},
[](const VarHandle& w,
const VarHandle& x,
const VarHandle& y,
const VarHandle& z) {
return ExprHandle(1.0f) + w + cast<float>(x) * x + cast<float>(y) * y +
cast<float>(z) * z;
});
LoopNest l({tensor});
LoopOrderHelper loopOrderHelper;
Stmt* stmt1 = Stmt::clone(l.root_stmt());
std::vector<int> stmt1_output(24, 0);
SimpleIREvaluator cg(stmt1, {tensor});
cg.call({stmt1_output});
auto loops = l.getLoopStmtsFor(tensor);
l.reorderAxis(loops[0], loops[3]);
ASSERT_EQ(loopOrderHelper.getOrder(l.root_stmt()), "z,x,y,w,");
Stmt* stmt2 = l.root_stmt();
std::vector<int> stmt2_output(24, 0);
SimpleIREvaluator cg2(stmt2, {tensor});
cg2.call({stmt2_output});
for (int i = 0; i < 24; ++i) {
ASSERT_EQ(stmt1_output[i], stmt2_output[i]);
}
}
void testLoopNestReorderSameAxis() {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f", {{2, "x"}, {3, "y"}}, [](const VarHandle& x, const VarHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
});
LoopNest l({tensor});
Stmt* stmt1 = Stmt::clone(l.root_stmt());
auto loops = l.getLoopStmtsFor(tensor);
l.reorderAxis(loops[1], loops[1]);
Stmt* stmt2 = Stmt::clone(l.root_stmt());
std::ostringstream oss, oss2;
oss << *stmt1;
oss2 << *stmt2;
ASSERT_EQ(oss.str(), oss2.str());
}
void testLoopNestReorderExtraStatements() {
/* We're going for a structure like this:
* for x in ...
* Stmt 1
* for y in ...
* Stmt 2
* for z in ...
* Stmt 3
* Stmt 4
*/
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f",
{{2, "x"}, {3, "y"}, {4, "z"}},
[](const VarHandle& x, const VarHandle& y, const VarHandle& z) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y +
cast<float>(z) * z;
});
LoopNest l({tensor});
Buffer extra(BufHandle("res", {6, 3}, kFloat));
auto loops = l.getLoopStmtsFor(tensor);
VarHandle i = VarHandle(loops[0]->var());
Stmt* store_1 = Store::make(extra, {i, 0}, ExprHandle(1.f), 1);
Stmt* store_2 = Store::make(extra, {i, 1}, ExprHandle(2.f), 1);
// stmt 3 is the Function body.
Stmt* store_3 = Store::make(extra, {i, 2}, ExprHandle(4.f), 1);
loops[0]->body()->prepend_stmt(store_1);
loops[1]->body()->prepend_stmt(store_2);
loops[1]->body()->append_stmt(store_3);
Stmt* stmt1 = Stmt::clone(l.root_stmt());
std::vector<int> extra1(6, 0);
std::vector<int> res1(24, 0);
SimpleIREvaluator cg(stmt1, {tensor, extra});
cg.call({res1, extra1});
/* Then we reorder loop y and z, we want it to look like:
*
* for x in ...
* Stmt 1
* for y in ...
* Stmt 2
* for z in ...
* for y in ...
* Stmt 3
* for y in ...
* Stmt 4
*
* We need extra loops because we don't have dependency info about stmt 3
* and 4.
*
*/
l.reorderAxis(loops[1], loops[2]);
Stmt* stmt2 = Stmt::clone(l.root_stmt());
std::ostringstream oss;
oss << *l.root_stmt();
// Check the IR we produced
const std::string& verification_pattern1 =
R"IR(
# CHECK: for (int x
# CHECK: res[x, 0] = 1
# CHECK: for (int y
# CHECK: res[x, 1] = 2
# CHECK: for (int z
# CHECK: for (int y
# CHECK: f[
# CHECK: for (int y
# CHECK: res[x, 2] = 4
)IR";
torch::jit::testing::FileCheck().run(verification_pattern1, oss.str());
std::vector<int> extra2(6, 0);
std::vector<int> res2(24, 0);
SimpleIREvaluator cg2(stmt2, {tensor, extra});
cg2.call({res2, extra2});
for (int i = 0; i < 24; ++i) {
ASSERT_EQ(res1[i], res2[i]);
}
for (int i = 0; i < 6; ++i) {
ASSERT_EQ(extra1[i], extra2[i]);
}
/* Now reorder x and the y above stmt 3:
*
*
* for x in ...
* Stmt 1
* for y in ...
* Stmt 2
*
* for y in ...
* for z in ...
* for x in ...
* Stmt 3
*
* for x in ...
* for y in ...
* Stmt 4
*
*
*/
loops = l.getLoopStmtsFor(tensor);
l.reorderAxis(loops[0], loops[2]);
Stmt* stmt3 = Stmt::clone(l.root_stmt());
std::ostringstream oss2;
oss2 << *stmt3;
// Check the IR we produced
const std::string& verification_pattern2 =
R"IR(
# CHECK: for (int x
# CHECK: res[x, 0] = 1
# CHECK: for (int y
# CHECK: res[x, 1] = 2
# CHECK: for (int y
# CHECK: for (int z
# CHECK: for (int x
# CHECK: f[
# CHECK: for (int x
# CHECK: for (int y
# CHECK: res[x, 2] = 4
)IR";
torch::jit::testing::FileCheck().run(verification_pattern2, oss2.str());
std::vector<int> extra3(6, 0);
std::vector<int> res3(24, 0);
SimpleIREvaluator cg3(stmt3, {tensor, extra});
cg3.call({res3, extra3});
for (int i = 0; i < 24; ++i) {
ASSERT_EQ(res1[i], res3[i]);
}
for (int i = 0; i < 6; ++i) {
ASSERT_EQ(extra1[i], extra3[i]);
}
}
void LoopNestReorderTestHelper(
bool prepend,
bool append,
int index1,
int index2) {
KernelScope kernel_scope;
Tensor* c = Compute(
"5d",
{{2, "a"}, {3, "b"}, {2, "c"}, {3, "d"}, {2, "e"}},
[](const std::vector<VarHandle>&) { return -1; });
LoopNest l({c});
Buffer extra(BufHandle("extra", {5}, kInt));
auto loops = l.getLoopStmtsFor(c);
int j = 0;
for (auto* l : loops) {
// Add an increment at each layer of the loop which counts the number of
// times the loop executes.
Load* load = new Load(extra, {new IntImm(j)}, new IntImm(1));
Add* add = new Add(load, new IntImm(1));
Stmt* store = Store::make(extra, {j}, ExprHandle(add), 1);
if (prepend) {
l->body()->prepend_stmt(store);
}
if (append) {
l->body()->append_stmt(Stmt::clone(store));
}
j++;
}
Stmt* stmt1 = Stmt::clone(l.root_stmt());
std::vector<int> extra1(5, 0);
std::vector<int> res1(2 * 3 * 2 * 3 * 2, 0);
SimpleIREvaluator cg(stmt1, {c, extra});
cg.call({res1, extra1});
std::vector<int> loopExtents = {2, 3, 2, 3, 2};
int expected_loops = 0;
if (prepend) {
expected_loops++;
}
if (append) {
expected_loops++;
}
for (int i = 0; i < 5; ++i) {
expected_loops *= loopExtents[i];
ASSERT_EQ(extra1[i], expected_loops);
}
loops = l.getLoopStmtsFor(c);
l.reorderAxis(loops[index1], loops[index2]);
Stmt* stmt2 = Stmt::clone(l.root_stmt());
std::ostringstream oss, oss2;
oss << *stmt1;
oss2 << *stmt2;
ASSERT_NE(oss.str(), oss2.str());
std::vector<int> extra2(5, 0);
std::vector<int> res2(2 * 3 * 2 * 3 * 2, 0);
SimpleIREvaluator cg2(stmt2, {c, extra});
cg2.call({res2, extra2});
expected_loops = 0;
if (prepend) {
expected_loops++;
}
if (append) {
expected_loops++;
}
for (int i = 0; i < 5; ++i) {
expected_loops *= loopExtents[i];
ASSERT_EQ(extra2[i], expected_loops);
}
for (int i = 0; i < 2 * 3 * 2 * 3 * 2; ++i) {
ASSERT_EQ(res2[i], res1[i]);
}
}
void testLoopNestReorderLongStringOfPreOrphans() {
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 5; ++j) {
// skip noops, since we check the loop isn't the same after reordering.
if (i != j) {
LoopNestReorderTestHelper(true, false, i, j);
}
}
}
}
void testLoopNestReorderLongStringOfPostOrphans() {
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 5; ++j) {
// skip noops, since we check the loop isn't the same after reordering.
if (i != j) {
LoopNestReorderTestHelper(false, true, i, j);
}
}
}
}
void testLoopNestReorderLongStringFull() {
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 5; ++j) {
// skip noops, since we check the loop isn't the same after reordering.
if (i != j) {
LoopNestReorderTestHelper(true, true, i, j);
}
}
}
}
void testLoopNestReorderInternalLoopNest() {
KernelScope kernel_scope;
const int M = 4;
const int N = 5;
const int K = 6;
Buffer a_buf("a", kFloat, {M, N});
Buffer b_buf("b", kFloat, {N, K});
Buffer c_buf("c", kFloat, {M, N});
Buffer d_buf("d", kFloat, {M, K});
Tensor* x = Compute(
"x",
{{M, "m1"}, {N, "n1"}, {K, "k1"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return a_buf(m, n) * b_buf(n, k);
});
Tensor* y = Compute(
"y",
{{M, "m2"}, {N, "n2"}, {K, "k2"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return c_buf(m, n) * d_buf(m, k) + x->call(m, n, k);
});
Tensor* z = Compute(
"z",
{{M, "m3"}, {N, "n3"}, {K, "k3"}},
[&](const VarHandle& m, const VarHandle& n, const VarHandle& k) {
return x->call(m, n, k) + y->call(m, n, k);
});
LoopNest l({z});
For* a = nullptr;
For* b = nullptr;
auto fors = NodeFinder<For>::find(l.root_stmt());
for (auto* f : fors) {
if (f->var()->name_hint() == "m2") {
a = f;
} else if (f->var()->name_hint() == "k2") {
b = f;
}
}
l.reorderAxis(a, b);
l.prepareForCodegen();
Stmt* stmt = IRSimplifier::simplify(l.root_stmt());
std::ostringstream oss;
oss << *stmt;
// Check the IR we produced has the 3 nests in the right order, but k and m
// swapped in the middle.
const std::string& verification_pattern =
R"IR(
# CHECK: for (int m1
# CHECK: for (int n1
# CHECK: for (int k1
# CHECK: for (int k2
# CHECK: for (int n2
# CHECK: for (int m2
# CHECK: for (int m3
# CHECK: for (int n3
# CHECK: for (int k3)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
{
PaddedBuffer<float> a_v(M, N);
PaddedBuffer<float> b_v(N, K);
PaddedBuffer<float> c_v(M, N);
PaddedBuffer<float> d_v(M, K);
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
a_v(i, j) = i * i;
}
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < K; j++) {
b_v(i, j) = j * j;
}
}
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
c_v(i, j) = i + j;
}
}
for (int i = 0; i < M; i++) {
for (int j = 0; j < K; j++) {
d_v(i, j) = i * j;
}
}
PaddedBuffer<float> z_v(M, N, K);
PaddedBuffer<float> z_ref(M, N, K);
for (int m = 0; m < M; m++) {
for (int n = 0; n < N; n++) {
for (int k = 0; k < K; k++) {
z_ref(m, n, k) = a_v(m, n) * b_v(n, k) * 2 + c_v(m, n) * d_v(m, k);
}
}
}
SimpleIREvaluator eval(stmt, a_buf, b_buf, c_buf, d_buf, z);
eval(a_v, b_v, c_v, d_v, z_v);
ExpectAllNear(z_v, z_ref, 1e-5);
}
}
void testOuterLoopVectorization() {
KernelScope kernel_scope;
Tensor* tensor = Compute(
"f", {{8, "X"}, {8, "y"}}, [](const VarHandle& x, const VarHandle& y) {
return ExprHandle(1.0f) + cast<float>(x) * x + cast<float>(y) * y;
});
LoopNest l({tensor});
l.vectorize(l.getLoopStmtsFor(tensor)[0]);
Stmt* root_stmt = l.root_stmt();
Block* outer_block = dynamic_cast<Block*>(root_stmt);
ASSERT_NE(outer_block, nullptr);
while (Block* inner_block = dynamic_cast<Block*>(outer_block->front())) {
outer_block = inner_block;
}
// Verify that we have only a single loop level remaining after
// vectorization.
ASSERT_EQ(outer_block->nstmts(), 1);
For* for_loop = dynamic_cast<For*>(outer_block->front());
ASSERT_NE(for_loop, nullptr);
Block* for_body = for_loop->body();
ASSERT_EQ(for_body->nstmts(), 1);
ASSERT_EQ(dynamic_cast<For*>(for_body->front()), nullptr);
}
namespace {
std::string constantUpperBoundLoopIR(int upper_bound_val) {
KernelScope kernel_scope;
ExprHandle upper_bound(upper_bound_val);
Tensor* A = Compute(
"A", {{upper_bound, "x"}}, [&](const VarHandle& x) { return x * 2; });
LoopNest l({A});
std::vector<For*> loops = l.getLoopStmtsFor(A);
Stmt* unrolled = nullptr;
LoopNest::unroll(loops[0], &unrolled);
std::ostringstream oss;
oss << *unrolled;
return oss.str();
}
} // namespace
void testUnroll() {
const std::string actual = constantUpperBoundLoopIR(3);
const std::string& verification_pattern =
R"IR(
# CHECK: A[0] = 0;
# CHECK: A[1] = 2;
# CHECK: A[2] = 4)IR";
torch::jit::testing::FileCheck().run(verification_pattern, actual);
}
void testUnrollOuter() {
KernelScope kernel_scope;
ExprHandle outer_bound(3);
ExprHandle inner_bound(4);
Tensor* A = Compute(
"A",
{{outer_bound, "x"}, {inner_bound, "y"}},
[&](const VarHandle& x, const VarHandle& y) { return x + y; });
LoopNest l({A});
std::vector<For*> loops = l.getLoopStmtsFor(A);
Stmt* unrolled = nullptr;
LoopNest::unroll(loops[0], &unrolled);
const std::string& verification_pattern =
R"IR(
# CHECK: for (int y = 0; y < 4; y++) {
# CHECK: A[0, y] = y;
# CHECK: }
# CHECK: for (int y = 0; y < 4; y++) {
# CHECK: A[1, y] = y + 1;
# CHECK: }
# CHECK: for (int y = 0; y < 4; y++) {
# CHECK: A[2, y] = y + 2;
# CHECK: })IR";
std::ostringstream oss;
oss << *unrolled;
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
}
void testUnrollInner() {
KernelScope kernel_scope;
ExprHandle outer_bound(3);
ExprHandle inner_bound(4);
Tensor* A = Compute(
"A",
{{outer_bound, "x"}, {inner_bound, "y"}},
[&](const VarHandle& x, const VarHandle& y) { return x + y; });
LoopNest l({A});
std::vector<For*> loops = l.getLoopStmtsFor(A);
Stmt* unrolled = nullptr;
LoopNest::unroll(
static_cast<For*>(loops[0]->body()->stmts().front()), &unrolled);
const std::string& verification_pattern =
R"IR(
# CHECK: for (int x = 0; x < 3; x++) {
# CHECK: A[x, 0] = x;
# CHECK: A[x, 1] = x + 1;
# CHECK: A[x, 2] = x + 2;
# CHECK: A[x, 3] = x + 3;
# CHECK: })IR";
std::ostringstream oss;
oss << *loops[0];
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
}
void testUnrollMultipleStatements() {
KernelScope kernel_scope;
const int kTotalSize = 3;
BufHandle a_buf("A", {ExprHandle(kTotalSize)}, kInt);
BufHandle b_buf("B", {ExprHandle(kTotalSize)}, kInt);
VarHandle x("x", kInt);
auto f = For::make(
x,
0,
kTotalSize,
Block::make({Store::make(a_buf, {x}, x * 2),
Store::make(b_buf, {x}, Load::make(a_buf, {x}, 1))}));
Block::make({f});
Stmt* unrolled = nullptr;
LoopNest::unroll(f, &unrolled);
std::ostringstream oss;
oss << *unrolled;
const std::string& verification_pattern =
R"IR(
# CHECK: A[0] = 0;
# CHECK: B[0] = A[0];
# CHECK: A[1] = 2;
# CHECK: B[1] = A[1];
# CHECK: A[2] = 4
# CHECK: B[2] = A[2];)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
}
void testUnrollEmpty() {
const std::string actual = constantUpperBoundLoopIR(0);
const std::string& verification_pattern = R"IR(
# CHECK-NOT: A[
)IR";
torch::jit::testing::FileCheck().run(verification_pattern, actual);
}
void testNoUnroll() {
KernelScope kernel_scope;
VarHandle upper_bound("N", kInt);
Tensor* A = Compute(
"A", {{upper_bound, "x"}}, [&](const VarHandle& x) { return x * 2; });
LoopNest l({A});
std::vector<For*> loops = l.getLoopStmtsFor(A);
Stmt* unrolled = nullptr;
ASSERT_THROWS_WITH(
LoopNest::unroll(loops[0], &unrolled), "non-constant loop");
}
void testUnrollWithLet() {
KernelScope kernel_scope;
const int kTotalSize = 3;
BufHandle a_buf("A", {ExprHandle(kTotalSize)}, kInt);
BufHandle b_buf("B", {ExprHandle(kTotalSize)}, kInt);
VarHandle e("e", kInt);
VarHandle x("x", kInt);
auto f = For::make(
x,
0,
kTotalSize,
Block::make({Let::make(e, 7),
Store::make(a_buf, {x}, e),
Store::make(b_buf, {x}, e + 1)}));
Block::make({f});
Stmt* unrolled = nullptr;
LoopNest::unroll(f, &unrolled);
std::ostringstream oss;
oss << *unrolled;
const std::string& verification_pattern =
R"IR(
# CHECK: int e = 7;
# CHECK: A[0] = e;
# CHECK: B[0] = e + 1;
# CHECK: A[1] = e;
# CHECK: B[1] = e + 1;
# CHECK: A[2] = e;
# CHECK: B[2] = e + 1;)IR";
torch::jit::testing::FileCheck().run(verification_pattern, oss.str());
std::vector<int> a_v(kTotalSize, 0);
std::vector<int> b_v(kTotalSize, 0);
SimpleIREvaluator eval(unrolled, a_buf, b_buf);
eval(a_v, b_v);
for (int i = 0; i < kTotalSize; ++i) {
ASSERT_EQ(a_v[i], 7);
ASSERT_EQ(b_v[i], 8);
}
}
} // namespace jit
} // namespace torch