mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: yolo5 Differential Revision: D4685076 fbshipit-source-id: b5534e441bb453f90e5210294f2dfff6b5c3b5b1
272 lines
7.8 KiB
Python
272 lines
7.8 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
|
|
class AttentionType:
|
|
Regular, Recurrent = range(2)
|
|
|
|
|
|
def s(scope, name):
|
|
# We have to manually scope due to our internal/external blob
|
|
# relationships.
|
|
return "{}/{}".format(str(scope), str(name))
|
|
|
|
|
|
# c_i = \sum_j w_{ij}\textbf{s}_j
|
|
def _calc_weighted_context(
|
|
model,
|
|
encoder_outputs_transposed,
|
|
encoder_output_dim,
|
|
attention_weights_3d,
|
|
scope,
|
|
):
|
|
# [batch_size, encoder_output_dim, 1]
|
|
attention_weighted_encoder_context = model.net.BatchMatMul(
|
|
[encoder_outputs_transposed, attention_weights_3d],
|
|
s(scope, 'attention_weighted_encoder_context'),
|
|
)
|
|
# TODO: somehow I cannot use Squeeze in-place op here
|
|
# [batch_size, encoder_output_dim]
|
|
attention_weighted_encoder_context, _ = model.net.Reshape(
|
|
attention_weighted_encoder_context,
|
|
[
|
|
attention_weighted_encoder_context,
|
|
s(scope, 'attention_weighted_encoder_context_old_shape')
|
|
],
|
|
shape=[1, -1, encoder_output_dim],
|
|
)
|
|
return attention_weighted_encoder_context
|
|
|
|
|
|
# Calculate a softmax over the passed in attention energy logits
|
|
def _calc_attention_weights(
|
|
model,
|
|
attention_logits_transposed,
|
|
scope
|
|
):
|
|
# TODO: we could try to force some attention weights to be zeros,
|
|
# based on encoder_lengths.
|
|
# [batch_size, encoder_length]
|
|
attention_weights = model.Softmax(
|
|
attention_logits_transposed,
|
|
s(scope, 'attention_weights'),
|
|
)
|
|
# TODO: make this operation in-place
|
|
# [batch_size, encoder_length, 1]
|
|
attention_weights_3d = model.net.ExpandDims(
|
|
attention_weights,
|
|
s(scope, 'attention_weights_3d'),
|
|
dims=[2],
|
|
)
|
|
return attention_weights_3d
|
|
|
|
|
|
# e_{ij} = \textbf{v}^T tanh \alpha(\textbf{h}_{i-1}, \textbf{s}_j)
|
|
def _calc_attention_logits_from_sum_match(
|
|
model,
|
|
decoder_hidden_encoder_outputs_sum,
|
|
encoder_output_dim,
|
|
scope
|
|
):
|
|
# [encoder_length, batch_size, encoder_output_dim]
|
|
decoder_hidden_encoder_outputs_sum = model.net.Tanh(
|
|
decoder_hidden_encoder_outputs_sum,
|
|
decoder_hidden_encoder_outputs_sum,
|
|
)
|
|
|
|
attention_v = model.param_init_net.XavierFill(
|
|
[],
|
|
s(scope, 'attention_v'),
|
|
shape=[1, encoder_output_dim],
|
|
)
|
|
model.add_param(attention_v)
|
|
|
|
attention_zeros = model.param_init_net.ConstantFill(
|
|
[],
|
|
s(scope, 'attention_zeros'),
|
|
value=0.0,
|
|
shape=[1],
|
|
)
|
|
|
|
# [encoder_length, batch_size, 1]
|
|
attention_logits = model.net.FC(
|
|
[decoder_hidden_encoder_outputs_sum, attention_v, attention_zeros],
|
|
[s(scope, 'attention_logits')],
|
|
axis=2
|
|
)
|
|
# [encoder_length, batch_size]
|
|
attention_logits = model.net.Squeeze(
|
|
[attention_logits],
|
|
[attention_logits],
|
|
dims=[2],
|
|
)
|
|
# [batch_size, encoder_length]
|
|
attention_logits_transposed = model.net.Transpose(
|
|
attention_logits,
|
|
s(scope, 'attention_logits_transposed'),
|
|
axes=[1, 0],
|
|
)
|
|
return attention_logits_transposed
|
|
|
|
|
|
# \textbf{W}^\alpha used in the context of \alpha_{sum}(a,b)
|
|
def _apply_fc_weight_for_sum_match(
|
|
model,
|
|
input,
|
|
dim_in,
|
|
dim_out,
|
|
scope,
|
|
name
|
|
):
|
|
output = model.FC(
|
|
input,
|
|
s(scope, name),
|
|
dim_in=dim_in,
|
|
dim_out=dim_out,
|
|
axis=2,
|
|
)
|
|
output = model.net.Squeeze(
|
|
output,
|
|
output,
|
|
dims=[0]
|
|
)
|
|
return output
|
|
|
|
|
|
# Implement RecAtt due to section 4.1 in http://arxiv.org/abs/1601.03317
|
|
def apply_recurrent_attention(
|
|
model,
|
|
encoder_output_dim,
|
|
encoder_outputs_transposed,
|
|
weighted_encoder_outputs,
|
|
decoder_hidden_state_t,
|
|
decoder_hidden_state_dim,
|
|
attention_weighted_encoder_context_t_prev,
|
|
scope,
|
|
):
|
|
weighted_prev_attention_context = _apply_fc_weight_for_sum_match(
|
|
model=model,
|
|
input=attention_weighted_encoder_context_t_prev,
|
|
dim_in=encoder_output_dim,
|
|
dim_out=encoder_output_dim,
|
|
scope=scope,
|
|
name='weighted_prev_attention_context'
|
|
)
|
|
|
|
weighted_decoder_hidden_state = _apply_fc_weight_for_sum_match(
|
|
model=model,
|
|
input=decoder_hidden_state_t,
|
|
dim_in=decoder_hidden_state_dim,
|
|
dim_out=encoder_output_dim,
|
|
scope=scope,
|
|
name='weighted_decoder_hidden_state'
|
|
)
|
|
|
|
# TODO: remove that excessive when RecurrentNetwork supports
|
|
# Sum op at the beginning of step_net
|
|
weighted_encoder_outputs_copy = model.net.Copy(
|
|
weighted_encoder_outputs,
|
|
s(scope, 'weighted_encoder_outputs_copy'),
|
|
)
|
|
# [encoder_length, batch_size, encoder_output_dim]
|
|
decoder_hidden_encoder_outputs_sum_tmp = model.net.Add(
|
|
[
|
|
weighted_encoder_outputs_copy,
|
|
weighted_decoder_hidden_state
|
|
],
|
|
s(scope, 'decoder_hidden_encoder_outputs_sum_tmp'),
|
|
broadcast=1,
|
|
use_grad_hack=1,
|
|
)
|
|
# [encoder_length, batch_size, encoder_output_dim]
|
|
decoder_hidden_encoder_outputs_sum = model.net.Add(
|
|
[
|
|
decoder_hidden_encoder_outputs_sum_tmp,
|
|
weighted_prev_attention_context
|
|
],
|
|
s(scope, 'decoder_hidden_encoder_outputs_sum'),
|
|
broadcast=1,
|
|
use_grad_hack=1,
|
|
)
|
|
|
|
attention_logits_transposed = _calc_attention_logits_from_sum_match(
|
|
model=model,
|
|
decoder_hidden_encoder_outputs_sum=decoder_hidden_encoder_outputs_sum,
|
|
encoder_output_dim=encoder_output_dim,
|
|
scope=scope
|
|
)
|
|
|
|
attention_weights_3d = _calc_attention_weights(
|
|
model=model,
|
|
attention_logits_transposed=attention_logits_transposed,
|
|
scope=scope
|
|
)
|
|
|
|
# [batch_size, encoder_output_dim, 1]
|
|
attention_weighted_encoder_context = _calc_weighted_context(
|
|
model=model,
|
|
encoder_outputs_transposed=encoder_outputs_transposed,
|
|
encoder_output_dim=encoder_output_dim,
|
|
attention_weights_3d=attention_weights_3d,
|
|
scope=scope
|
|
)
|
|
return attention_weighted_encoder_context
|
|
|
|
|
|
def apply_regular_attention(
|
|
model,
|
|
encoder_output_dim,
|
|
encoder_outputs_transposed,
|
|
weighted_encoder_outputs,
|
|
decoder_hidden_state_t,
|
|
decoder_hidden_state_dim,
|
|
scope,
|
|
):
|
|
weighted_decoder_hidden_state = _apply_fc_weight_for_sum_match(
|
|
model=model,
|
|
input=decoder_hidden_state_t,
|
|
dim_in=decoder_hidden_state_dim,
|
|
dim_out=encoder_output_dim,
|
|
scope=scope,
|
|
name='weighted_decoder_hidden_state'
|
|
)
|
|
|
|
# TODO: remove that excessive when RecurrentNetwork supports
|
|
# Sum op at the beginning of step_net
|
|
weighted_encoder_outputs_copy = model.net.Copy(
|
|
weighted_encoder_outputs,
|
|
s(scope, 'weighted_encoder_outputs_copy'),
|
|
)
|
|
# [encoder_length, batch_size, encoder_output_dim]
|
|
decoder_hidden_encoder_outputs_sum = model.net.Add(
|
|
[weighted_encoder_outputs_copy, weighted_decoder_hidden_state],
|
|
s(scope, 'decoder_hidden_encoder_outputs_sum'),
|
|
broadcast=1,
|
|
use_grad_hack=1,
|
|
)
|
|
|
|
attention_logits_transposed = _calc_attention_logits_from_sum_match(
|
|
model=model,
|
|
decoder_hidden_encoder_outputs_sum=decoder_hidden_encoder_outputs_sum,
|
|
encoder_output_dim=encoder_output_dim,
|
|
scope=scope
|
|
)
|
|
|
|
attention_weights_3d = _calc_attention_weights(
|
|
model=model,
|
|
attention_logits_transposed=attention_logits_transposed,
|
|
scope=scope
|
|
)
|
|
|
|
# [batch_size, encoder_output_dim, 1]
|
|
attention_weighted_encoder_context = _calc_weighted_context(
|
|
model=model,
|
|
encoder_outputs_transposed=encoder_outputs_transposed,
|
|
encoder_output_dim=encoder_output_dim,
|
|
attention_weights_3d=attention_weights_3d,
|
|
scope=scope
|
|
)
|
|
return attention_weighted_encoder_context
|