mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Test Plan: revert-hammer Differential Revision: D15901930 Original commit changeset: 22c82d12c9c2 fbshipit-source-id: 4009a3ce7af245d7e0f4924824ece59cdc774180
3427 lines
122 KiB
C++
3427 lines
122 KiB
C++
#include <torch/csrc/jit/script/compiler.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/StringUtil.h>
|
|
#include <torch/csrc/jit/hooks_for_testing.h>
|
|
#include <torch/csrc/jit/interpreter.h>
|
|
#include <torch/csrc/jit/ir.h>
|
|
#include <torch/csrc/jit/operator.h>
|
|
#include <torch/csrc/jit/passes/canonicalize.h>
|
|
#include <torch/csrc/jit/passes/constant_pooling.h>
|
|
#include <torch/csrc/jit/passes/dead_code_elimination.h>
|
|
#include <torch/csrc/jit/passes/inline_forked_closures.h>
|
|
#include <torch/csrc/jit/passes/inliner.h>
|
|
#include <torch/csrc/jit/passes/lift_closures.h>
|
|
#include <torch/csrc/jit/passes/lower_tuples.h>
|
|
#include <torch/csrc/jit/script/canonicalize_modified_loop.h>
|
|
#include <torch/csrc/jit/script/convert_to_ssa.h>
|
|
#include <torch/csrc/jit/script/parser.h>
|
|
#include <torch/csrc/jit/script/schema_matching.h>
|
|
#include <torch/csrc/jit/script/script_type_parser.h>
|
|
|
|
#include <torch/csrc/jit/constants.h>
|
|
|
|
#include <c10/util/Optional.h>
|
|
|
|
#include <atomic>
|
|
#include <climits>
|
|
#include <set>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace script {
|
|
|
|
using FunctionTable = std::unordered_map<std::string, Function&>;
|
|
using ValueTable = std::unordered_map<std::string, SugaredValuePtr>;
|
|
using TypeTable = std::unordered_map<std::string, TypePtr>;
|
|
using AttributeMap = std::unordered_map<std::string, Const>;
|
|
using ListAttributeMap = std::unordered_map<std::string, std::vector<Const>>;
|
|
|
|
using TypeAndRange = std::pair<TypePtr, const SourceRange*>;
|
|
|
|
// Holds mappings from a variable name to a refined type for that variable
|
|
// E.g if x is not None is true than we can refine x from type t? to t.
|
|
struct Refinements {
|
|
// using ordered map for deterministic graph output
|
|
std::map<std::string, TypeAndRange> mappings_;
|
|
|
|
void setRefinement(const std::string& name, TypeAndRange mapping) {
|
|
mappings_[name] = std::move(mapping);
|
|
}
|
|
|
|
c10::optional<TypeAndRange> getRefinement(const std::string& name) const {
|
|
const auto& maybe_mapping = mappings_.find(name);
|
|
if (maybe_mapping == mappings_.end()) {
|
|
return c10::nullopt;
|
|
}
|
|
return maybe_mapping->second;
|
|
}
|
|
|
|
// return the intersection of the values to type mappings between this
|
|
// types can be unified
|
|
void intersectRefinements(const Refinements& other) {
|
|
Refinements ret;
|
|
for (const auto& name_mapping : mappings_) {
|
|
const auto& name = name_mapping.first;
|
|
const auto& mapping = name_mapping.second;
|
|
if (auto other_mapping = other.getRefinement(name_mapping.first)) {
|
|
const auto maybe_unified_type =
|
|
unifyTypes(mapping.first, other_mapping->first);
|
|
if (maybe_unified_type) {
|
|
ret.setRefinement(
|
|
name, TypeAndRange(*maybe_unified_type, mapping.second));
|
|
}
|
|
}
|
|
}
|
|
mappings_ = std::move(ret.mappings_);
|
|
}
|
|
|
|
// return the union of the values to type mappings in a and b whose
|
|
// types can be unified
|
|
void unionRefinements(const Refinements& other) {
|
|
Refinements ret;
|
|
for (const auto& name_mapping : mappings_) {
|
|
const auto& name = name_mapping.first;
|
|
const auto& mapping = name_mapping.second;
|
|
TypePtr t_1 = mapping.first;
|
|
if (auto other_mapping = other.getRefinement(name_mapping.first)) {
|
|
TypePtr t_2 = other_mapping->first;
|
|
c10::optional<TypePtr> maybe_unified_type = c10::nullopt;
|
|
if (t_1->isSubtypeOf(t_2)) {
|
|
maybe_unified_type = t_1;
|
|
} else if (t_2->isSubtypeOf(t_1)) {
|
|
maybe_unified_type = t_2;
|
|
}
|
|
if (maybe_unified_type) {
|
|
ret.setRefinement(
|
|
name, TypeAndRange(*maybe_unified_type, mapping.second));
|
|
}
|
|
} else {
|
|
ret.setRefinement(name, mapping);
|
|
}
|
|
}
|
|
|
|
for (auto& name_mapping : other.mappings_) {
|
|
if (!getRefinement(name_mapping.first)) {
|
|
ret.setRefinement(name_mapping.first, name_mapping.second);
|
|
}
|
|
}
|
|
|
|
mappings_ = std::move(ret.mappings_);
|
|
}
|
|
};
|
|
|
|
// When a comparison like x is None is made, we associate type refinements
|
|
// with its true value and its false value. If a boolean that has refinements
|
|
// associated with it is used in a conditional of an if statememt, the true and
|
|
// false refinements are inserted into the corresponding blocks
|
|
|
|
struct BoolInfo {
|
|
BoolInfo(Refinements true_refinements, Refinements false_refinements)
|
|
: true_refinements_(std::move(true_refinements)),
|
|
false_refinements_(std::move(false_refinements)){};
|
|
BoolInfo() = default;
|
|
|
|
Refinements true_refinements_;
|
|
Refinements false_refinements_;
|
|
|
|
BoolInfo* mergeOr(const BoolInfo& other) {
|
|
// if the result of an OR is true, either a & b could have been true,
|
|
// so we take the intersection of a.true_refinements & b.true_refinements.
|
|
// if the result is false, both a and b had to be false,
|
|
// so we take their union.
|
|
true_refinements_.intersectRefinements(other.true_refinements_);
|
|
false_refinements_.unionRefinements(other.false_refinements_);
|
|
return this;
|
|
}
|
|
|
|
BoolInfo* mergeAnd(const BoolInfo& other) {
|
|
// if the result of an AND is true, both a & b had to be true,
|
|
// so we take the union of a.true_refinements and b.true_refinements.
|
|
// if the result is false, either a or b could have been false,
|
|
// so we take their intersection.
|
|
true_refinements_.unionRefinements(other.true_refinements_);
|
|
false_refinements_.intersectRefinements(other.false_refinements_);
|
|
return this;
|
|
}
|
|
};
|
|
|
|
static Value* asSimple(const SugaredValuePtr& value) {
|
|
if (SimpleValue* sv = dynamic_cast<SimpleValue*>(value.get())) {
|
|
return sv->getValue();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static std::shared_ptr<MagicMethod> makeMagic(
|
|
const std::string& name,
|
|
SugaredValuePtr base) {
|
|
return std::make_shared<MagicMethod>(name, base);
|
|
}
|
|
|
|
// Auxiliary data structure for desugaring variable binding into our always
|
|
// explicitly scoped language as we descend down nested control structures in
|
|
// the frontend (which themselves don't introduce scopes)
|
|
//
|
|
// The Environment keeps track of two tables, one for values which are not first
|
|
// class and a type table for values which are. When a first class value
|
|
// is set in the environment, we emit a prim::Store which sets the
|
|
// name of the variable to approriate type, and when a first-class value is
|
|
// referenced we emit a prim::Load that generates a value of the appropriate
|
|
// type.
|
|
//
|
|
// a = 1
|
|
// print(a)
|
|
// becomes:
|
|
// = prim::Store[name="a"](%a.1)
|
|
// %a : int = prim::Load[name="a"]()
|
|
// prim::Print(%a)
|
|
|
|
struct Environment {
|
|
Environment(
|
|
Function& method,
|
|
ResolverPtr resolver,
|
|
Block* b,
|
|
std::shared_ptr<Environment> next = nullptr)
|
|
: method(method),
|
|
resolver(std::move(resolver)),
|
|
b(b),
|
|
next(std::move(next)) {}
|
|
|
|
Function& method;
|
|
ResolverPtr resolver;
|
|
std::unordered_map<std::string, std::function<std::string()>> error_messages;
|
|
Block* b;
|
|
|
|
std::shared_ptr<Environment> next;
|
|
|
|
// set type error in the lowest environment. if the variable is used after an
|
|
// error has been set, then we will use the more informative error message
|
|
void setVariableTypeError(
|
|
const std::string& name,
|
|
std::function<std::string()> msg) {
|
|
auto runner = this;
|
|
while (runner->next) {
|
|
runner = runner->next.get();
|
|
}
|
|
runner->error_messages[name] = msg;
|
|
}
|
|
|
|
// see if type error has been set for a variable
|
|
c10::optional<std::string> findVariableTypeError(const std::string& name) {
|
|
auto runner = this;
|
|
while (runner->next) {
|
|
runner = runner->next.get();
|
|
}
|
|
auto msg = runner->error_messages.find(name);
|
|
if (msg != runner->error_messages.end()) {
|
|
return msg->second();
|
|
} else {
|
|
return c10::nullopt;
|
|
}
|
|
}
|
|
|
|
SugaredValuePtr insertLoad(const std::string& name, const TypePtr& type) {
|
|
auto g = b->owningGraph();
|
|
auto load = g->insertNode(g->createLoad(name, type));
|
|
if (meaningfulName(name)) {
|
|
load->output()->setDebugName(name);
|
|
}
|
|
return std::make_shared<SimpleValue>(load->output());
|
|
}
|
|
|
|
// note: type is not always the same as v->type(), e.g.
|
|
// type: Optional[Tensor]
|
|
// v->type(): Tensor
|
|
void insertStore(
|
|
const std::string& name,
|
|
const SourceRange& loc,
|
|
Value* v,
|
|
TypePtr type) {
|
|
auto g = b->owningGraph();
|
|
g->insertNode(g->createStore(name, v))->setSourceRange(loc);
|
|
type_table[name] = type;
|
|
}
|
|
|
|
SugaredValuePtr findInThisFrame(const std::string& name) {
|
|
auto it = value_table.find(name);
|
|
if (it != value_table.end()) {
|
|
return it->second;
|
|
}
|
|
auto it2 = type_table.find(name);
|
|
if (it2 != type_table.end()) {
|
|
return insertLoad(name, it2->second);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
SugaredValuePtr findInParentFrame(const std::string& name) {
|
|
return next ? next->findInAnyFrame(name) : nullptr;
|
|
}
|
|
|
|
void setType(const std::string& name, TypePtr type) {
|
|
type_table[name] = std::move(type);
|
|
}
|
|
|
|
SugaredValuePtr findInAnyFrame(const std::string& name) {
|
|
for (auto runner = this; runner; runner = runner->next.get()) {
|
|
if (auto r = runner->findInThisFrame(name)) {
|
|
return r;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Block* block() {
|
|
return b;
|
|
}
|
|
|
|
void setVar(const SourceRange& loc, const std::string& name, Value* value) {
|
|
setSugaredVar(
|
|
loc,
|
|
name,
|
|
std::make_shared<SimpleValue>(value),
|
|
/*annotated_type=*/nullptr);
|
|
}
|
|
|
|
void setSugaredVar(
|
|
const SourceRange& loc,
|
|
const std::string& name,
|
|
SugaredValuePtr value,
|
|
TypePtr annotated_type) {
|
|
Value* as_simple_value = asSimple(value);
|
|
if (as_simple_value && !as_simple_value->hasDebugName() &&
|
|
meaningfulName(name) &&
|
|
// note: if the value wasn't defined in this block, we might be giving a
|
|
// name only used inside this block to a value outside of this. this is
|
|
// not normally helpful for debugging and causes import/export jitter.
|
|
as_simple_value->node()->owningBlock() == block()) {
|
|
as_simple_value->setDebugName(name);
|
|
}
|
|
// prevent re-assignment involving any sugared values
|
|
// any reassignment like:
|
|
// a = ...
|
|
// while ...
|
|
// a = ..
|
|
// requires 'a' to be first-class in the graph since its value depends on
|
|
// control flow
|
|
if (auto parent = findInParentFrame(name)) {
|
|
if (annotated_type) {
|
|
throw ErrorReport(loc)
|
|
<< "Attempting to declare and annotate the type of variable '"
|
|
<< name << "' but it is already defined in an outer block";
|
|
}
|
|
if (!as_simple_value) {
|
|
throw ErrorReport(loc)
|
|
<< "Cannot re-assign '" << name << "' to a value of type "
|
|
<< value->kind() << " because " << name
|
|
<< " is not a first-class value. Only reassignments to first-class values are allowed";
|
|
}
|
|
Value* simple_parent = asSimple(parent);
|
|
if (!simple_parent) {
|
|
throw ErrorReport(loc)
|
|
<< "Cannot re-assign '" << name << "' because it has type "
|
|
<< value->kind() << " and " << name
|
|
<< " is not a first-class value. Only reassignments to first-class values are allowed";
|
|
}
|
|
|
|
auto parent_type = unshapedType(simple_parent->type());
|
|
as_simple_value = tryConvertToType(
|
|
loc,
|
|
*b->owningGraph(),
|
|
parent_type,
|
|
as_simple_value,
|
|
/*allow_conversions=*/true);
|
|
if (!as_simple_value->type()->isSubtypeOf(parent_type)) {
|
|
auto error = ErrorReport(loc);
|
|
error << "Variable '" << name << "' previously has type "
|
|
<< simple_parent->type()->python_str()
|
|
<< " but is now being assigned to a value of type "
|
|
<< as_simple_value->type()->python_str();
|
|
|
|
// Special-cased error msg if we're trying to assign to a tensor list.
|
|
if (simple_parent->type()->kind() == TypeKind::ListType &&
|
|
as_simple_value->type()->kind() == TypeKind::ListType) {
|
|
error << "\n. (Note: empty lists are constructed as Tensor[]; "
|
|
<< "if you want an empty list of a different type, "
|
|
<< "use `torch.jit.annotate(List[T], [])`, "
|
|
<< "where `T` is the type of elements in the list)";
|
|
}
|
|
throw error;
|
|
}
|
|
}
|
|
if (as_simple_value) {
|
|
if (!annotated_type) {
|
|
annotated_type = as_simple_value->type();
|
|
}
|
|
if (!as_simple_value->type()->isSubtypeOf(annotated_type)) {
|
|
throw ErrorReport(loc)
|
|
<< "Variable '" << name << "' is annotated with type "
|
|
<< annotated_type->python_str()
|
|
<< " but is being assigned to a value of type "
|
|
<< as_simple_value->type()->python_str();
|
|
}
|
|
insertStore(name, loc, std::move(as_simple_value), annotated_type);
|
|
} else {
|
|
value_table[name] = std::move(value);
|
|
}
|
|
}
|
|
|
|
SugaredValuePtr getSugaredVar(const Ident& ident, bool required = true) {
|
|
return getSugaredVar(ident.name(), ident.range());
|
|
}
|
|
Value* getVar(const Ident& ident) {
|
|
return getSugaredVar(ident)->asValue(ident.range(), method);
|
|
}
|
|
|
|
SugaredValuePtr getSugaredVar(
|
|
const std::string& ident,
|
|
const SourceRange& range,
|
|
bool required = true) {
|
|
auto retval = findInAnyFrame(ident);
|
|
|
|
if (!retval) {
|
|
static std::unordered_map<std::string, SugaredValuePtr> globals = {
|
|
{"print", std::make_shared<PrintValue>()},
|
|
{"float",
|
|
makeMagic(
|
|
"__float__",
|
|
std::make_shared<CastValue>(FloatType::get(), aten::Float))},
|
|
{"int",
|
|
makeMagic(
|
|
"__int__",
|
|
std::make_shared<CastValue>(IntType::get(), aten::Int))},
|
|
{"bool",
|
|
makeMagic(
|
|
"__bool__",
|
|
std::make_shared<CastValue>(BoolType::get(), aten::Bool))},
|
|
{"str",
|
|
makeMagic(
|
|
"__str__",
|
|
std::make_shared<CastValue>(StringType::get(), aten::str))},
|
|
{"getattr", std::make_shared<GetAttrValue>()},
|
|
{"isinstance", std::make_shared<IsInstanceValue>()},
|
|
// todo(zach): remove when we can correctly export torch.full via ONNX
|
|
// or we have implicit conversion that can convert numbers to tensors
|
|
{"_to_tensor",
|
|
std::make_shared<CastValue>(TensorType::get(), prim::NumToTensor)},
|
|
{"len",
|
|
makeMagic(
|
|
"__len__",
|
|
std::make_shared<BuiltinFunction>(aten::len, at::nullopt))},
|
|
{"hex",
|
|
makeMagic(
|
|
"__hex__",
|
|
std::make_shared<BuiltinFunction>(aten::hex, at::nullopt))},
|
|
{"oct",
|
|
makeMagic(
|
|
"__oct__",
|
|
std::make_shared<BuiltinFunction>(aten::oct, at::nullopt))},
|
|
{"round",
|
|
makeMagic(
|
|
"__round__",
|
|
std::make_shared<BuiltinFunction>(aten::round, at::nullopt))},
|
|
{"hash", std::make_shared<BuiltinFunction>(aten::hash, at::nullopt)},
|
|
{"min", std::make_shared<BuiltinFunction>(prim::min, at::nullopt)},
|
|
{"max", std::make_shared<BuiltinFunction>(prim::max, at::nullopt)},
|
|
{"abs", std::make_shared<BuiltinFunction>(prim::abs, at::nullopt)},
|
|
{"all", std::make_shared<BuiltinFunction>(aten::all, at::nullopt)},
|
|
{"divmod",
|
|
std::make_shared<BuiltinFunction>(aten::divmod, at::nullopt)},
|
|
{"list", std::make_shared<BuiltinFunction>(aten::list, at::nullopt)},
|
|
{"ord", std::make_shared<BuiltinFunction>(aten::ord, at::nullopt)},
|
|
{"chr", std::make_shared<BuiltinFunction>(aten::chr, at::nullopt)},
|
|
{"bin", std::make_shared<BuiltinFunction>(aten::bin, at::nullopt)},
|
|
{"range", std::make_shared<IterableValue>(prim::range)},
|
|
{"zip", std::make_shared<IterableValue>(prim::zip)},
|
|
{"enumerate", std::make_shared<IterableValue>(prim::enumerate)},
|
|
{"rangelist",
|
|
std::make_shared<BuiltinFunction>(prim::rangelist, at::nullopt)},
|
|
{"sorted",
|
|
std::make_shared<BuiltinFunction>(aten::sorted, at::nullopt)},
|
|
};
|
|
auto it = globals.find(ident);
|
|
if (it != globals.end()) {
|
|
retval = it->second;
|
|
}
|
|
}
|
|
|
|
if (!retval) {
|
|
if (auto type = resolver->resolveType(ident, range)) {
|
|
if (auto class_type = type->cast<ClassType>()) {
|
|
retval = std::make_shared<script::ClassValue>(class_type);
|
|
} else if (auto tuple_type = type->cast<TupleType>()) {
|
|
retval = std::make_shared<script::NamedTupleConstructor>(tuple_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!retval) {
|
|
retval = resolver->resolveValue(ident, method, range);
|
|
}
|
|
|
|
if (!retval && required) {
|
|
// check if this value was not emitted in an if statement because of a
|
|
// type mismatch. if it was, then we print a more informative error msg
|
|
if (auto msg = findVariableTypeError(ident)) {
|
|
throw ErrorReport(range) << *msg << "and was used here";
|
|
}
|
|
throw ErrorReport(range) << "undefined value " << ident;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
Value* getVar(const std::string& ident, const SourceRange& range) {
|
|
return getSugaredVar(ident, range)->asValue(range, method);
|
|
}
|
|
|
|
std::vector<std::string> definedVariables() {
|
|
std::vector<std::string> result;
|
|
for (auto& kv : type_table) {
|
|
result.push_back(kv.first);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
TypeTable type_table;
|
|
ValueTable value_table;
|
|
};
|
|
|
|
template <class T>
|
|
static Value* materializeConstant(
|
|
T val,
|
|
Graph& graph,
|
|
const SourceRange& r,
|
|
std::unordered_map<T, Value*>& map) {
|
|
auto existing_constant = map.find(val);
|
|
if (existing_constant != map.end()) {
|
|
return existing_constant->second;
|
|
}
|
|
|
|
WithInsertPoint guard(graph.block()->nodes().front());
|
|
auto new_constant = graph.insertConstant(val, nullptr, r);
|
|
map[val] = new_constant;
|
|
|
|
return new_constant;
|
|
}
|
|
|
|
inline bool isSupportedListElementType(const TypePtr& type) {
|
|
return type->isSubtypeOf(TensorType::get()) ||
|
|
type->isSubtypeOf(NumberType::get());
|
|
}
|
|
|
|
// Information for each def being emitted.
|
|
// Defs can be nested to support closures so we need a stack of this information
|
|
// Currently records information about the functions return type.
|
|
struct DefContext {
|
|
TypePtr declared_return_type_; // nullptr if not annotated
|
|
TypePtr merged_return_type_; // nullptr if a Return has not been seen yet
|
|
};
|
|
|
|
struct to_ir {
|
|
to_ir(
|
|
const Def& def,
|
|
ResolverPtr resolver_,
|
|
const Self* self,
|
|
Function& method) // method being constructed
|
|
: method(method),
|
|
graph(method.graph()),
|
|
resolver(std::move(resolver_)),
|
|
typeParser_(resolver),
|
|
environment_stack(nullptr) {
|
|
AT_ASSERT(resolver);
|
|
pushFrame(graph->block(), /*starts_def=*/true);
|
|
|
|
// Type annotations exclude explicitly typing the "self" parameter, so in
|
|
// the case that this is a method with self we expect one fewer parameter
|
|
// annotation than the number of parameters this Def takes.
|
|
if (self && def.decl().params().size() == 0) {
|
|
throw ErrorReport(def.decl().params().range())
|
|
<< "methods must have a self argument";
|
|
}
|
|
method.setSchema(emitDef(def, self, graph->block()));
|
|
runCleanupPasses(graph);
|
|
}
|
|
|
|
private:
|
|
Function& method;
|
|
std::shared_ptr<Graph> graph;
|
|
ResolverPtr resolver;
|
|
std::unordered_map<int64_t, Value*> integral_constants;
|
|
std::unordered_map<double, Value*> fp_constants;
|
|
std::unordered_set<Block*> exit_blocks;
|
|
ScriptTypeParser typeParser_;
|
|
|
|
// Singly-linked list of environments. This top element contains a member
|
|
// `next` that points to the most immediate enclosing scope's value.
|
|
std::shared_ptr<Environment> environment_stack;
|
|
std::vector<DefContext> def_stack_;
|
|
size_t temp_name_count_ = 0;
|
|
std::string createTempName(const std::string& prefix) {
|
|
return prefix + std::to_string(temp_name_count_++);
|
|
}
|
|
|
|
void pushFrame(Block* b, bool starts_def = false) {
|
|
if (starts_def) {
|
|
def_stack_.emplace_back();
|
|
}
|
|
environment_stack =
|
|
std::make_shared<Environment>(method, resolver, b, environment_stack);
|
|
}
|
|
std::shared_ptr<Environment> popFrame(bool ends_def = false) {
|
|
auto old_frame = environment_stack;
|
|
environment_stack = environment_stack->next;
|
|
if (ends_def) {
|
|
def_stack_.pop_back();
|
|
}
|
|
return old_frame;
|
|
}
|
|
|
|
// If the graph might not return, add an implicit None return at the end
|
|
void handleMaybeNoReturn(const Def& def, Block* block) {
|
|
auto decl_ret = def_stack_.back().declared_return_type_;
|
|
if (exit_blocks.count(block) == 0) {
|
|
auto decl_ret = def_stack_.back().declared_return_type_;
|
|
if (decl_ret && decl_ret != NoneType::get()) {
|
|
throw ErrorReport(def.range())
|
|
<< "Function was not annotated as having type None, but does not "
|
|
<< "return along all paths";
|
|
}
|
|
WithInsertPoint b(*block->nodes().end());
|
|
emitReturn(Return::create(
|
|
def.range(), Expr(Compound::create(TK_NONE, def.range(), {}))));
|
|
} else {
|
|
// if we haven't seen any return statements, but the graph block exits
|
|
// (the funciton always throws) then we accept the declared return type if
|
|
// it exists or set it to none
|
|
if (def_stack_.back().merged_return_type_ == nullptr) {
|
|
def_stack_.back().merged_return_type_ =
|
|
decl_ret != nullptr ? decl_ret : NoneType::get();
|
|
}
|
|
}
|
|
}
|
|
|
|
FunctionSchema emitDef(const Def& def, const Self* self, Block* block) {
|
|
auto schema = extractSchemaFromDef(def, self);
|
|
// TODO need guards on init returning none
|
|
if (schema.returns().size() == 1) {
|
|
def_stack_.back().declared_return_type_ = schema.returns().at(0).type();
|
|
}
|
|
std::vector<Argument> arguments =
|
|
emitFormalArguments(def, self, schema, block);
|
|
|
|
// body
|
|
auto stmts_list = def.statements();
|
|
emitStatements(stmts_list.begin(), stmts_list.end());
|
|
handleMaybeNoReturn(def, block);
|
|
std::vector<Argument> returns = {emitOutput(def.range(), schema, block)};
|
|
return {def.name().name(), "", std::move(arguments), std::move(returns)};
|
|
}
|
|
|
|
std::vector<IValue> evaluateDefaults(
|
|
const SourceRange& r,
|
|
const std::vector<Expr>& default_types,
|
|
const std::vector<Expr>& default_exprs) {
|
|
std::vector<IValue> default_values;
|
|
if (default_exprs.empty())
|
|
return default_values;
|
|
// To evaluate the default expressions, we create a graph with no inputs,
|
|
// and whose returns are the default values we need.
|
|
// We then run constant prop on this graph and check the results are
|
|
// constant. This approach avoids having to have separate handling of
|
|
// default arguments from standard expressions by piecing together existing
|
|
// machinery for graph generation, constant propgation, and constant
|
|
// extraction.
|
|
auto tuple_type = Subscript::create(
|
|
r,
|
|
Var::create(r, Ident::create(r, "Tuple")),
|
|
List<Expr>::create(r, default_types));
|
|
auto blank_decl = Decl::create(
|
|
r, List<Param>::create(r, {}), Maybe<Expr>::create(r, tuple_type));
|
|
|
|
auto tuple_expr =
|
|
TupleLiteral::create(r, List<Expr>::create(r, default_exprs));
|
|
auto ret = Return::create(r, tuple_expr);
|
|
auto def = Def::create(
|
|
r,
|
|
Ident::create(r, "defaults"),
|
|
blank_decl,
|
|
List<Stmt>::create(r, {ret}));
|
|
|
|
CompilationUnit cu;
|
|
cu.define(c10::nullopt, {def}, {resolver}, nullptr);
|
|
Stack stack;
|
|
// XXX: We need to turn optimization off here because otherwise we try to
|
|
// recursively initialize stuff in DecomposeOps.
|
|
GraphOptimizerEnabledGuard guard(false);
|
|
cu.get_function(def.name().name()).run(stack);
|
|
return stack.at(0).toTuple()->elements();
|
|
}
|
|
|
|
std::vector<Argument> parseArgsFromDecl(const Decl& decl, const Self* self) {
|
|
auto params_begin = decl.params().begin();
|
|
auto params_end = decl.params().end();
|
|
if (self) {
|
|
++params_begin;
|
|
}
|
|
std::vector<Argument> retval;
|
|
|
|
std::vector<Expr> default_types;
|
|
std::vector<Expr> default_exprs;
|
|
// gather any non-empty default arguments
|
|
for (auto it = params_begin; it != params_end; ++it) {
|
|
auto param = *it;
|
|
auto def = param.defaultValue();
|
|
if (def.present()) {
|
|
default_types.emplace_back(param.type().get());
|
|
default_exprs.emplace_back(def.get());
|
|
}
|
|
}
|
|
auto default_values =
|
|
evaluateDefaults(decl.range(), default_types, default_exprs);
|
|
|
|
auto defaults_it = default_values.begin();
|
|
for (auto it = params_begin; it != params_end; ++it) {
|
|
auto decl_arg = *it;
|
|
|
|
TypePtr type;
|
|
c10::optional<int32_t> N;
|
|
bool is_inferred_type = false;
|
|
if (!decl_arg.type().present()) {
|
|
// If this param doesn't have a type, default to "tensor"
|
|
is_inferred_type = true;
|
|
type = TensorType::get();
|
|
N = c10::nullopt;
|
|
} else {
|
|
// BroadcastList list can only appear at the argument level
|
|
if (auto maybe_broad_list =
|
|
typeParser_.parseBroadcastList(decl_arg.type().get())) {
|
|
type = maybe_broad_list->first;
|
|
N = maybe_broad_list->second;
|
|
} else {
|
|
type = typeParser_.parseTypeFromExpr(decl_arg.type().get());
|
|
N = c10::nullopt;
|
|
}
|
|
}
|
|
c10::optional<IValue> default_value = c10::nullopt;
|
|
if (decl_arg.defaultValue().present()) {
|
|
default_value = *defaults_it++;
|
|
}
|
|
auto arg = Argument(
|
|
decl_arg.ident().name(),
|
|
type,
|
|
N,
|
|
default_value,
|
|
decl_arg.kwarg_only(),
|
|
/*alias_info=*/c10::nullopt,
|
|
is_inferred_type);
|
|
retval.push_back(arg);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
std::vector<Argument> parseReturnFromDecl(const Decl& decl) {
|
|
// we represent no annoation on a return type as having no values in the
|
|
// schema's return() list
|
|
// in emitReturn we take the actual return value to be the value of the
|
|
// return statement if no one was provided here
|
|
if (!decl.return_type().present())
|
|
return {};
|
|
|
|
if (typeParser_.parseBroadcastList(decl.return_type().get()))
|
|
throw ErrorReport(decl.return_type().range())
|
|
<< "Broadcastable lists cannot appear as a return type";
|
|
auto parsed_type = typeParser_.parseTypeFromExpr(decl.return_type().get());
|
|
return {Argument(
|
|
"",
|
|
parsed_type,
|
|
/*N =*/c10::nullopt,
|
|
/*default_value =*/c10::nullopt,
|
|
/*kwarg_only =*/false)};
|
|
}
|
|
FunctionSchema extractSchemaFromDef(const Def& def, const Self* self) {
|
|
const auto name = def.name().name();
|
|
std::vector<Argument> args = parseArgsFromDecl(def.decl(), self);
|
|
std::vector<Argument> returns = parseReturnFromDecl(def.decl());
|
|
return FunctionSchema(
|
|
name, "", std::move(args), std::move(returns), false, false);
|
|
}
|
|
|
|
// see [setstate type]
|
|
static TypePtr getTypeForSetStateArg(const Self* self) {
|
|
TORCH_CHECK(self, "Expected __setstate__ to have a `self` argument");
|
|
self->getClassType()->getMethod("__getstate__")->ensure_defined();
|
|
return self->getClassType()
|
|
->getMethod("__getstate__")
|
|
->getSchema()
|
|
.returns()
|
|
.at(0)
|
|
.type();
|
|
}
|
|
|
|
// see [setstate type]
|
|
static bool shouldDeriveSetStateType(
|
|
const Def& def,
|
|
const FunctionSchema& schema) {
|
|
const bool noTypeAnnotations = std::all_of(
|
|
schema.arguments().begin(),
|
|
schema.arguments().end(),
|
|
[](const Argument& arg) { return arg.is_inferred_type(); });
|
|
|
|
bool shouldInfer = def.name().name() == "__setstate__" && noTypeAnnotations;
|
|
if (!shouldInfer) {
|
|
return false;
|
|
}
|
|
|
|
// Do some additional basic validation that the __setstate__ func is
|
|
// well-formed
|
|
TORCH_INTERNAL_ASSERT(def.name().name() == "__setstate__");
|
|
const auto numDeclParams = def.decl().params().size();
|
|
TORCH_CHECK(
|
|
numDeclParams,
|
|
"Expected 2 arguments for __setstate__, got: ",
|
|
numDeclParams);
|
|
return true;
|
|
}
|
|
|
|
std::vector<Argument> emitFormalArguments(
|
|
const Def& def,
|
|
const Self* self,
|
|
const FunctionSchema& schema,
|
|
Block* block) {
|
|
std::vector<Argument> arguments; // for schema
|
|
// inputs
|
|
auto it = def.decl().params().begin();
|
|
auto end = def.decl().params().end();
|
|
auto expected_annotation_size = def.decl().params().size();
|
|
if (self) {
|
|
expected_annotation_size--;
|
|
}
|
|
if (schema.arguments().size() != expected_annotation_size) {
|
|
throw ErrorReport(def.decl().params().range())
|
|
<< "Number of type annotations for"
|
|
<< " function parameters (" << schema.arguments().size() << ")"
|
|
<< " does not match the number of parameters on the function ("
|
|
<< expected_annotation_size << ")!";
|
|
}
|
|
|
|
if (self) {
|
|
AT_ASSERT(it != end);
|
|
const auto& name = (*it).ident().name();
|
|
Value* new_input = block->addInput()->setDebugName(name);
|
|
environment_stack->setSugaredVar(
|
|
(*it).ident().range(),
|
|
name,
|
|
self->makeSugared(new_input),
|
|
/*annotated_type=*/nullptr);
|
|
arguments.emplace_back(name, new_input->type());
|
|
++it;
|
|
}
|
|
|
|
// [setstate type]
|
|
// __setstate__ is special, because if the user leaves it un-annotated we
|
|
// will derive the type for `state` from the output type of __getstate__.
|
|
// This is necessary so that we can allow submodules to appear in `state`.
|
|
bool shouldDeriveType = shouldDeriveSetStateType(def, schema);
|
|
size_t arg_annotation_idx = 0;
|
|
for (; it != end; ++it) {
|
|
auto& name = (*it).ident().name();
|
|
// Add the input to the graph
|
|
Value* new_input = block->addInput();
|
|
if (meaningfulName(name)) {
|
|
new_input->setDebugName(name);
|
|
}
|
|
// Record the type for the schema and set the Type on the Value*
|
|
auto arg = schema.arguments().at(arg_annotation_idx++);
|
|
if (shouldDeriveType) {
|
|
TORCH_INTERNAL_ASSERT(schema.arguments().size() == 1);
|
|
const auto& inferredStateType = getTypeForSetStateArg(self);
|
|
arg = arg.cloneWithType(inferredStateType);
|
|
}
|
|
|
|
arguments.push_back(arg);
|
|
new_input->setType(arguments.back().type());
|
|
|
|
// NB: set type of new_input before setVar call so the Store is
|
|
// typed appropriately
|
|
environment_stack->setVar((*it).ident().range(), name, new_input);
|
|
}
|
|
return arguments;
|
|
}
|
|
|
|
Argument emitOutput(
|
|
const SourceRange& range,
|
|
const FunctionSchema& schema,
|
|
Block* block) {
|
|
// handleMaybeNoReturn ensures that merged_return_type_ is always set
|
|
auto ret_type = def_stack_.back().merged_return_type_;
|
|
TORCH_INTERNAL_ASSERT(ret_type);
|
|
|
|
// in the ConvertToSSA pass, prim::ReturnStmts are lowered so that the
|
|
// correct return value is set. Until then, we have a correctly-typed
|
|
// placeholder return value. This is needed so that closures & graphs
|
|
// are correctly typed.
|
|
auto placeholder_return =
|
|
graph->insertNode(graph->createUninitialized(ret_type))->output();
|
|
block->registerOutput(placeholder_return);
|
|
return Argument("", def_stack_.back().merged_return_type_);
|
|
}
|
|
|
|
void emitStatements(const List<Stmt>& statements) {
|
|
return emitStatements(statements.begin(), statements.end());
|
|
}
|
|
|
|
// XXX - right now closures are used _only_ for defining gradients internally
|
|
// There are several unfinished aspects that make them unusable generally
|
|
// 1. We do not have a type, ivalue, operator to represent prim::Function, so
|
|
// closure_node has type None
|
|
// 2. There is no export logic for it yet, so it cannot be
|
|
// exported/python_printed
|
|
// 3. There is nothing preventing the assignment of already existing variables
|
|
// inside the closures
|
|
// the changes to those variables will just get forgotten.
|
|
// 4. There is no parsing support in frontend.py, this is intentional since it
|
|
// prevents people from accidentally using this feature.
|
|
std::shared_ptr<ClosureValue> emitClosure(
|
|
const std::function<void(Block*)>& emit_body) {
|
|
Node* closure_node = graph->insertNode(graph->create(prim::Function, 1));
|
|
// it is not a real thing yet, so just say the type is None
|
|
closure_node->output()->setType(NoneType::get());
|
|
Block* block = closure_node->addBlock();
|
|
{
|
|
WithInsertPoint guard(block);
|
|
pushFrame(block, /*starts_def=*/true);
|
|
emit_body(block);
|
|
popFrame(/*ends_def=*/true);
|
|
}
|
|
return std::make_shared<ClosureValue>(closure_node->output());
|
|
}
|
|
|
|
void emitClosure(const Def& def) {
|
|
// invoked once the closure block is set as the enviroment
|
|
auto emit_body = [&](Block* closure_block) {
|
|
emitDef(
|
|
def,
|
|
nullptr,
|
|
closure_block); // ignore schema return, we just wont use it for now
|
|
// since we never create a Method for the closure
|
|
};
|
|
auto closure_value = emitClosure(emit_body);
|
|
environment_stack->setSugaredVar(
|
|
def.name().range(),
|
|
def.name().name(),
|
|
closure_value,
|
|
/*annotated_type=*/nullptr);
|
|
}
|
|
|
|
void emitBreak(const Break& stmt) {
|
|
auto break_node =
|
|
graph->create(prim::BreakStmt, {}, 0)->setSourceRange(stmt.range());
|
|
graph->insertNode(break_node);
|
|
}
|
|
|
|
void emitContinue(const Continue& stmt) {
|
|
auto continue_node =
|
|
graph->create(prim::ContinueStmt, {}, 0)->setSourceRange(stmt.range());
|
|
graph->insertNode(continue_node);
|
|
}
|
|
|
|
void emitReturn(const Return& stmt) {
|
|
Value* result = emitExpr(stmt.expr());
|
|
TypePtr result_type = def_stack_.back().declared_return_type_;
|
|
// result type is annotated, every return must convert to that type
|
|
if (result_type) {
|
|
// this guard skips implicit conversion from None -> Tensor for the return
|
|
// type. otherwise forgetting a return a function returning a tensor will
|
|
// cause a None to be converted to a tensor.
|
|
if (!(result_type->isSubtypeOf(TensorType::get()) &&
|
|
result->type()->isSubtypeOf(NoneType::get()))) {
|
|
result = tryConvertToType(
|
|
stmt.range(),
|
|
*graph,
|
|
result_type,
|
|
result,
|
|
/*allow_conversions=*/true);
|
|
}
|
|
|
|
if (!result->type()->isSubtypeOf(result_type)) {
|
|
throw ErrorReport(stmt.range())
|
|
<< "Return value was annotated as having type "
|
|
<< result_type->python_str() << " but is actually of type "
|
|
<< result->type()->python_str();
|
|
}
|
|
} else {
|
|
result_type = def_stack_.back().merged_return_type_;
|
|
if (!result_type) {
|
|
result_type = result->type();
|
|
}
|
|
if (!unifyTypes(result_type, result->type())) {
|
|
throw ErrorReport(stmt.range())
|
|
<< "Previous return statement returned a value of type "
|
|
<< result_type->python_str()
|
|
<< " but this return statement returns a value of type "
|
|
<< result->type()->python_str();
|
|
}
|
|
}
|
|
AT_ASSERT(result_type);
|
|
def_stack_.back().merged_return_type_ = result_type;
|
|
graph->insertNode(graph->create(prim::ReturnStmt, {result}, 0));
|
|
exit_blocks.insert(environment_stack->block());
|
|
}
|
|
|
|
void emitStatements(
|
|
List<Stmt>::const_iterator begin,
|
|
List<Stmt>::const_iterator end) {
|
|
for (; begin != end; ++begin) {
|
|
auto stmt = *begin;
|
|
ErrorReport::CallStack::update_pending_range(stmt.range());
|
|
switch (stmt.kind()) {
|
|
case TK_IF:
|
|
emitIf(If(stmt));
|
|
break;
|
|
case TK_WHILE:
|
|
emitWhile(While(stmt));
|
|
break;
|
|
case TK_FOR:
|
|
emitFor(For(stmt));
|
|
break;
|
|
case TK_ASSIGN:
|
|
emitAssignment(Assign(stmt));
|
|
break;
|
|
case TK_AUG_ASSIGN:
|
|
emitAugAssignment(AugAssign(stmt));
|
|
break;
|
|
case TK_EXPR_STMT: {
|
|
auto expr = ExprStmt(stmt).expr();
|
|
emitSugaredExpr(expr, 0);
|
|
} break;
|
|
case TK_RAISE:
|
|
emitRaise(Raise(stmt).range());
|
|
break;
|
|
case TK_ASSERT:
|
|
emitAssert(Assert(stmt));
|
|
break;
|
|
case TK_RETURN: {
|
|
emitReturn(Return(stmt));
|
|
} break;
|
|
case TK_CONTINUE: {
|
|
emitContinue(Continue(stmt));
|
|
} break;
|
|
case TK_BREAK: {
|
|
emitBreak(Break(stmt));
|
|
} break;
|
|
case TK_PASS:
|
|
// Emit nothing for pass
|
|
break;
|
|
case TK_DEF:
|
|
emitClosure(Def(stmt));
|
|
break;
|
|
default:
|
|
throw ErrorReport(stmt)
|
|
<< "Unrecognized statement kind " << kindToString(stmt.kind());
|
|
}
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<Environment> emitSingleIfBranch(
|
|
Block* b,
|
|
const List<Stmt>& branch,
|
|
const Refinements& refinements) {
|
|
pushFrame(b);
|
|
WithInsertPoint guard(b);
|
|
insertRefinements(refinements);
|
|
emitStatements(branch);
|
|
return popFrame();
|
|
}
|
|
|
|
Node* create(Symbol kind, const SourceRange& loc, size_t n_outputs) {
|
|
return graph->create(kind, n_outputs)->setSourceRange(loc);
|
|
}
|
|
|
|
Value* emitTernaryIf(const TernaryIf& expr) {
|
|
const auto& bool_info = findRefinements(expr.cond());
|
|
Value* cond_value = emitCond(expr.cond());
|
|
auto true_expr = [&] {
|
|
insertRefinements(bool_info.true_refinements_);
|
|
return emitExpr(expr.true_expr());
|
|
};
|
|
auto false_expr = [&] {
|
|
insertRefinements(bool_info.false_refinements_);
|
|
return emitExpr(expr.false_expr());
|
|
};
|
|
return emitIfExpr(expr.range(), cond_value, true_expr, false_expr);
|
|
}
|
|
|
|
// emit a single expr from the loop comprehension so that we can correctly
|
|
// type the list we create, then remove the nodes we emitted
|
|
TypePtr getListCompType(
|
|
const ListComp& lc,
|
|
const ListTypePtr& input_list_type) {
|
|
auto b = graph->insertNode(graph->create(prim::Loop))->addBlock();
|
|
pushFrame(b);
|
|
WithInsertPoint guard(b);
|
|
auto li_elem = graph->insertNode(
|
|
graph->createUninitialized(input_list_type->getElementType()));
|
|
emitExprsAssign(
|
|
List<Expr>::create(lc.range(), {lc.target()}),
|
|
{std::make_shared<SimpleValue>(li_elem->output())},
|
|
lc.range(),
|
|
/*n_binders*/ 1);
|
|
auto ret_type = emitExpr(lc.elt())->type();
|
|
popFrame();
|
|
b->owningNode()->destroy();
|
|
return ret_type;
|
|
}
|
|
|
|
Value* emitListComprehension(const ListComp& lc) {
|
|
const auto tmp_name = createTempName("$list_acc");
|
|
const auto list_value = emitExpr(lc.iter());
|
|
if (list_value->type()->kind() != TypeKind::ListType) {
|
|
// TODO: constraining iterators to be simple lists for now
|
|
// as it makes easy to get list's element type.
|
|
throw ErrorReport(lc.range())
|
|
<< "iterator expression is expected to be a list";
|
|
}
|
|
|
|
// given `[x*2 for x in my_list]` this generates the following AST:
|
|
// __list_acc = []
|
|
// for x in my_list:
|
|
// __list_acc.append(x*2)
|
|
const auto n = graph->insertNode(graph->createList(
|
|
getListCompType(lc, list_value->type()->expect<ListType>()),
|
|
at::ArrayRef<Value*>{}));
|
|
environment_stack->setVar(lc.range(), tmp_name, n->output());
|
|
const auto tmp_list_ident = Ident::create(lc.range(), tmp_name);
|
|
const auto tmp_list_var = Var::create(lc.range(), tmp_list_ident);
|
|
const auto append_ident = Ident::create(lc.range(), "append");
|
|
const auto dot_op = Select::create(lc.range(), tmp_list_var, append_ident);
|
|
const auto append_args_list = List<Expr>::create(lc.range(), {lc.elt()});
|
|
const auto append_attrs = List<Attribute>::create(lc.range(), {});
|
|
const auto apply_append =
|
|
Apply::create(lc.range(), dot_op, append_args_list, append_attrs);
|
|
const auto expr_stmt = ExprStmt::create(lc.range(), apply_append);
|
|
const auto stmt_list = List<Stmt>::create(lc.range(), {expr_stmt});
|
|
const auto iters_list = List<Expr>::create(lc.range(), {lc.iter()});
|
|
const auto targets_list = List<Expr>::create(lc.range(), {lc.target()});
|
|
const auto for_loop =
|
|
For::create(lc.range(), targets_list, iters_list, stmt_list);
|
|
emitFor(for_loop);
|
|
return n->output();
|
|
}
|
|
|
|
// Insert subtyping refinements
|
|
void insertRefinements(const Refinements& ref) {
|
|
for (const auto& name_mappings : ref.mappings_) {
|
|
const std::string& name = name_mappings.first;
|
|
auto type = name_mappings.second.first;
|
|
const auto& range = *name_mappings.second.second;
|
|
Value* v = environment_stack->getVar(name, range);
|
|
if (type != NoneType::get()) {
|
|
Value* output = graph->insert(prim::unchecked_unwrap_optional, {v});
|
|
environment_stack->setVar(range, name, output);
|
|
}
|
|
// todo @eellison - revisit inserting Nones when None subtypes Optional
|
|
}
|
|
}
|
|
|
|
Value* emitShortCircuitIf(
|
|
const SourceRange& loc,
|
|
const TreeRef& first_expr,
|
|
const TreeRef& second_expr,
|
|
bool is_or) {
|
|
const auto first_bool_info = findRefinements(first_expr);
|
|
Value* first_value = emitCond(Expr(first_expr));
|
|
|
|
// if the second expr in the short circuit is not evaluated,
|
|
// than the first expression is False if the short circuit
|
|
// is an `and` and True if the short circuit is an `or`.
|
|
// `False and expr` -> False, `True or expr` -> True
|
|
//
|
|
// inserting it as a constant makes optimization easier
|
|
|
|
Value* first_value_returned;
|
|
|
|
const Refinements* first_expr_refinements;
|
|
const Refinements* second_expr_refinements;
|
|
// if it's an OR the first expr is emitted in the true branch
|
|
// and the second expr in the false branch, if it's an AND the opposite
|
|
if (is_or) {
|
|
first_value_returned = graph->insertConstant(true, nullptr, loc);
|
|
first_expr_refinements = &first_bool_info.true_refinements_;
|
|
second_expr_refinements = &first_bool_info.false_refinements_;
|
|
} else {
|
|
first_value_returned = graph->insertConstant(false, nullptr, loc);
|
|
first_expr_refinements = &first_bool_info.false_refinements_;
|
|
second_expr_refinements = &first_bool_info.true_refinements_;
|
|
}
|
|
|
|
auto get_first_expr = [&] {
|
|
insertRefinements(*first_expr_refinements);
|
|
return first_value_returned;
|
|
};
|
|
|
|
auto get_second_expr = [&] {
|
|
insertRefinements(*second_expr_refinements);
|
|
return emitCond(Expr(second_expr));
|
|
};
|
|
|
|
// if this is an OR, eval second expression if first expr is False
|
|
// If this is an AND, eval second expression if first expr is True
|
|
if (is_or) {
|
|
return emitIfExpr(loc, first_value, get_first_expr, get_second_expr);
|
|
} else {
|
|
return emitIfExpr(loc, first_value, get_second_expr, get_first_expr);
|
|
}
|
|
}
|
|
|
|
Value* emitIfExpr(
|
|
const SourceRange& range,
|
|
Value* cond_value,
|
|
std::function<Value*()> true_expr,
|
|
std::function<Value*()> false_expr) {
|
|
Node* n = graph->insertNode(create(prim::If, range, 0));
|
|
|
|
n->addInput(cond_value);
|
|
auto* true_block = n->addBlock();
|
|
auto* false_block = n->addBlock();
|
|
|
|
auto emit_if_expr = [this](Block* b, std::function<Value*()> expr_value) {
|
|
pushFrame(b);
|
|
WithInsertPoint guard(b);
|
|
Value* out_val = expr_value();
|
|
b->registerOutput(out_val);
|
|
popFrame();
|
|
};
|
|
|
|
emit_if_expr(true_block, std::move(true_expr));
|
|
emit_if_expr(false_block, std::move(false_expr));
|
|
|
|
auto true_type = true_block->outputs().at(0)->type();
|
|
auto false_type = false_block->outputs().at(0)->type();
|
|
auto unified = unifyTypes(true_type, false_type);
|
|
if (!unified) {
|
|
throw ErrorReport(range)
|
|
<< "if-expression's true branch has type " << true_type->python_str()
|
|
<< " but false branch has type " << false_type->python_str();
|
|
}
|
|
|
|
// Add op outputs
|
|
auto expr_value = n->addOutput()->setType(*unified); // Resulting value
|
|
|
|
return expr_value;
|
|
}
|
|
|
|
Value* emitCond(const Expr& cond) {
|
|
Value* v = emitExpr(cond);
|
|
Value* out;
|
|
try {
|
|
auto bool_cast = environment_stack->getSugaredVar("bool", cond.range());
|
|
out = asSimple(bool_cast->call(cond.get()->range(), method, {v}, {}, 0));
|
|
} catch (...) {
|
|
throw ErrorReport(cond.range()) << "Could not cast value of type "
|
|
<< v->type()->python_str() << " to bool";
|
|
}
|
|
// cast value not response for checking output type
|
|
if (!out->type()->isSubtypeOf(BoolType::get())) {
|
|
throw ErrorReport(cond)
|
|
<< "expected a bool expression for condition but found "
|
|
<< out->type()->python_str();
|
|
}
|
|
return out;
|
|
}
|
|
|
|
void emitIfElseBlocks(Value* cond_value, const If& stmt) {
|
|
Node* n = graph->insertNode(create(prim::If, stmt.range(), 0));
|
|
n->addInput(cond_value);
|
|
const auto bool_info = findRefinements(stmt.cond());
|
|
auto* true_block = n->addBlock();
|
|
auto* false_block = n->addBlock();
|
|
|
|
// Emit both blocks once to get the union of all mutated values
|
|
auto save_true = emitSingleIfBranch(
|
|
true_block, stmt.trueBranch(), bool_info.true_refinements_);
|
|
auto save_false = emitSingleIfBranch(
|
|
false_block, stmt.falseBranch(), bool_info.false_refinements_);
|
|
|
|
bool true_exits = exit_blocks.count(true_block);
|
|
bool false_exits = exit_blocks.count(false_block);
|
|
if (true_exits && false_exits) {
|
|
exit_blocks.insert(n->owningBlock());
|
|
}
|
|
|
|
// In python, every variable assigned in an if statement escapes
|
|
// the scope of the if statement (all variables are scoped to the function).
|
|
// Script is a subset of python: we consider variables to be in scope
|
|
// as long as there is a definition of the variable along all paths
|
|
// through the if statemnent
|
|
// ----
|
|
// if ...:
|
|
// a =
|
|
// else:
|
|
// ...
|
|
// ... = a # error, a is not defined along all paths
|
|
// ----
|
|
// if ...:
|
|
// a =
|
|
// else:
|
|
// a =
|
|
// ... = a # OK, a is defined along all paths
|
|
// ----
|
|
// a = ...
|
|
// if ...:
|
|
// a =
|
|
// ... = a # OK, a is defined along all paths
|
|
// if ...:
|
|
// a =
|
|
// else:
|
|
// return
|
|
// ... = a # OK, a is always defined
|
|
|
|
// ordered set, because we want deterministic graph output
|
|
std::set<std::string> mutated_variables;
|
|
|
|
// When we access either the true or false environment,
|
|
// we need to set the insertion point so the prim::Load is inserted
|
|
// into the right block.
|
|
// if var is only defined in one branch save error in case it's used later
|
|
for (auto& v : save_true->definedVariables()) {
|
|
{
|
|
WithInsertPoint insert(false_block);
|
|
if (save_false->findInAnyFrame(v) || false_exits) {
|
|
mutated_variables.insert(v);
|
|
} else {
|
|
ErrorReport error(stmt);
|
|
environment_stack->setVariableTypeError(v, [=]() -> std::string {
|
|
error << v << " is not defined in the false branch";
|
|
return error.what();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
for (auto& v : save_false->definedVariables()) {
|
|
{
|
|
WithInsertPoint insert(true_block);
|
|
if (save_true->findInAnyFrame(v) || true_exits) {
|
|
mutated_variables.insert(v);
|
|
} else {
|
|
ErrorReport error(stmt);
|
|
environment_stack->setVariableTypeError(v, [=]() -> std::string {
|
|
error << v << " is not defined in the true branch";
|
|
return error.what();
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
// Register outputs in each block
|
|
for (const auto& x : mutated_variables) {
|
|
Value* tv;
|
|
Value* fv;
|
|
|
|
{
|
|
WithInsertPoint insert(true_block);
|
|
if (!true_exits) {
|
|
tv = save_true->getVar(x, stmt.range());
|
|
}
|
|
}
|
|
{
|
|
WithInsertPoint insert(false_block);
|
|
if (!false_exits) {
|
|
fv = save_false->getVar(x, stmt.range());
|
|
}
|
|
}
|
|
|
|
// if both branches exit don't emit any variables
|
|
// if one branch exits then we allow the all variables in the other branch
|
|
// to escape scope since they are well-defined
|
|
if (true_exits && false_exits) {
|
|
continue;
|
|
} else if (true_exits) {
|
|
tv = graph->createUninitialized(fv->type())
|
|
->insertBefore(true_block->return_node())
|
|
->output();
|
|
graph->createStore(x, tv)->insertBefore(true_block->return_node());
|
|
} else if (false_exits) {
|
|
fv = graph->createUninitialized(tv->type())
|
|
->insertBefore(false_block->return_node())
|
|
->output();
|
|
graph->createStore(x, fv)->insertBefore(false_block->return_node());
|
|
}
|
|
|
|
auto unified = unifyTypes(tv->type(), fv->type());
|
|
|
|
// attempt to unify the types. we allow variables to be set to different
|
|
// types in each branch as long as that variable is not already in scope,
|
|
// or if that variable does not get used later. here, we save the error
|
|
// so that the error message will be more informative in the case that is
|
|
// used later. When a is accessed in (a + 1), the error will get printed
|
|
// if cond:
|
|
// a = 1
|
|
// else:
|
|
// a = tensor
|
|
// b = a + 1
|
|
//
|
|
if (!unified) {
|
|
ErrorReport error(stmt);
|
|
error << "Type mismatch: " << x << " is set to type "
|
|
<< tv->type()->python_str() << " in the true branch"
|
|
<< " and type " << fv->type()->python_str()
|
|
<< " in the false branch";
|
|
if (save_true->findInParentFrame(x) ||
|
|
save_false->findInParentFrame(x)) {
|
|
throw error;
|
|
} else {
|
|
environment_stack->setVariableTypeError(
|
|
x, [=]() -> std::string { return error.what(); });
|
|
continue;
|
|
}
|
|
}
|
|
environment_stack->setType(x, *unified);
|
|
}
|
|
}
|
|
|
|
bool isIsInstanceCall(const Expr& expr) {
|
|
if (expr.kind() != TK_APPLY) {
|
|
return false;
|
|
}
|
|
auto callee = Apply(expr).callee();
|
|
return callee.kind() == TK_VAR && Var(callee).name().name() == "isinstance";
|
|
}
|
|
|
|
bool isPotentialNoneCheck(const Expr& expr) {
|
|
return expr.kind() == TK_IS || expr.kind() == TK_ISNOT;
|
|
}
|
|
|
|
void emitIf(const If& stmt) {
|
|
// NOTE: emitIf checks on If stmt condition to see if the cond AST is
|
|
// a potential none check with is/is not, or an isinstance check.
|
|
// for such cases we do meta programming and disable emitting the
|
|
// corresponding branches
|
|
Expr cond = stmt.cond();
|
|
bool isinstance_call = isIsInstanceCall(cond);
|
|
bool potential_none_check = !isinstance_call && isPotentialNoneCheck(cond);
|
|
|
|
if (!isinstance_call && !potential_none_check) {
|
|
// emit normal IF stmt for cases except isinstance & none checks
|
|
Value* cond_value = emitCond(cond);
|
|
return emitIfElseBlocks(cond_value, stmt);
|
|
}
|
|
|
|
if (isinstance_call) {
|
|
auto is_instance_result = emitSugaredExpr(cond, 1);
|
|
auto ivalue = toIValue(is_instance_result->asValue(cond.range(), method));
|
|
TORCH_INTERNAL_ASSERT(ivalue); // no support for runtime checks
|
|
if (ivalue->toBool()) {
|
|
return emitStatements(stmt.trueBranch());
|
|
} else {
|
|
return emitStatements(stmt.falseBranch());
|
|
}
|
|
}
|
|
|
|
// meta programming on AST for is/is not cases and emit branches base on the
|
|
// possible output of cond
|
|
auto cond_op = BinOp(cond);
|
|
SugaredValuePtr lhs_val = emitSugaredExpr(cond_op.lhs(), 1);
|
|
SugaredValuePtr rhs_val = emitSugaredExpr(cond_op.rhs(), 1);
|
|
|
|
List<Stmt> always_none_branch =
|
|
cond.kind() == TK_IS ? stmt.trueBranch() : stmt.falseBranch();
|
|
List<Stmt> never_none_branch =
|
|
cond.kind() == TK_IS ? stmt.falseBranch() : stmt.trueBranch();
|
|
|
|
auto lhs_none = lhs_val->isNone();
|
|
auto rhs_none = rhs_val->isNone();
|
|
|
|
// Dispatch logic (A: ALWAYS, N: NEVER, M: MAYBE):
|
|
//
|
|
// AA, -> emit always_none_branch
|
|
// AN , NA-> emit never_none_branch
|
|
// MA, MM, MN, NM, NN, AM -> emit both conditional branches
|
|
|
|
if (lhs_none == ALWAYS && rhs_none == ALWAYS) {
|
|
// None is/is not None: only emit the always_none_branch
|
|
emitStatements(always_none_branch);
|
|
} else if (
|
|
(lhs_none == ALWAYS && rhs_none == NEVER) ||
|
|
(lhs_none == NEVER && rhs_none == ALWAYS)) {
|
|
// lhs_val/rhs_val with A/M: only emit never_none_branch
|
|
emitStatements(never_none_branch);
|
|
} else {
|
|
// all other cases for lhs_val and rhs_val
|
|
// emit the whole If stmt as usual, finish emitCond first
|
|
auto lhs_range = cond_op.lhs().get()->range();
|
|
auto rhs_range = cond_op.rhs().get()->range();
|
|
|
|
auto kind = getNodeKind(cond.kind(), cond.get()->trees().size());
|
|
Value* cond_value = emitBuiltinCall(
|
|
cond.get()->range(),
|
|
*method.graph(),
|
|
kind,
|
|
c10::nullopt,
|
|
{lhs_val->asValue(lhs_range, method),
|
|
rhs_val->asValue(rhs_range, method)},
|
|
{},
|
|
/*required=*/true);
|
|
emitIfElseBlocks(cond_value, stmt);
|
|
}
|
|
}
|
|
|
|
// *********************** Loop Operators ************************************
|
|
// Emits a loop operator with the form:
|
|
// Loop(max_trip_count)
|
|
// block0(loop_counter) {
|
|
// <body>
|
|
// }
|
|
// block1 {
|
|
// <loop condition>
|
|
// -> (condition)
|
|
// }
|
|
// For loops will have an empty loop condition block with condition set to
|
|
// true. In the convert to ssa pass, the loop condition will correctly
|
|
// inlined. and inputs and outputs added so that the loop conforms to the
|
|
// semantics specified at
|
|
// https://github.com/onnx/onnx/blob/master/docs/Operators.md#Loop
|
|
void emitLoopCommon(
|
|
SourceRange range,
|
|
const List<Stmt>& body,
|
|
const SugaredValuePtr& iter_val,
|
|
c10::optional<List<Expr>> targets,
|
|
c10::optional<Expr> cond) {
|
|
Value* max_trip_count_val = nullptr;
|
|
if (iter_val != nullptr) {
|
|
max_trip_count_val = iter_val->len(range, method);
|
|
} else {
|
|
max_trip_count_val = materializeConstant(
|
|
std::numeric_limits<int64_t>::max(),
|
|
*graph,
|
|
range,
|
|
integral_constants);
|
|
}
|
|
|
|
Node* n = graph->insertNode(create(prim::Loop, range, 0));
|
|
auto* body_block = n->addBlock();
|
|
{
|
|
Block* condition_block = n->addBlock();
|
|
pushFrame(condition_block);
|
|
Value* out;
|
|
if (cond) {
|
|
WithInsertPoint insert(condition_block);
|
|
out = emitCond(cond.value());
|
|
} else {
|
|
WithInsertPoint insert(n);
|
|
out = graph->insertConstant(true, nullptr, range);
|
|
}
|
|
condition_block->registerOutput(out);
|
|
popFrame();
|
|
}
|
|
n->addInput(max_trip_count_val);
|
|
|
|
Value* trip_count =
|
|
body_block->addInput()->setType(IntType::get()); // Iteration num
|
|
{
|
|
pushFrame(body_block);
|
|
WithInsertPoint guard(body_block);
|
|
|
|
// if the FOR iters and targets are present, emit FOR target assignments
|
|
if (iter_val != nullptr && targets) {
|
|
Value* cur_elem = iter_val->getitem(range, method, trip_count);
|
|
SugaredValuePtr sv = std::make_shared<SimpleValue>(cur_elem);
|
|
List<Expr> target_exprs = targets.value();
|
|
validateAssignLhsExpr(target_exprs, range);
|
|
|
|
// if target exprs are more than 1, it means iteration unpacking on LHS
|
|
// we create Tuple literal to wrap those target exprs for assignments
|
|
if (target_exprs.size() > 1) {
|
|
Expr tl = TupleLiteral::create(range, target_exprs);
|
|
target_exprs = List<Expr>::create(range, {tl});
|
|
}
|
|
emitExprsAssign(target_exprs, {sv}, range, /*n_binders=*/1);
|
|
}
|
|
|
|
emitStatements(body);
|
|
|
|
popFrame();
|
|
}
|
|
}
|
|
|
|
void emitFor(const For& stmt) {
|
|
auto targets = stmt.targets();
|
|
auto itrs = stmt.itrs();
|
|
auto body = stmt.body();
|
|
if (stmt.itrs().size() != 1) {
|
|
throw ErrorReport(stmt) << "List of iterables is not supported currently";
|
|
}
|
|
// Emit loop information for builtinFunction values like range(), zip(),
|
|
// enumerate() or SimpleValue like List, Tensor, Dict, etc.
|
|
SugaredValuePtr sv = emitSugaredExpr(itrs[0], 1);
|
|
|
|
// We will get IterableTree for builtinFunctions zip() and enumerate(),
|
|
// RangeValue for range(), and SimpleValue for types like
|
|
// List/Tensor/Dict/String.
|
|
auto range_val = std::dynamic_pointer_cast<RangeValue>(sv);
|
|
auto siv = std::dynamic_pointer_cast<SimpleValue>(sv);
|
|
auto iterable_tree = std::dynamic_pointer_cast<IterableTree>(sv);
|
|
|
|
// For SimpleValue(except Tuple) or RanveValue/IterableTree, emit common
|
|
// loop
|
|
if ((siv && !siv->getValue()->type()->cast<TupleType>()) || range_val ||
|
|
iterable_tree) {
|
|
// looping over a dict defaults to looping over the keys in python
|
|
if (siv && siv->getValue()->type()->cast<DictType>()) {
|
|
sv = std::make_shared<SimpleValue>(
|
|
graph->insert(aten::keys, {siv->getValue()}, {}, stmt.range()));
|
|
}
|
|
emitLoopCommon(stmt.range(), body, sv, targets, {});
|
|
return;
|
|
}
|
|
|
|
// Emit or unroll the loop for Tuple or ModuleList, we choose to unroll or
|
|
// emit each subelemnt for each iteration separately. This is because for
|
|
// ModuleList, each module inside the list may be different types, so FOR ..
|
|
// in ModuleList essentially should emit different stmts for each iteration,
|
|
// which we shouldn't emit the prim::Loop node for it, the same rule applies
|
|
// for the Tuple case.
|
|
auto instances = sv->asTuple(stmt.range(), method);
|
|
pushFrame(environment_stack->block());
|
|
for (const auto& inst : instances) {
|
|
emitExprsAssign(targets, {inst}, itrs[0].range(), /*n_binders=*/1);
|
|
emitStatements(body);
|
|
}
|
|
|
|
for (const auto& n : environment_stack->definedVariables()) {
|
|
if (environment_stack->findInParentFrame(n)) {
|
|
environment_stack->next->setVar(
|
|
stmt.range(), n, environment_stack->getVar(n, stmt.range()));
|
|
}
|
|
}
|
|
popFrame();
|
|
}
|
|
|
|
void emitWhile(const While& stmt) {
|
|
auto cond = stmt.cond();
|
|
emitLoopCommon(stmt.range(), stmt.body(), nullptr, {}, cond);
|
|
}
|
|
|
|
// Currently we do not support assigning exceptions to variables,
|
|
// a = Exception("hi")
|
|
// raise a
|
|
//
|
|
// We ignore the expression following raise
|
|
void emitRaise(const SourceRange& loc) {
|
|
const std::string exception = "Exception";
|
|
auto string_input = insertConstant(*graph, exception, nullptr, loc);
|
|
graph->insert(prim::RaiseException, {string_input}, {}, loc);
|
|
exit_blocks.insert(environment_stack->block());
|
|
}
|
|
|
|
// emit assserions as an if branch so that assertions will reuse the
|
|
// emitIfElseBlocks refining of types
|
|
void emitAssert(const Assert& stmt) {
|
|
Value* cond_value = emitCond(stmt.test());
|
|
List<Stmt> true_branch = List<Stmt>::create(stmt.range(), {});
|
|
List<Stmt> false_branch =
|
|
List<Stmt>::create(stmt.range(), {Raise::create(stmt.range())});
|
|
auto if_stmt =
|
|
If::create(stmt.range(), stmt.test(), true_branch, false_branch);
|
|
emitIfElseBlocks(cond_value, if_stmt);
|
|
}
|
|
|
|
// Validate that the `lhs` Expr's in an assignment statement are valid. That
|
|
// is:
|
|
//
|
|
// 1) All lhs Expr's are either Var, Tuple or Starred nodes
|
|
// 2) There is at most one Starred node in the lhs Expr
|
|
// 3) A Starred node can only appear when there is another non-Starred lhs
|
|
// Expr. Concretely this means that `*abc = func()` is illegal. Unpacking
|
|
// all outputs into a tuple is covered by `abc = func()`.
|
|
bool validateAssignLhsExpr(const List<Expr>& lhs, const SourceRange& r) {
|
|
size_t num_normal_assign = 0;
|
|
size_t num_starred = 0;
|
|
for (const auto& assignee : lhs) {
|
|
if (assignee.kind() == TK_VAR || assignee.kind() == TK_SUBSCRIPT ||
|
|
assignee.kind() == TK_TUPLE_LITERAL) {
|
|
num_normal_assign++;
|
|
} else if (assignee.kind() == TK_STARRED) {
|
|
num_starred++;
|
|
} else {
|
|
throw ErrorReport(assignee) << "lhs of assignment must be a variable, "
|
|
<< "subscript, or starred expression";
|
|
}
|
|
}
|
|
|
|
if (num_starred > 1) {
|
|
throw ErrorReport(r)
|
|
<< "Only one starred expression is allowed on the lhs";
|
|
}
|
|
|
|
if (num_starred > 0 && num_normal_assign == 0) {
|
|
throw ErrorReport(r) << "A Starred expression may only appear on the "
|
|
<< "lhs within the presence of another non-starred"
|
|
<< " expression";
|
|
}
|
|
|
|
return num_starred;
|
|
}
|
|
|
|
// Get the appropriate builtin op for this augmented assignment
|
|
// If the RHS is a tensor, return the corresponding ATen in-place op
|
|
// If it's a list of scalars, then return the corresponding list augment op
|
|
Symbol getAugOp(const AugAssign& stmt, const TypePtr& type) {
|
|
if (type->cast<ListType>()) { // Lists also have in-place ops.
|
|
switch (stmt.aug_op()) {
|
|
case '+':
|
|
return aten::add_;
|
|
}
|
|
}
|
|
bool isTensor = type->isSubtypeOf(TensorType::get());
|
|
switch (stmt.aug_op()) {
|
|
case '+':
|
|
return isTensor ? aten::add_ : aten::add;
|
|
case '-':
|
|
return isTensor ? aten::sub_ : aten::sub;
|
|
case '/':
|
|
return isTensor ? aten::div_ : aten::div;
|
|
case '*':
|
|
return isTensor ? aten::mul_ : aten::mul;
|
|
default:
|
|
throw ErrorReport(stmt)
|
|
<< "Unknown augmented assignment: " << kindToString(stmt.aug_op());
|
|
}
|
|
}
|
|
|
|
// Emit nodes for augmented assignments like `+=`
|
|
void emitAugAssignment(const AugAssign& stmt) {
|
|
switch (stmt.lhs().kind()) {
|
|
case TK_VAR: {
|
|
emitAugAssignmentToVar(stmt);
|
|
} break;
|
|
case '.': {
|
|
emitAugAssignmentToSelectVar(stmt);
|
|
} break;
|
|
case TK_SUBSCRIPT: {
|
|
emitAugAssignmentToSubscript(stmt);
|
|
} break;
|
|
default:
|
|
throw ErrorReport(stmt.lhs())
|
|
<< "unexpected expression on "
|
|
<< "left-hand side of augmented assignment";
|
|
}
|
|
}
|
|
|
|
// This will be called when there is a class param or module buffer
|
|
// mutation which make the LHS of the expr be a select expression
|
|
//
|
|
// Example like:
|
|
// class A(Module):
|
|
// def __init__():
|
|
// self.register_buffer("running_var", torch.zeros(1))
|
|
//
|
|
// def forward():
|
|
// self.num_batches += 1
|
|
//
|
|
// In this case we will only consider the scenario that the module
|
|
// buffer type is a tensor, and we emit the corresponding tensor
|
|
// in place op, and throw error for other unsupported types
|
|
void emitAugAssignmentToSelectVar(const AugAssign& stmt) {
|
|
const auto lhs = Select(stmt.lhs());
|
|
const auto lhsSugaredVar =
|
|
environment_stack->getSugaredVar(Var(lhs.value()).name());
|
|
const auto lhsValue =
|
|
lhsSugaredVar->attr(lhs.range(), method, lhs.selector().name())
|
|
->asValue(lhs.range(), method);
|
|
if (lhsValue->type()->isSubtypeOf(TensorType::get())) {
|
|
// for module parameter/buffer assignment, only consider tensor types,
|
|
// emit the corresponding in-place op
|
|
const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs()));
|
|
const auto self = NamedValue(stmt.lhs().range(), "self", lhsValue);
|
|
emitBuiltinCall(
|
|
stmt.range(),
|
|
*method.graph(),
|
|
getAugOp(stmt, lhsValue->type()),
|
|
self,
|
|
{rhs},
|
|
{},
|
|
/*required=*/true);
|
|
|
|
} else {
|
|
throw ErrorReport(stmt.lhs())
|
|
<< "left-hand side of augmented assignment to module "
|
|
<< "parameters/buffers can only be tensor types";
|
|
}
|
|
}
|
|
|
|
void emitAugAssignmentToVar(const AugAssign& stmt) {
|
|
const auto lhs = Var(stmt.lhs());
|
|
const auto lhsValue = environment_stack->getSugaredVar(lhs.name())
|
|
->asValue(lhs.range(), method);
|
|
auto lhsType = lhsValue->type();
|
|
if (lhsType->isSubtypeOf(TensorType::get()) ||
|
|
lhsType->cast<c10::ListType>()) {
|
|
// for tensors, emit the corresponding in-place op
|
|
const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs()));
|
|
const auto self = NamedValue(stmt.lhs().range(), "self", lhsValue);
|
|
const auto output = emitBuiltinCall(
|
|
stmt.range(),
|
|
*method.graph(),
|
|
getAugOp(stmt, lhsValue->type()),
|
|
self,
|
|
{rhs},
|
|
{},
|
|
/*required=*/true);
|
|
|
|
environment_stack->setVar(lhs.range(), lhs.name().name(), output);
|
|
} else {
|
|
// for primitive types, desugar into a simple assignment
|
|
// e.g. foo += 1 becomes foo.2 = foo + 1
|
|
Ident lhs = Var(stmt.lhs()).name();
|
|
Expr expr = BinOp::create(
|
|
stmt.range(),
|
|
stmt.aug_op(),
|
|
Var::create(lhs.range(), lhs),
|
|
stmt.rhs());
|
|
environment_stack->setVar(lhs.range(), lhs.name(), emitExpr(expr));
|
|
}
|
|
}
|
|
|
|
void emitAugAssignmentGeneric(
|
|
const AugAssign& stmt,
|
|
const Subscript& lhs,
|
|
Value* sliceable) {
|
|
// Get the idx to augment
|
|
const auto subscriptExprs = lhs.subscript_exprs();
|
|
const TypePtr type = sliceable->type();
|
|
if (subscriptExprs.size() != 1) {
|
|
throw ErrorReport(subscriptExprs)
|
|
<< "Sliced expression not yet supported for " << type->python_str()
|
|
<< " augmented assignment. "
|
|
<< "File a bug if you want this";
|
|
}
|
|
|
|
TypePtr elemType = nullptr;
|
|
if (const ListTypePtr listType = type->cast<ListType>()) {
|
|
elemType = listType->getElementType();
|
|
} else if (const DictTypePtr dictType = type->cast<DictType>()) {
|
|
elemType = dictType->getKeyType();
|
|
}
|
|
|
|
if (elemType == nullptr) {
|
|
throw ErrorReport(lhs)
|
|
<< type->python_str() << " does not support augmented assignment.";
|
|
}
|
|
const auto idxValue = emitExpr(subscriptExprs[0]);
|
|
const auto containerArg =
|
|
NamedValue(lhs.value().range(), type->str(), sliceable);
|
|
const auto idxArg = NamedValue(subscriptExprs.range(), "idx", idxValue);
|
|
const auto valueArg =
|
|
NamedValue(stmt.rhs().range(), "value", emitExpr(stmt.rhs()));
|
|
|
|
const auto getItem = graph->insert(
|
|
aten::__getitem__, {containerArg, idxArg}, {}, stmt.range());
|
|
const auto augmentedItem = graph->insert(
|
|
getAugOp(stmt, elemType), {getItem, valueArg}, {}, stmt.range());
|
|
graph->insert(
|
|
aten::_set_item,
|
|
{containerArg, idxArg, augmentedItem},
|
|
{},
|
|
stmt.range());
|
|
}
|
|
|
|
void emitAugAssignmentToSubscript(const AugAssign& stmt) {
|
|
// Process the base list value
|
|
const auto lhs = Subscript(stmt.lhs());
|
|
const auto sliceable = emitExpr(lhs.value());
|
|
|
|
if (sliceable->type()->isSubtypeOf(TensorType::get())) {
|
|
// If it's a tensor, just fully evaluate the subscript operation and emit
|
|
// an in-place assignment
|
|
std::vector<Value*> tensorIndices;
|
|
Value* sliced;
|
|
std::tie(sliced, tensorIndices) = emitIntAndSliceIndexing(
|
|
lhs.range(), sliceable, lhs.subscript_exprs());
|
|
|
|
const auto slicedArg = NamedValue(stmt.lhs().range(), "self", sliced);
|
|
const auto rhs = NamedValue(stmt.rhs().range(), emitExpr(stmt.rhs()));
|
|
if (tensorIndices.size() == 0) {
|
|
// Common case: we only tried to index with int and slices. Emit the
|
|
// correct augmented assignment op to the sliced value
|
|
emitBuiltinCall(
|
|
stmt.range(),
|
|
*method.graph(),
|
|
getAugOp(stmt, sliceable->type()),
|
|
slicedArg,
|
|
{rhs},
|
|
{},
|
|
/*required=*/true);
|
|
} else {
|
|
// Special case: we tried to do "advanced indexing". Lower this expr
|
|
// into `index` and `index_put_` ops with tensordices of Tensor?[]
|
|
const auto indices = graph
|
|
->insertNode(graph->createList(
|
|
OptionalType::ofTensor(), tensorIndices))
|
|
->output();
|
|
const auto indexed =
|
|
graph->insert(aten::index, {slicedArg, indices}, {}, stmt.range());
|
|
const auto augmented = emitBuiltinCall(
|
|
stmt.range(),
|
|
*method.graph(),
|
|
getAugOp(stmt, sliceable->type()),
|
|
indexed,
|
|
{rhs},
|
|
{},
|
|
/*required=*/true);
|
|
graph->insert(
|
|
aten::index_put_,
|
|
{slicedArg, indices, augmented},
|
|
{},
|
|
stmt.range());
|
|
}
|
|
} else {
|
|
emitAugAssignmentGeneric(stmt, lhs, sliceable);
|
|
}
|
|
}
|
|
|
|
// Emit mutating assignments like `foo[0] = bar`
|
|
void emitSubscriptAssign(
|
|
const SourceRange& stmtRange,
|
|
const Subscript& lhs,
|
|
const Expr& rhs) {
|
|
emitSubscriptAssign(stmtRange, lhs, NamedValue(rhs.range(), emitExpr(rhs)));
|
|
}
|
|
|
|
void emitSubscriptAssign(
|
|
const SourceRange& stmtRange,
|
|
const Subscript& lhs,
|
|
const NamedValue& rhs) {
|
|
// First check the base value.
|
|
auto sliceable = emitExpr(lhs.value());
|
|
|
|
// If it's a tensor, copy the RHS data into it
|
|
if (sliceable->type()->isSubtypeOf(TensorType::get())) {
|
|
std::vector<Value*> tensorIndices;
|
|
Value* sliced;
|
|
// Handle multi-dimensional slicing: first emit int/slice indexing
|
|
// TODO: the Python equivalent code has special-cased copy_to
|
|
// broadcasting to match NumPy semantics (see PR#4853). We can't
|
|
// replicate that without knowing the size of the Tensor; so really that
|
|
// code should be moved into the aten function
|
|
std::tie(sliced, tensorIndices) = emitIntAndSliceIndexing(
|
|
lhs.range(), sliceable, lhs.subscript_exprs());
|
|
|
|
const auto slicedArg = NamedValue(lhs.range(), sliced);
|
|
if (tensorIndices.size() == 0) {
|
|
// Common case: we only tried to index with int and slices. Copy the
|
|
// RHS into the resulting tensor.
|
|
graph->insert(aten::copy_, {slicedArg, rhs}, {}, stmtRange);
|
|
} else {
|
|
// Special case: we tried to do "advanced indexing" with a tensor.
|
|
// Dispatch to `aten::index_put_` with tensorindices of Tensor?[]
|
|
const auto indices = graph
|
|
->insertNode(graph->createList(
|
|
OptionalType::ofTensor(), tensorIndices))
|
|
->output();
|
|
|
|
graph->insert(
|
|
aten::index_put_, {slicedArg, indices, rhs}, {}, stmtRange);
|
|
}
|
|
|
|
// Otherwise, this is a list. Dispatch to aten::_set_item to both select
|
|
// and assign
|
|
} else {
|
|
const auto subscript = lhs.subscript_exprs();
|
|
if (subscript.size() != 1 || subscript[0].kind() == TK_SLICE_EXPR) {
|
|
throw ErrorReport(subscript)
|
|
<< "Sliced expression not yet supported for"
|
|
<< " subscripted list assignment. "
|
|
<< "File a bug if you want this";
|
|
}
|
|
|
|
std::vector<NamedValue> args;
|
|
args.emplace_back(lhs.value().range(), "list", sliceable);
|
|
args.emplace_back(
|
|
lhs.subscript_exprs().range(), "idx", emitExpr(subscript[0]));
|
|
args.push_back(rhs);
|
|
|
|
graph->insert(aten::_set_item, args, {}, stmtRange);
|
|
}
|
|
}
|
|
|
|
void emitTupleAssign(const TupleLiteral& tl, const Expr& rhs) {
|
|
size_t n_binders = tl.inputs().size();
|
|
bool starred_unpack = validateAssignLhsExpr(tl.inputs(), tl.range());
|
|
if (starred_unpack)
|
|
n_binders--;
|
|
auto output = emitSugaredExpr(rhs, n_binders);
|
|
emitTupleAssign(tl, output, rhs.range(), n_binders, starred_unpack);
|
|
}
|
|
|
|
void emitTupleAssign(
|
|
const TupleLiteral& tl,
|
|
const SugaredValuePtr& rhs_output,
|
|
const SourceRange& rhs_loc,
|
|
size_t n_binders,
|
|
bool starred_unpack) {
|
|
auto outputs = rhs_output->asTuple(
|
|
rhs_loc,
|
|
method,
|
|
starred_unpack ? c10::nullopt : c10::optional<size_t>{n_binders});
|
|
if (outputs.size() < n_binders) {
|
|
throw ErrorReport(tl)
|
|
<< "need " << (starred_unpack ? "at least " : "") << n_binders
|
|
<< " values to unpack but found only " << outputs.size();
|
|
}
|
|
if (outputs.size() > n_binders && !starred_unpack) {
|
|
throw ErrorReport(tl) << "too many values to unpack: need " << n_binders
|
|
<< " but found " << outputs.size();
|
|
}
|
|
|
|
emitExprsAssign(tl.inputs(), outputs, rhs_loc, n_binders);
|
|
}
|
|
|
|
void emitExprsAssign(
|
|
const List<Expr>& lhs_exprs,
|
|
const at::ArrayRef<SugaredValuePtr> outputs,
|
|
const SourceRange& rhs_loc,
|
|
size_t n_binders) {
|
|
int i = 0;
|
|
for (auto assignee : lhs_exprs) {
|
|
switch (assignee.kind()) {
|
|
case TK_SUBSCRIPT:
|
|
emitSubscriptAssign(
|
|
rhs_loc,
|
|
Subscript(assignee),
|
|
NamedValue(rhs_loc, outputs.at(i)->asValue(rhs_loc, method)));
|
|
i++;
|
|
break;
|
|
case TK_VAR:
|
|
environment_stack->setSugaredVar(
|
|
assignee.range(),
|
|
Var(assignee).name().name(),
|
|
outputs.at(i),
|
|
/*annotated_type=*/nullptr);
|
|
i++;
|
|
break;
|
|
case TK_STARRED: {
|
|
auto var = Starred(assignee).expr();
|
|
if (var.kind() != TK_VAR) {
|
|
throw ErrorReport(var) << "Cannot pack a tuple into a non-variable";
|
|
}
|
|
size_t n_matched = outputs.size() - n_binders;
|
|
ArrayRef<std::shared_ptr<SugaredValue>> outputs_ref = outputs;
|
|
auto values = fmap(
|
|
outputs_ref.slice(i, n_matched),
|
|
[&](const std::shared_ptr<SugaredValue>& v) {
|
|
return v->asValue(assignee.range(), method);
|
|
});
|
|
auto tup = graph->insertNode(graph->createTuple(values))->output();
|
|
environment_stack->setVar(var.range(), Var(var).name().name(), tup);
|
|
i += n_matched;
|
|
} break;
|
|
case TK_TUPLE_LITERAL: {
|
|
// recursively emit tuple assignments on tuple literal input
|
|
TupleLiteral sub_tl = TupleLiteral(assignee);
|
|
size_t sub_n_binders = sub_tl.inputs().size();
|
|
bool sub_starred_unpack =
|
|
validateAssignLhsExpr(sub_tl.inputs(), sub_tl.range());
|
|
if (sub_starred_unpack)
|
|
sub_n_binders--;
|
|
emitTupleAssign(
|
|
sub_tl,
|
|
outputs.at(i),
|
|
rhs_loc,
|
|
sub_n_binders,
|
|
sub_starred_unpack);
|
|
i++;
|
|
} break;
|
|
default:
|
|
throw ErrorReport(assignee)
|
|
<< "unexpected expression on the left-hand side";
|
|
}
|
|
}
|
|
}
|
|
|
|
void emitAssignment(const Assign& stmt) {
|
|
if (stmt.lhs_list().size() == 1) {
|
|
return emitSingleAssignment(stmt);
|
|
}
|
|
// multiple assign & annotated type not supported in python
|
|
TORCH_INTERNAL_ASSERT(stmt.lhs_list().size() > 1 && !stmt.type().present());
|
|
// a = b = expr()
|
|
// the semantics of multiple assignment is that expr() is emitted once, then
|
|
// from left to right the assignments are made
|
|
const auto tmp_name = createTempName("$tmp_assign_");
|
|
environment_stack->setSugaredVar(
|
|
stmt.rhs().range(),
|
|
tmp_name,
|
|
emitSugaredExpr(stmt.rhs().get(), 1),
|
|
/*annotated_type=*/nullptr);
|
|
auto ident = Var::create(
|
|
stmt.rhs().range(), Ident::create(stmt.rhs().range(), tmp_name));
|
|
for (auto expr : stmt.lhs_list()) {
|
|
emitSingleAssignment(Assign::create(
|
|
stmt.range(),
|
|
List<Expr>::create(expr.range(), {expr}),
|
|
Maybe<Expr>::create(stmt.rhs().range(), ident),
|
|
Maybe<Expr>::create(stmt.range())));
|
|
}
|
|
}
|
|
|
|
void emitSingleAssignment(const Assign& stmt) {
|
|
if (!stmt.rhs().present()) {
|
|
throw ErrorReport(stmt.range())
|
|
<< "For an assignment, expected an expression on the right-hand side";
|
|
}
|
|
const Expr& rhs = stmt.rhs().get();
|
|
switch (stmt.lhs().kind()) {
|
|
case TK_VAR: {
|
|
auto v = Var(stmt.lhs());
|
|
TypePtr type = nullptr;
|
|
if (stmt.type().present()) {
|
|
type = typeParser_.parseTypeFromExpr(stmt.type().get());
|
|
}
|
|
environment_stack->setSugaredVar(
|
|
v.range(),
|
|
v.name().name(),
|
|
emitSugaredExpr(rhs, 1, type),
|
|
/*annotated_type=*/type);
|
|
} break;
|
|
case TK_TUPLE_LITERAL:
|
|
emitTupleAssign(TupleLiteral(stmt.lhs()), rhs);
|
|
break;
|
|
case '.':
|
|
emitSelectAssign(stmt);
|
|
break;
|
|
case TK_SUBSCRIPT:
|
|
emitSubscriptAssign(stmt.range(), Subscript(stmt.lhs()), rhs);
|
|
break;
|
|
default:
|
|
throw ErrorReport(stmt.lhs())
|
|
<< "unexpected expression on left-hand side of assignment";
|
|
}
|
|
}
|
|
|
|
void emitSelectAssign(const Assign& stmt) {
|
|
if (!stmt.rhs().present()) {
|
|
throw ErrorReport(stmt.range()) << "Expected RHS for assignment";
|
|
}
|
|
const auto lhs = Select(stmt.lhs());
|
|
const auto basename = Var(lhs.value()).name();
|
|
const auto rhsValue = emitSugaredExpr(stmt.rhs().get(), 1)
|
|
->asValue(stmt.rhs().range(), method);
|
|
auto userObject = environment_stack->getSugaredVar(basename);
|
|
userObject->setAttr(stmt.range(), method, lhs.selector().name(), rhsValue);
|
|
}
|
|
|
|
NodeKind getNodeKind(int kind, int ninputs) {
|
|
switch (kind) {
|
|
case '+':
|
|
return aten::add;
|
|
case '-':
|
|
return aten::sub;
|
|
case TK_UNARY_MINUS:
|
|
return aten::neg;
|
|
case '*':
|
|
return aten::mul;
|
|
case TK_POW:
|
|
return aten::pow;
|
|
case '@':
|
|
return aten::matmul;
|
|
case TK_STARRED:
|
|
return prim::Starred;
|
|
case '/':
|
|
return aten::div;
|
|
case '%':
|
|
return aten::remainder;
|
|
case TK_NE:
|
|
return aten::ne;
|
|
case TK_EQ:
|
|
return aten::eq;
|
|
case '<':
|
|
return aten::lt;
|
|
case '>':
|
|
return aten::gt;
|
|
case TK_LE:
|
|
return aten::le;
|
|
case TK_GE:
|
|
return aten::ge;
|
|
case TK_AND:
|
|
return aten::__and__;
|
|
case TK_OR:
|
|
return aten::__or__;
|
|
case TK_IS:
|
|
return aten::__is__;
|
|
case TK_ISNOT:
|
|
return aten::__isnot__;
|
|
case TK_NOT:
|
|
return aten::__not__;
|
|
case TK_FLOOR_DIV:
|
|
return aten::floordiv;
|
|
case '&':
|
|
return aten::__and__;
|
|
case '|':
|
|
return aten::__or__;
|
|
case '^':
|
|
return aten::__xor__;
|
|
case TK_IN:
|
|
return aten::__contains__;
|
|
default:
|
|
throw std::runtime_error("unknown kind " + std::to_string(kind));
|
|
}
|
|
}
|
|
|
|
std::string getOperatorOverload(int kind, int ninputs) {
|
|
switch (kind) {
|
|
case '+':
|
|
return "__add__";
|
|
case '-':
|
|
return "__sub__";
|
|
case TK_UNARY_MINUS:
|
|
return "__neg__";
|
|
case '*':
|
|
return "__mul__";
|
|
case TK_POW:
|
|
return "__pow__";
|
|
case '/':
|
|
return "__truediv__";
|
|
case '%':
|
|
return "__mod__";
|
|
case TK_NE:
|
|
return "__ne__";
|
|
case TK_EQ:
|
|
return "__eq__";
|
|
case '<':
|
|
return "__lt__";
|
|
case '>':
|
|
return "__gt__";
|
|
case TK_LE:
|
|
return "__le__";
|
|
case TK_GE:
|
|
return "__ge__";
|
|
case '&':
|
|
return "__and__";
|
|
case '|':
|
|
return "__or__";
|
|
case '^':
|
|
return "__xor__";
|
|
case TK_IN:
|
|
return "__contains__";
|
|
default:
|
|
throw std::runtime_error("unknown kind " + std::to_string(kind));
|
|
}
|
|
}
|
|
|
|
std::vector<NamedValue> getNamedValues(
|
|
const TreeList& trees,
|
|
bool maybe_unpack) {
|
|
std::vector<NamedValue> values;
|
|
for (const auto& tree : trees) {
|
|
if (maybe_unpack && tree->kind() == TK_STARRED) {
|
|
auto starred = Starred(tree);
|
|
auto entries = emitSugaredExpr(starred.expr(), 1)
|
|
->asTuple(starred.range(), method);
|
|
for (const auto& entry : entries) {
|
|
values.emplace_back(
|
|
tree->range(), entry->asValue(starred.range(), method));
|
|
}
|
|
} else {
|
|
values.emplace_back(tree->range(), emitExpr(Expr(tree)));
|
|
}
|
|
}
|
|
return values;
|
|
}
|
|
std::vector<NamedValue> getNamedValues(
|
|
const List<Expr>& trees,
|
|
bool maybe_unpack) {
|
|
return getNamedValues(trees.tree()->trees(), maybe_unpack);
|
|
}
|
|
|
|
std::vector<Value*> getValues(const TreeList& trees, bool maybe_unpack) {
|
|
return toValues(*graph, getNamedValues(trees, maybe_unpack));
|
|
}
|
|
std::vector<Value*> getValues(const List<Expr>& trees, bool maybe_unpack) {
|
|
return getValues(trees.tree()->trees(), maybe_unpack);
|
|
}
|
|
|
|
std::vector<NamedValue> emitAttributes(const List<Attribute>& attributes) {
|
|
return fmap(attributes, [&](const Attribute& attr) {
|
|
return NamedValue(
|
|
attr.range(), attr.name().name(), emitExpr(attr.value()));
|
|
});
|
|
}
|
|
|
|
void checkApplyExpr(
|
|
Apply& apply,
|
|
SourceRange& loc,
|
|
size_t expected_inputs = 2) {
|
|
if (apply.inputs().size() != expected_inputs) {
|
|
throw ErrorReport(loc)
|
|
<< Var(apply.callee()).name().name() << " expected exactly "
|
|
<< expected_inputs << " arguments but found "
|
|
<< apply.inputs().size();
|
|
}
|
|
if (apply.attributes().size() > 0) {
|
|
throw ErrorReport(loc)
|
|
<< Var(apply.callee()).name().name() << " takes no keyword arguments";
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<SugaredValue> emitApplyExpr(Apply& apply, size_t n_binders) {
|
|
auto sv = emitSugaredExpr(apply.callee(), 1);
|
|
auto loc = apply.callee().range();
|
|
if (auto fork_value = dynamic_cast<ForkValue*>(sv.get())) {
|
|
auto& trees = apply.inputs().tree()->trees();
|
|
if (trees.size() < 1) {
|
|
throw ErrorReport(loc) << "Expected at least one argument to fork()";
|
|
}
|
|
auto forked = emitSugaredExpr(Expr(trees[0]), 1);
|
|
TreeList sliced_trees(trees.begin() + 1, trees.end());
|
|
auto inputs = getNamedValues(sliced_trees, true);
|
|
auto attributes = emitAttributes(apply.attributes());
|
|
return emitForkExpr(loc, forked, inputs, attributes);
|
|
} else if (auto annotate_value = dynamic_cast<AnnotateValue*>(sv.get())) {
|
|
checkApplyExpr(apply, loc);
|
|
TypePtr type = typeParser_.parseTypeFromExpr(apply.inputs()[0]);
|
|
Value* expr = tryConvertToType(
|
|
apply.range(),
|
|
*graph,
|
|
type,
|
|
emitExpr(apply.inputs()[1], type),
|
|
/*allow_conversions=*/true);
|
|
|
|
// This is to ensure even if user forgets to call annotate None with the
|
|
// Optional wrapper type, we still generate the correct value with the
|
|
// Optional type. e.g. it makes annoate(Tensor, None) to behave the same
|
|
// with annotate(Optional[Tensor], None). It also maintains the backward
|
|
// compatibility of exported model on Optional undefined tensor/None
|
|
auto opt_type = expr->type()->cast<OptionalType>();
|
|
bool forget_opt_annotate =
|
|
opt_type && *opt_type->getElementType() == *type;
|
|
|
|
if (!forget_opt_annotate && !expr->type()->isSubtypeOf(type)) {
|
|
throw ErrorReport(apply.inputs())
|
|
<< "expected an expression of type " << type->python_str()
|
|
<< " but found " << expr->type()->python_str();
|
|
}
|
|
return std::make_shared<SimpleValue>(expr);
|
|
} else if (auto getattr = dynamic_cast<GetAttrValue*>(sv.get())) {
|
|
checkApplyExpr(apply, loc);
|
|
auto obj = emitSugaredExpr(apply.inputs()[0], 1);
|
|
auto selector = apply.inputs()[1];
|
|
if (selector.kind() != TK_STRINGLITERAL) {
|
|
throw ErrorReport(loc)
|
|
<< "getattr's second argument must be a string literal";
|
|
}
|
|
const std::string& name = StringLiteral(selector).text();
|
|
return obj->attr(apply.range(), method, name);
|
|
} else if (
|
|
auto uninitialized_value =
|
|
dynamic_cast<UninitializedValue*>(sv.get())) {
|
|
checkApplyExpr(apply, loc, 1);
|
|
TypePtr type = typeParser_.parseTypeFromExpr(apply.inputs()[0]);
|
|
auto out = graph->insertNode(graph->createUninitialized(type))
|
|
->setSourceRange(loc);
|
|
return std::make_shared<SimpleValue>(out->output());
|
|
} else if (auto isinstance = dynamic_cast<IsInstanceValue*>(sv.get())) {
|
|
// NOTE: for `isinstance` builtin call in JIT, we only check the static
|
|
// types on the inputs to evaluate, and insert the corresponding constant
|
|
// node
|
|
std::function<bool(Expr, Expr)> isInstanceCheck = [&](Expr obj,
|
|
Expr classinfo) {
|
|
if (classinfo.kind() == TK_TUPLE_LITERAL) {
|
|
// handle the case for recursive tuple classinfo
|
|
// return true if obj is an instance of any of the types
|
|
for (Expr e : TupleLiteral(classinfo).inputs()) {
|
|
if (isInstanceCheck(obj, e)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
auto type_name = typeParser_.parseBaseTypeName(classinfo);
|
|
if (!type_name) {
|
|
throw ErrorReport(classinfo.range())
|
|
<< "type must be a type identifier";
|
|
}
|
|
auto val = emitExpr(obj);
|
|
// Special casing for list and tuple since isinstance(x, list) and
|
|
// isinstance(x, tuple) does not accept List[int] / Tuple[int] like
|
|
// subscript type annotation in python
|
|
if (*type_name == "list" && val->type()->cast<ListType>()) {
|
|
return true;
|
|
} else if (*type_name == "tuple" && val->type()->cast<TupleType>()) {
|
|
return true;
|
|
} else if (val->type()->cast<OptionalType>()) {
|
|
throw ErrorReport(loc)
|
|
<< "Optional isinstance check is not supported, "
|
|
<< "consider use is/isnot None instead";
|
|
} else {
|
|
TypePtr type = typeParser_.parseTypeFromExpr(classinfo);
|
|
if (val->type()->isSubtypeOf(type)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
checkApplyExpr(apply, loc);
|
|
bool is_instance_val =
|
|
isInstanceCheck(apply.inputs()[0], apply.inputs()[1]);
|
|
return std::make_shared<SimpleValue>(
|
|
graph->insertConstant(is_instance_val, nullptr, loc));
|
|
} else if (auto classNew = dynamic_cast<ClassNewMethod*>(sv.get())) {
|
|
if (apply.inputs().size() != 1) {
|
|
throw ErrorReport(loc) << "Only one argument to __new__ allowed";
|
|
}
|
|
auto arg = emitSugaredExpr(apply.inputs()[0], 1);
|
|
auto class_arg = dynamic_cast<ClassValue*>(arg.get());
|
|
if (!class_arg) {
|
|
throw ErrorReport(loc)
|
|
<< "Expected class value as argument to __new__, got "
|
|
<< arg->kind() << " instead";
|
|
}
|
|
if (class_arg->type_ != classNew->type_) {
|
|
throw ErrorReport(loc)
|
|
<< "Argument to __new__() must match the class "
|
|
<< "you are calling __new__() on. "
|
|
<< "Got: " << class_arg->type_->python_str()
|
|
<< ", expected: " << classNew->type_->python_str();
|
|
}
|
|
|
|
return classNew->createObject(apply.range(), method);
|
|
} else if (auto iterable = std::dynamic_pointer_cast<IterableValue>(sv)) {
|
|
return emitIterableTree(loc, apply.inputs(), iterable);
|
|
} else {
|
|
auto inputs = getNamedValues(apply.inputs(), true);
|
|
auto attributes = emitAttributes(apply.attributes());
|
|
return sv->call(loc, method, inputs, attributes, n_binders);
|
|
}
|
|
}
|
|
|
|
BoolInfo findRefinements(const TreeRef& tree) {
|
|
switch (tree->kind()) {
|
|
case TK_IS:
|
|
case TK_ISNOT: {
|
|
const auto& inputs = tree->trees();
|
|
if (inputs.at(0)->kind() == TK_VAR && inputs.at(1)->kind() == TK_NONE) {
|
|
const std::string& var_name = Var(inputs[0]).name().name();
|
|
Refinements true_info, false_info;
|
|
auto type =
|
|
environment_stack->getVar(var_name, inputs[0]->range())->type();
|
|
if (auto opt_type = type->cast<OptionalType>()) {
|
|
false_info.setRefinement(
|
|
var_name,
|
|
TypeAndRange(opt_type->getElementType(), &tree->range()));
|
|
true_info.setRefinement(
|
|
var_name, TypeAndRange(NoneType::get(), &tree->range()));
|
|
}
|
|
if (tree->kind() == TK_IS) {
|
|
return BoolInfo(true_info, false_info);
|
|
} else {
|
|
return BoolInfo(false_info, true_info);
|
|
}
|
|
}
|
|
} break;
|
|
case TK_NOT: {
|
|
const auto& inputs = tree->trees();
|
|
auto bool_info = findRefinements(inputs[0]);
|
|
return BoolInfo(
|
|
bool_info.false_refinements_, bool_info.true_refinements_);
|
|
}
|
|
case TK_OR:
|
|
case TK_AND: {
|
|
const auto& inputs = tree->trees();
|
|
auto first = findRefinements(inputs[0]);
|
|
auto second = findRefinements(inputs[1]);
|
|
if (tree->kind() == TK_OR) {
|
|
return *first.mergeOr(second);
|
|
} else {
|
|
return *first.mergeAnd(second);
|
|
}
|
|
}
|
|
}
|
|
return BoolInfo();
|
|
}
|
|
|
|
Value* emitExpr(const Expr& tree, const TypePtr& type_hint = nullptr) {
|
|
// Push the source range of a call in case compiling this function
|
|
// triggers an error
|
|
ErrorReport::CallStack::update_pending_range(tree.range());
|
|
return emitSugaredExpr(tree, 1, type_hint)->asValue(tree.range(), method);
|
|
}
|
|
|
|
NodeKind reverseComparision(NodeKind kind) {
|
|
if (kind == aten::lt) {
|
|
return aten::gt;
|
|
} else if (kind == aten::le) {
|
|
return aten::ge;
|
|
} else if (kind == aten::gt) {
|
|
return aten::lt;
|
|
} else if (kind == aten::ge) {
|
|
return aten::le;
|
|
}
|
|
throw std::runtime_error(
|
|
"reverseComparision: unsupported NodeKind. File a bug");
|
|
}
|
|
|
|
// any expression that can produce a SugaredValue is handled here
|
|
// expressions that only return a single Value* are handled in emitSimpleExpr
|
|
// type_hint is set if there is a type that this value is expected to be
|
|
// e.g. a : List[int] = []
|
|
// or a = torch.jit.annotate(List[int], [])
|
|
// the caller is responsible for checking that the result matches type_hint
|
|
// emitSugaredExpr is free to ignore it.
|
|
std::shared_ptr<SugaredValue> emitSugaredExpr(
|
|
const Expr& tree,
|
|
size_t n_binders,
|
|
const TypePtr& type_hint = nullptr) {
|
|
switch (tree.kind()) {
|
|
case TK_VAR:
|
|
return environment_stack->getSugaredVar(Var(tree).name());
|
|
case '.': {
|
|
auto select = Select(tree);
|
|
auto sv = emitSugaredExpr(select.value(), 1);
|
|
return sv->attr(select.range(), method, select.selector().name());
|
|
}
|
|
case TK_APPLY: {
|
|
auto apply = Apply(tree);
|
|
return emitApplyExpr(apply, n_binders);
|
|
} break;
|
|
default:
|
|
return std::make_shared<SimpleValue>(emitSimpleExpr(tree, type_hint));
|
|
}
|
|
}
|
|
|
|
Value* emitNegate(const TreeRef& tree) {
|
|
const auto& inputs = tree->trees();
|
|
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
|
|
auto neg_val =
|
|
asSimple(makeMagic(
|
|
"__neg__",
|
|
std::make_shared<BuiltinFunction>(aten::neg, at::nullopt))
|
|
->call(tree->range(), method, named_values, {}, 0));
|
|
|
|
// if we emitted a aten::neg and not some other overloaded function,
|
|
// then try to constantfold
|
|
if (neg_val->node()->kind() != aten::neg) {
|
|
return neg_val;
|
|
}
|
|
auto maybe_constant_input = toIValue(neg_val->node()->input());
|
|
if (!maybe_constant_input) {
|
|
return neg_val;
|
|
}
|
|
auto op = getOperation(neg_val->node());
|
|
Stack stack;
|
|
stack.push_back(*maybe_constant_input);
|
|
op(stack);
|
|
AT_ASSERT(stack.size() == 1);
|
|
return graph->insertConstant(stack[0], nullptr, tree->range());
|
|
}
|
|
|
|
// We construct the iterable tree here using the IterableTree SugaredValue,
|
|
// The tree consists of SimpleValue, RangeValue or IterableValue:
|
|
// For SimpleValues(List, Dict, etc) or RangeValue. We will make them as tree
|
|
// leaves since we could get the loop information from len() and get_item().
|
|
// For IterableValue like zip(), enumerate(), we can model them as a
|
|
// combination of leaves, and we emit a IterableTree value to record the tree
|
|
// information
|
|
SugaredValuePtr emitIterableTree(
|
|
SourceRange& loc,
|
|
const List<Expr>& inputs,
|
|
const std::shared_ptr<IterableValue>& iterable) {
|
|
std::shared_ptr<IterableTree> iterable_tree = nullptr;
|
|
size_t input_size = inputs.size();
|
|
|
|
// Handling different iterable values
|
|
if (iterable->symbol_ == prim::range) {
|
|
std::vector<Value*> input_vals = getValues(inputs, /*maybe_unpack=*/true);
|
|
return std::make_shared<RangeValue>(loc, method, input_vals);
|
|
} else if (iterable->symbol_ == prim::enumerate) {
|
|
// enumerate(x) can be rewrite as subtrees:
|
|
// IterableTree(RangeValue(0, math.inf), SimpleValue(x))
|
|
Value* start_index = nullptr;
|
|
if (input_size == 0) {
|
|
throw ErrorReport(loc)
|
|
<< "enumerate expected at least 1 arguments, got 0";
|
|
}
|
|
|
|
if (input_size == 2) {
|
|
start_index = emitSugaredExpr(inputs[1], 1)->asValue(loc, method);
|
|
}
|
|
|
|
if (input_size > 2) {
|
|
throw ErrorReport(loc)
|
|
<< "enumerate expected at most 2 arguments, got " << input_size;
|
|
}
|
|
std::vector<Value*> range_inputs;
|
|
if (start_index != nullptr) {
|
|
range_inputs.emplace_back(start_index);
|
|
}
|
|
Value* end = materializeConstant(
|
|
std::numeric_limits<int64_t>::max(), *graph, loc, integral_constants);
|
|
range_inputs.emplace_back(end);
|
|
SugaredValuePtr range_sv =
|
|
std::make_shared<RangeValue>(loc, method, range_inputs);
|
|
SugaredValuePtr expr_sv = emitSugaredExpr(inputs[0], 1);
|
|
iterable_tree = std::make_shared<IterableTree>(
|
|
std::vector<SugaredValuePtr>({range_sv, expr_sv}));
|
|
} else if (iterable->symbol_ == prim::zip) {
|
|
// zip(x, y) can be rewrite as subtrees:
|
|
// IterableTree(IterableTree(x), IterableTree(y))
|
|
if (inputs.size() == 0) {
|
|
throw ErrorReport(loc) << "zip expected at least 1 arguments, got 0";
|
|
}
|
|
iterable_tree = std::make_shared<IterableTree>();
|
|
for (Expr expr : inputs) {
|
|
auto expr_sv = emitSugaredExpr(expr, 1);
|
|
iterable_tree->addChild(expr_sv);
|
|
}
|
|
}
|
|
return iterable_tree;
|
|
}
|
|
|
|
std::shared_ptr<SugaredValue> emitForkExpr(
|
|
SourceRange loc,
|
|
const std::shared_ptr<SugaredValue>& forked,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes) {
|
|
auto g = method.graph();
|
|
Node* fork_node;
|
|
TypePtr out_type;
|
|
|
|
fork_node = g->insertNode(method.graph()->create(prim::forkClosure, 1))
|
|
->setSourceRange(loc);
|
|
|
|
// We create a fork by emitting a closure and setting the closure output
|
|
// into the fork input. If a closure doesn't already exist, we create one.
|
|
{
|
|
WithInsertPoint insert(fork_node);
|
|
if (ClosureValue* sv = dynamic_cast<ClosureValue*>(forked.get())) {
|
|
Value* closure_output = sv->asValue(loc, method);
|
|
Block* closure_block = closure_output->node()->blocks().at(0);
|
|
TORCH_INTERNAL_ASSERT(closure_block->outputs().size() == 1);
|
|
out_type = closure_block->outputs().at(0)->type();
|
|
fork_node->addInput(closure_output);
|
|
} else {
|
|
auto emit_closure_body = [&](Block* closure_block) {
|
|
auto fn_sugared_output =
|
|
forked->call(loc, method, inputs, attributes, 1);
|
|
auto fn_simple_output = fn_sugared_output->asValue(loc, method);
|
|
closure_block->registerOutput(fn_simple_output);
|
|
out_type = fn_simple_output->type();
|
|
};
|
|
auto closure_value = emitClosure(emit_closure_body);
|
|
fork_node->addInput(closure_value->asValue(loc, method));
|
|
}
|
|
}
|
|
Value* node_output =
|
|
fork_node->output()->setType(FutureType::create(out_type));
|
|
return std::make_shared<SimpleValue>(node_output);
|
|
}
|
|
|
|
Value* emitSimpleExpr(
|
|
const TreeRef& tree,
|
|
const TypePtr& type_hint = nullptr) {
|
|
switch (tree->kind()) {
|
|
case TK_IS:
|
|
case TK_ISNOT:
|
|
case TK_FLOOR_DIV:
|
|
case '@': {
|
|
const auto& inputs = tree->trees();
|
|
auto kind = getNodeKind(tree->kind(), inputs.size());
|
|
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
|
|
return emitBuiltinCall(
|
|
tree->range(),
|
|
*method.graph(),
|
|
kind,
|
|
c10::nullopt,
|
|
named_values,
|
|
{},
|
|
/*required=*/true);
|
|
}
|
|
case TK_IN:
|
|
case TK_POW:
|
|
case TK_NE:
|
|
case TK_EQ:
|
|
case '<':
|
|
case '>':
|
|
case TK_LE:
|
|
case TK_GE:
|
|
case '*':
|
|
case '/':
|
|
case '+':
|
|
case '-':
|
|
case '%':
|
|
case '&':
|
|
case '|':
|
|
case '^': {
|
|
const auto& inputs = tree->trees();
|
|
auto kind = getNodeKind(tree->kind(), inputs.size());
|
|
auto overload = getOperatorOverload(tree->kind(), inputs.size());
|
|
auto named_values = getNamedValues(inputs, /*maybe_unpack=*/false);
|
|
|
|
if (tree->kind() == TK_IN) {
|
|
// For `in` the arguments are in reverse order (the object being
|
|
// checked is second)
|
|
std::iter_swap(named_values.begin() + 0, named_values.begin() + 1);
|
|
}
|
|
|
|
return asSimple(
|
|
makeMagic(
|
|
overload, std::make_shared<BuiltinFunction>(kind, at::nullopt))
|
|
->call(tree->range(), method, named_values, {}, 0));
|
|
}
|
|
case TK_NOT: {
|
|
Value* input = emitCond(Expr(tree->trees()[0]));
|
|
return emitBuiltinCall(
|
|
tree->range(),
|
|
*method.graph(),
|
|
aten::__not__,
|
|
c10::nullopt,
|
|
{input},
|
|
{},
|
|
/*required=*/true);
|
|
}
|
|
|
|
case TK_UNARY_MINUS: {
|
|
return emitNegate(tree);
|
|
}
|
|
case TK_AND:
|
|
case TK_OR: {
|
|
const auto& inputs = tree->trees();
|
|
return emitShortCircuitIf(
|
|
tree->range(), inputs[0], inputs[1], tree->kind() == TK_OR);
|
|
}
|
|
case TK_STARRED: {
|
|
throw ErrorReport(tree)
|
|
<< "Unexpected starred expansion. File a bug report";
|
|
}
|
|
case TK_CONST: {
|
|
return emitConst(Const(tree));
|
|
} break;
|
|
case TK_TRUE: {
|
|
return graph->insertConstant(true, nullptr, tree->range());
|
|
} break;
|
|
case TK_FALSE: {
|
|
return graph->insertConstant(false, nullptr, tree->range());
|
|
} break;
|
|
case TK_NONE: {
|
|
// A None can be inserted even if the type_hint is not an Optional or
|
|
// None (e.g. `torch.jit.annotate(Tensor, None)`)
|
|
TypePtr hint = type_hint;
|
|
if (hint != nullptr && !hint->isSubtypeOf(NoneType::get()) &&
|
|
hint->kind() != TypeKind::OptionalType) {
|
|
// Implicitly wrap in an Optional if necessary
|
|
hint = OptionalType::create(hint);
|
|
}
|
|
return graph->insertConstant(IValue(), hint, tree->range());
|
|
} break;
|
|
case TK_SUBSCRIPT: {
|
|
return emitSubscript(Subscript(tree));
|
|
} break;
|
|
case TK_IF_EXPR: {
|
|
return emitTernaryIf(TernaryIf(tree));
|
|
} break;
|
|
case TK_STRINGLITERAL: {
|
|
return emitStringLiteral(StringLiteral(tree));
|
|
} break;
|
|
case TK_LIST_LITERAL: {
|
|
auto ll = ListLiteral(tree);
|
|
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);
|
|
|
|
// determine the element type of the list
|
|
// if we have a type hint of List[T], use T
|
|
// if the list is non-empty use type_of(list[0])
|
|
// otherwise assume it is List[Tensor]
|
|
TypePtr elem_type = TensorType::get();
|
|
if (type_hint && type_hint->kind() == TypeKind::ListType) {
|
|
elem_type = type_hint->expect<ListType>()->getElementType();
|
|
} else if (!values.empty()) {
|
|
elem_type = values.at(0)->type();
|
|
}
|
|
|
|
// Tensors are special because they have dymnamic properties. So any
|
|
// list containing tensors should be typed with the unified typeof all
|
|
// the elements.
|
|
if (elem_type->isSubtypeOf(TensorType::get())) {
|
|
for (const auto& value : values) {
|
|
elem_type = unifyTypes(elem_type, value->type()).value();
|
|
}
|
|
}
|
|
for (auto v : values) {
|
|
if (!v->type()->isSubtypeOf(elem_type)) {
|
|
throw ErrorReport(tree)
|
|
<< "Lists must contain only a single type, expected: "
|
|
<< *elem_type << " but found " << *v->type() << " instead";
|
|
}
|
|
}
|
|
Value* result =
|
|
graph->insertNode(graph->createList(elem_type, values))->output();
|
|
return result;
|
|
} break;
|
|
case TK_TUPLE_LITERAL: {
|
|
auto ll = TupleLiteral(tree);
|
|
auto values = getValues(ll.inputs(), /*maybe_unpack=*/true);
|
|
return graph->insertNode(graph->createTuple(values))->output();
|
|
} break;
|
|
case TK_DICT_LITERAL: {
|
|
auto dl = DictLiteral(tree);
|
|
auto key_trees = dl.key_inputs().tree()->trees();
|
|
auto value_trees = dl.value_inputs().tree()->trees();
|
|
AT_ASSERT(key_trees.size() == value_trees.size());
|
|
std::vector<Value*> keys, values;
|
|
for (size_t i = 0; i < key_trees.size(); ++i) {
|
|
keys.push_back(emitExpr(Expr(key_trees[i])));
|
|
values.push_back(emitExpr(Expr(value_trees[i])));
|
|
}
|
|
|
|
TypePtr key_type = nullptr;
|
|
TypePtr value_type = nullptr;
|
|
|
|
if (type_hint && type_hint->kind() == TypeKind::DictType) {
|
|
auto dict_type = type_hint->expect<DictType>();
|
|
key_type = dict_type->getKeyType();
|
|
value_type = dict_type->getValueType();
|
|
} else if (!keys.empty()) {
|
|
key_type = keys.at(0)->type();
|
|
value_type = values.at(0)->type();
|
|
} else {
|
|
key_type = StringType::get();
|
|
value_type = TensorType::get();
|
|
}
|
|
AT_ASSERT(key_type != nullptr && value_type != nullptr);
|
|
|
|
return graph
|
|
->insertNode(graph->createDict(key_type, value_type, keys, values))
|
|
->output();
|
|
} break;
|
|
case TK_LIST_COMP: {
|
|
auto lc = ListComp(tree);
|
|
return emitListComprehension(lc);
|
|
} break;
|
|
default:
|
|
throw ErrorReport(tree) << "Cannot emit expr for: " << tree;
|
|
}
|
|
}
|
|
|
|
Value* emitConst(const Const& c) {
|
|
if (c.isFloatingPoint())
|
|
return materializeConstant(
|
|
c.asFloatingPoint(), *graph, c.range(), fp_constants);
|
|
else
|
|
return materializeConstant(
|
|
c.asIntegral(), *graph, c.range(), integral_constants);
|
|
}
|
|
|
|
Value* emitStringLiteral(const StringLiteral& c) {
|
|
return insertConstant(*graph, c.text(), nullptr, c.range());
|
|
}
|
|
|
|
// Desugars select indexing: tensor[i] -> tensor.select(dim, i)
|
|
Value* emitSelect(
|
|
const SourceRange& loc,
|
|
Value* input,
|
|
Value* dim,
|
|
Value* index) {
|
|
return emitBuiltinCall(
|
|
loc, *graph, aten::select, c10::nullopt, {input, dim, index}, {}, true);
|
|
}
|
|
|
|
// Desugars slice indexing: tensor[begin:end] -> tensor.slice(dim, begin, end,
|
|
// 1)
|
|
Value* emitSlice(
|
|
const SourceRange& loc,
|
|
Value* input,
|
|
Value* dim, // Only used for tensor slicing
|
|
const SliceExpr& slice) {
|
|
std::vector<NamedValue> args;
|
|
args.reserve(4);
|
|
args.emplace_back(loc, "self", input);
|
|
|
|
// XXX: If list slicing becomes more complicated or stops using
|
|
// aten::slice, we should separate it from this function.
|
|
if (dim) {
|
|
AT_ASSERT(input->type()->isSubtypeOf(TensorType::get()));
|
|
|
|
args.emplace_back(dim);
|
|
} else {
|
|
AT_ASSERT(!input->type()->isSubtypeOf(TensorType::get()));
|
|
}
|
|
|
|
args.emplace_back(loc, "begin", emitExpr(Expr(slice.startOr(0))));
|
|
const auto has_end = slice.end().present();
|
|
if (has_end) {
|
|
args.emplace_back(loc, "end", emitExpr(Expr(slice.end().get())));
|
|
}
|
|
if (input->type()->cast<TupleType>()) {
|
|
auto has_step = slice.step().present();
|
|
if (has_step) {
|
|
// TODO: add support for slicing tuples with a step
|
|
throw ErrorReport(loc)
|
|
<< "Unsupported operation: slicing tuples with a step isn't supported";
|
|
}
|
|
|
|
if (has_end) {
|
|
return emitTupleSlice(loc, args[0], args[1], /*end*/ args[2]);
|
|
} else {
|
|
return emitTupleSlice(loc, args[0], args[1], c10::nullopt);
|
|
}
|
|
}
|
|
|
|
auto step = emitExpr(Expr(slice.stepOr(1)));
|
|
NamedValue step_nv = NamedValue(loc, "step", step);
|
|
return emitBuiltinCall(
|
|
loc, *graph, aten::slice, c10::nullopt, args, {step_nv}, true);
|
|
}
|
|
|
|
Value* emitUnsqueeze(const SourceRange& loc, Value* input, Value* dim_val) {
|
|
return emitBuiltinCall(
|
|
loc, *graph, aten::unsqueeze, c10::nullopt, {input, dim_val}, {}, true);
|
|
}
|
|
|
|
Value* emitIndex(
|
|
const SourceRange& loc,
|
|
Value* input,
|
|
at::ArrayRef<Value*> indices) {
|
|
// NB: the index of aten::index should be a type of List[Optional[Tensor]],
|
|
// this is to support the case like t[:, :, 1] where : here indicates a
|
|
// None/undefined tensor(optional tensor)
|
|
auto* index =
|
|
graph->insertNode(graph->createList(OptionalType::ofTensor(), indices))
|
|
->output();
|
|
return emitBuiltinCall(
|
|
loc, *graph, aten::index, c10::nullopt, {input, index}, {}, true);
|
|
}
|
|
|
|
// Emits multidimensional slicing with int and slice indices.
|
|
// Returns:
|
|
// - Value*: the input after it has been indexed by int and slice indices.
|
|
// - vector<Value*>: A list of tensor Value* indices that have not been
|
|
// applied yet.
|
|
// Should be NULL at indices where sliceable (post-slicing) isn't indexed by
|
|
// a tensor.
|
|
std::pair<Value*, std::vector<Value*>> emitIntAndSliceIndexing(
|
|
const SourceRange& loc,
|
|
Value* sliceable,
|
|
const List<Expr>& subscript_exprs) {
|
|
// Overall, to handle indexing (other than Tensors), we need to handle a
|
|
// couple different things. For example, for x[1:3, None, 4], each of these
|
|
// different index types (slice, None, and integer) result in different
|
|
// number of dimensions. Slicing doesn't change the number of dimensions,
|
|
// None adds a dimension, and integer removes a dimension. As these indexing
|
|
// operations are applied left to right, the actual index that it's being
|
|
// applied to depends on the previous operations. Ellipses indexing throws
|
|
// another wrinkle. Ellipses selects any remaining unspecified dimensions.
|
|
// Thus, for indexes following an ellipses, the actual index an indexing
|
|
// operation is being applied to depends on the operations to the right.
|
|
// Thus, we do two passes, one from left to right up until the ellipses, and
|
|
// one from right to left.
|
|
|
|
std::vector<Value*> tensor_indices;
|
|
|
|
auto insert_value_for_dim = [&](int64_t dim) {
|
|
return graph->insertConstant(dim, nullptr, loc);
|
|
};
|
|
std::vector<int64_t> dims(subscript_exprs.size());
|
|
std::vector<c10::optional<Value*>> exprs(
|
|
subscript_exprs.size(), c10::nullopt);
|
|
|
|
auto handle_indexing = [&](const Expr& subscript_expr,
|
|
int expr_idx,
|
|
int64_t dim,
|
|
bool is_reverse = false) {
|
|
dims[expr_idx] = dim;
|
|
if (subscript_expr.kind() == TK_SLICE_EXPR) {
|
|
if (is_reverse) {
|
|
return dim - 1;
|
|
} else {
|
|
return dim + 1;
|
|
}
|
|
}
|
|
TypePtr type_hint = OptionalType::ofTensor();
|
|
if (subscript_expr.kind() == TK_NONE) {
|
|
type_hint = NoneType::get();
|
|
}
|
|
auto index = emitExpr(subscript_expr, type_hint);
|
|
exprs[expr_idx] = index;
|
|
if (index->type()->isSubtypeOf(NoneType::get())) {
|
|
if (is_reverse) {
|
|
return dim;
|
|
} else {
|
|
return dim + 1;
|
|
}
|
|
} else if (index->type() == IntType::get()) {
|
|
if (is_reverse) {
|
|
return dim - 1;
|
|
} else {
|
|
return dim;
|
|
}
|
|
} else if (index->type()->isSubtypeOf(OptionalType::ofTensor())) {
|
|
if (is_reverse) {
|
|
throw ErrorReport(loc)
|
|
<< "Ellipses followed by tensor indexing is currently not supported";
|
|
} else {
|
|
return dim + 1;
|
|
}
|
|
} else {
|
|
throw ErrorReport(loc)
|
|
<< "Unsupported operation: indexing tensor with unsupported index type '"
|
|
<< index->type()->python_str()
|
|
<< "'. Only ints, slices, and tensors are supported";
|
|
}
|
|
};
|
|
|
|
size_t idx = 0;
|
|
int64_t dim = 0;
|
|
for (; idx < subscript_exprs.size(); idx++) {
|
|
auto subscript_expr = subscript_exprs[idx];
|
|
if (subscript_expr.kind() == TK_DOTS) {
|
|
break;
|
|
}
|
|
dim = handle_indexing(subscript_expr, idx, dim, /*is_reverse=*/false);
|
|
}
|
|
int64_t rdim = -1;
|
|
for (size_t rev_idx = subscript_exprs.size() - 1; rev_idx > idx;
|
|
rev_idx--) {
|
|
auto subscript_expr = subscript_exprs[rev_idx];
|
|
if (subscript_expr.kind() == TK_DOTS) {
|
|
throw ErrorReport(loc)
|
|
<< "An index can only have a single ellipsis ('...')";
|
|
}
|
|
rdim =
|
|
handle_indexing(subscript_expr, rev_idx, rdim, /*is_reverse=*/true);
|
|
}
|
|
for (size_t i = 0; i < exprs.size(); i++) {
|
|
if (!exprs[i].has_value()) {
|
|
if (subscript_exprs[i].kind() == TK_SLICE_EXPR) {
|
|
sliceable = emitSlice(
|
|
loc,
|
|
sliceable,
|
|
insert_value_for_dim(dims[i]),
|
|
SliceExpr(subscript_exprs[i]));
|
|
}
|
|
continue;
|
|
}
|
|
auto expr = exprs[i].value();
|
|
if (expr->type()->isSubtypeOf(NoneType::get())) {
|
|
sliceable =
|
|
emitUnsqueeze(loc, sliceable, insert_value_for_dim(dims[i]));
|
|
} else if (expr->type() == IntType::get()) {
|
|
sliceable =
|
|
emitSelect(loc, sliceable, insert_value_for_dim(dims[i]), expr);
|
|
} else if (expr->type()->isSubtypeOf(OptionalType::ofTensor())) {
|
|
tensor_indices.resize(dims[i] + 1);
|
|
tensor_indices[dims[i]] = expr;
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(
|
|
"Trying to process index type that we don't support.");
|
|
}
|
|
}
|
|
// at::index takes in a List[Optional[Tensor]] where some dims can be None.
|
|
// create None node with optional tensor output type and pass to at::index.
|
|
for (auto& index : tensor_indices) {
|
|
if (index == nullptr) {
|
|
index =
|
|
graph->insertNode(graph->createNone(TensorType::get()))->output();
|
|
}
|
|
}
|
|
return std::make_pair(sliceable, tensor_indices);
|
|
}
|
|
|
|
// Desugars multidim slicing into slice/select/index/unsqueeze calls.
|
|
//
|
|
// XXX: Errors in user code are not elegantly reported.
|
|
// Let's say someone were to do the following:
|
|
// @torch.jit.script
|
|
// def fn(x):
|
|
// return x[0, 1]
|
|
// fn(torch.randn(5))
|
|
// Because we desugar this into two aten::select ops, the error message
|
|
// complains about aten::select failing rather than there "not being
|
|
// enough dimensions to index".
|
|
//
|
|
// The strategy is to slice and select the tensor for int and slices first
|
|
// in one pass and then apply at::index on the result of the
|
|
// slicing/selecting. Call the tensor after we've applied slice / select the
|
|
// `sliced`. tensor_indices should have the same size as sliced.dim():
|
|
// - tensor_indices[i] = NULL if we should not index `sliced` at dim i
|
|
// - tensor_indices[i] = t if we should index `sliced` at dim i with tensor t.
|
|
Value* emitMultidimSlicing(
|
|
const SourceRange& loc,
|
|
Value* sliceable,
|
|
const List<Expr>& subscript_exprs) {
|
|
if (!sliceable->type()->isSubtypeOf(TensorType::get())) {
|
|
throw ErrorReport(loc)
|
|
<< "Unsupported operation: attempted to use multidimensional "
|
|
<< "indexing on a non-tensor type";
|
|
}
|
|
|
|
std::vector<Value*> tensor_indices;
|
|
std::tie(sliceable, tensor_indices) =
|
|
emitIntAndSliceIndexing(loc, sliceable, subscript_exprs);
|
|
|
|
if (tensor_indices.empty()) {
|
|
// XXX: Might need to at::alias this when we support mutability
|
|
return sliceable;
|
|
}
|
|
|
|
return emitIndex(loc, sliceable, tensor_indices);
|
|
}
|
|
|
|
// Desugars slice syntactic sugar tensor[begin:end] -> tensor.slice(begin,
|
|
// end).
|
|
Value* emitBasicSlice(
|
|
const SourceRange& loc,
|
|
Value* sliceable,
|
|
const List<Expr>& subscript_exprs) {
|
|
AT_ASSERT(subscript_exprs.size() == 1);
|
|
AT_ASSERT(subscript_exprs[0].kind() == TK_SLICE_EXPR);
|
|
auto slice_exp = SliceExpr(subscript_exprs[0]);
|
|
Value* maybe_dim = nullptr;
|
|
if (sliceable->type()->isSubtypeOf(TensorType::get())) {
|
|
// If the sliceable object is a tensor, specify a default dimension
|
|
maybe_dim = graph->insertConstant(0, nullptr, loc);
|
|
}
|
|
return emitSlice(loc, sliceable, maybe_dim, slice_exp);
|
|
}
|
|
|
|
int64_t getAdjTupleIndex(
|
|
const SourceRange& loc,
|
|
const TupleTypePtr& tuple_type,
|
|
int64_t input_index,
|
|
bool allow_out_of_bounds) {
|
|
// set index to be positive to simplify logic in runtime
|
|
int64_t adj_index = input_index;
|
|
int64_t tuple_len = tuple_type->elements().size();
|
|
if (input_index < 0) {
|
|
adj_index = tuple_len + input_index;
|
|
}
|
|
if (!allow_out_of_bounds && (adj_index >= tuple_len || adj_index < 0)) {
|
|
throw ErrorReport(loc) << "Tuple index out of range. Tuple is length "
|
|
<< tuple_len << " and index is " << input_index;
|
|
}
|
|
return adj_index;
|
|
}
|
|
|
|
// When a list is marked const in a module, it gets converted to a tuple.
|
|
// The result is indexing into a Tuple which contains only one type
|
|
// is quite common. since indexing will likely be done in a for loop,
|
|
// we do not want to invoke the overhead of converting the tuple to a list
|
|
// each iter.
|
|
Value* emitTupleIndex(
|
|
const SourceRange& loc,
|
|
Value* tuple_val,
|
|
Value* idx_val) {
|
|
auto tuple_typ = tuple_val->type()->cast<TupleType>();
|
|
auto elems = tuple_typ->elements();
|
|
TypePtr output_type;
|
|
if (idx_val->type() != IntType::get()) {
|
|
throw ErrorReport(loc) << "tuple index must be an integer";
|
|
}
|
|
auto idx = toIValue(idx_val);
|
|
if (!idx) {
|
|
if (elems.size() == 0 ||
|
|
!convertibleToList(tuple_typ, ListType::create(elems[0]))) {
|
|
throw ErrorReport(loc)
|
|
<< "Cannot index into a " << tuple_typ->python_str()
|
|
<< " with a non-integer literal because we cannot resolve the output type";
|
|
}
|
|
output_type = elems[0];
|
|
} else {
|
|
auto adj_index = getAdjTupleIndex(
|
|
loc, tuple_typ, idx->toInt(), /*allow_out_of_bounds*/ false);
|
|
output_type = elems[adj_index];
|
|
}
|
|
return graph
|
|
->insertNode(graph->createTupleIndex(tuple_val, idx_val, output_type))
|
|
->output();
|
|
}
|
|
|
|
int64_t getSliceInd(Value* idx_val, const SourceRange& loc) {
|
|
auto ivalue = toIValue(idx_val);
|
|
if (ivalue && ivalue->isInt()) {
|
|
return ivalue->to<int64_t>();
|
|
} else {
|
|
throw ErrorReport(loc) << "tuple slice indices must be integer constants";
|
|
}
|
|
}
|
|
|
|
Value* emitTupleSlice(
|
|
const SourceRange& loc,
|
|
const NamedValue& tuple_val,
|
|
const NamedValue& beg_val,
|
|
const at::optional<NamedValue>& end_val) {
|
|
auto tuple_type = tuple_val.value(*graph)->type()->expect<TupleType>();
|
|
int64_t beg = getAdjTupleIndex(
|
|
loc,
|
|
tuple_type,
|
|
getSliceInd(beg_val.value(*graph), loc),
|
|
/*allow_out_of_bounds*/ true);
|
|
int64_t end;
|
|
int64_t tuple_len = tuple_type->elements().size();
|
|
if (end_val) {
|
|
end = getAdjTupleIndex(
|
|
loc, tuple_type, getSliceInd(end_val->value(*graph), loc), true);
|
|
} else {
|
|
end = tuple_len;
|
|
}
|
|
// slicing does not throw out of bounds errors
|
|
end = std::min(std::max((int64_t)0, end), tuple_len);
|
|
beg = std::min(std::max((int64_t)0, beg), tuple_len);
|
|
|
|
return graph
|
|
->insertNode(graph->createTupleSlice(tuple_val.value(*graph), beg, end))
|
|
->output();
|
|
}
|
|
|
|
Value* emitSubscript(const Subscript& subscript) {
|
|
const SugaredValuePtr sv = emitSugaredExpr(subscript.value(), 1);
|
|
const List<Expr>& subscript_exprs = subscript.subscript_exprs();
|
|
const SourceRange& range = subscript.range();
|
|
const SourceRange& val_range = subscript.value().range();
|
|
if (subscript_exprs.size() != 1) {
|
|
return emitMultidimSlicing(
|
|
range, sv->asValue(val_range, method), subscript_exprs);
|
|
}
|
|
if (subscript_exprs[0].kind() == TK_SLICE_EXPR) {
|
|
return emitBasicSlice(
|
|
range, sv->asValue(val_range, method), subscript_exprs);
|
|
} else {
|
|
// Desugars gather syntactic sugar foo[i]
|
|
Value* idx = emitExpr(subscript_exprs[0]);
|
|
Value* val = sv->asValue(val_range, method);
|
|
AT_ASSERT(subscript_exprs.size() == 1);
|
|
|
|
if (val->type()->cast<TupleType>()) {
|
|
return emitTupleIndex(range, sv->asValue(val_range, method), idx);
|
|
} else if (val->type()->isSubtypeOf(TensorType::get())) {
|
|
return emitMultidimSlicing(range, val, subscript_exprs);
|
|
} else {
|
|
return sv->getitem(range, method, idx);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
struct FunctionResolver : public Resolver {
|
|
explicit FunctionResolver(
|
|
const Resolver* otherResolver,
|
|
const std::unordered_map<std::string, Function*>& functionTable)
|
|
: otherResolver_(otherResolver), functionTable_(functionTable) {}
|
|
|
|
std::shared_ptr<SugaredValue> resolveValue(
|
|
const std::string& name,
|
|
Function& m,
|
|
const SourceRange& loc) const override {
|
|
auto it = functionTable_.find(name);
|
|
if (it != functionTable_.end()) {
|
|
return std::make_shared<FunctionValue>(it->second);
|
|
}
|
|
return otherResolver_->resolveValue(name, m, loc);
|
|
}
|
|
|
|
TypePtr resolveType(const std::string& name, const SourceRange& loc)
|
|
const override {
|
|
return otherResolver_->resolveType(name, loc);
|
|
}
|
|
|
|
private:
|
|
const Resolver* otherResolver_;
|
|
const std::unordered_map<std::string, Function*>& functionTable_;
|
|
};
|
|
|
|
CompilationUnit::CompilationUnit(const std::string& source)
|
|
: CompilationUnit() {
|
|
// calles the define with native resolver to generate the graph for functions
|
|
define(c10::nullopt, source, nativeResolver(), nullptr);
|
|
}
|
|
|
|
c10::QualifiedName CompilationUnit::mangle(const c10::QualifiedName& name) const {
|
|
static const std::string manglePrefix = "___torch_mangle_";
|
|
std::vector<std::string> atoms = name.atoms();
|
|
|
|
// Search for an already-existing mangle namespace.
|
|
// If the name is already mangled, just bump the integer.
|
|
for (auto& atom : atoms) {
|
|
auto pos = atom.find(manglePrefix);
|
|
if (pos != std::string::npos) {
|
|
std::string newAtom;
|
|
newAtom.reserve(atom.size());
|
|
// Append the part of the name up to the end of the prefix
|
|
newAtom.append(atom, 0, pos);
|
|
newAtom.append(std::to_string(mangleIndex_++));
|
|
atom = newAtom;
|
|
return QualifiedName(atoms);
|
|
}
|
|
}
|
|
|
|
// Otherwise add a mangle namespace right before the basename
|
|
TORCH_INTERNAL_ASSERT(!atoms.empty());
|
|
atoms.insert(atoms.end() - 1, manglePrefix + std::to_string(mangleIndex_++));
|
|
return QualifiedName(atoms);
|
|
}
|
|
|
|
std::unique_ptr<Function> CompilationUnit::define(
|
|
const c10::optional<QualifiedName>& prefix,
|
|
const Def& def,
|
|
const ResolverPtr& resolver,
|
|
const Self* self,
|
|
const std::unordered_map<std::string, Function*>& function_table,
|
|
bool shouldMangle) const {
|
|
TORCH_INTERNAL_ASSERT(resolver);
|
|
auto _resolver = resolver;
|
|
if (!self) {
|
|
// if self is defined, then these are methods and do not go into the
|
|
// global namespace otherwise, they get defined together so we add them to
|
|
// the function table so the methods can see each other
|
|
_resolver =
|
|
std::make_shared<FunctionResolver>(resolver.get(), function_table);
|
|
}
|
|
auto creator = [def, _resolver, self](Function& method) {
|
|
// Store the function name so that it can be referenced if there is an error
|
|
// while compiling this function
|
|
ErrorReport::CallStack call(
|
|
self ? method.qualname().qualifiedName() : method.qualname().name());
|
|
to_ir(def, _resolver, self, method);
|
|
};
|
|
auto name = prefix ? QualifiedName(*prefix, def.name().name())
|
|
: QualifiedName(def.name().name());
|
|
if (shouldMangle) {
|
|
// If `shouldMangle` is set, we should generate a unique name for this
|
|
// function if there is already an existing one.
|
|
if (auto fn = find_function(name)) {
|
|
name = mangle(name);
|
|
}
|
|
}
|
|
auto fn = torch::make_unique<Function>(
|
|
std::move(name), std::make_shared<Graph>(), creator);
|
|
if (self) {
|
|
// Register this as a method on `self`'s type
|
|
self->getClassType()->addMethod(fn.get());
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
std::vector<Function*> CompilationUnit::define(
|
|
const c10::optional<QualifiedName>& prefix,
|
|
const std::vector<Def>& definitions,
|
|
const std::vector<ResolverPtr>& resolvers,
|
|
const Self* self,
|
|
bool shouldMangle) {
|
|
TORCH_INTERNAL_ASSERT(definitions.size() == resolvers.size());
|
|
std::vector<Function*> functions;
|
|
std::unordered_map<std::string, Function*> function_table;
|
|
|
|
for (size_t i = 0; i < definitions.size(); i++) {
|
|
auto fn = define(
|
|
prefix,
|
|
definitions[i],
|
|
resolvers[i],
|
|
self,
|
|
function_table,
|
|
shouldMangle);
|
|
const auto& name = fn->name();
|
|
function_table[name] = fn.get();
|
|
functions.push_back(fn.get());
|
|
register_function(std::move(fn));
|
|
}
|
|
|
|
// We need to compile `__init__` first, since it can determine what attributes
|
|
// are available to other methods. So reorder the definitions accordingly.
|
|
for (size_t i = 0; i < definitions.size(); i++) {
|
|
const auto& def = definitions[i];
|
|
if (def.name().name() == "__init__") {
|
|
functions[i]->ensure_defined();
|
|
}
|
|
}
|
|
|
|
for (Function* function : functions) {
|
|
function->ensure_defined();
|
|
}
|
|
return functions;
|
|
}
|
|
|
|
std::vector<Function*> CompilationUnit::define(
|
|
const c10::optional<QualifiedName>& prefix,
|
|
const std::string& source,
|
|
const ResolverPtr& resolver,
|
|
const Self* self) {
|
|
Parser p(std::make_shared<Source>(source, "<string>", 1));
|
|
std::vector<Def> definitions;
|
|
std::vector<ResolverPtr> resolvers;
|
|
while (p.lexer().cur().kind != TK_EOF) {
|
|
auto def = Def(p.parseFunction(/*is_method=*/bool(self)));
|
|
definitions.push_back(def);
|
|
resolvers.push_back(resolver);
|
|
}
|
|
return define(prefix, definitions, resolvers, self);
|
|
}
|
|
|
|
void runCleanupPasses(std::shared_ptr<Graph>& to_clean, bool convert_ssa) {
|
|
// the graph including closures is converted to ssa in the first pass,
|
|
// so subsequent cleanups do not need reconvert it
|
|
if (convert_ssa) {
|
|
ConvertToSSA(to_clean);
|
|
// convert loops with an iter and body condition specified to
|
|
// python-recognize while loops. we do this so they can be exported,
|
|
// and run the pass early to avoid jitter. Like conversion to SSA,
|
|
// it only needs to run once.
|
|
CanonicalizeModifiedLoops(to_clean);
|
|
}
|
|
// NB ORDERING: SSA conversion has to occur before
|
|
// lifting of closures and forks, this way closures are converted
|
|
// to SSA while part of their original graph, and closures are ready to
|
|
// be inlined into forked closures
|
|
liftClosures(to_clean);
|
|
inlineForkedClosures(to_clean);
|
|
if (script::getInlineEverythingMode()) {
|
|
Inline(*to_clean);
|
|
}
|
|
// remove any uses of tuples that we inserted that are not needed
|
|
LowerSimpleTuples(to_clean);
|
|
ConstantPooling(to_clean);
|
|
// For jitter
|
|
CanonicalizeOutputs(to_clean);
|
|
}
|
|
|
|
// we consider _N where N is a number, to be a non-meaningful name
|
|
// and do not record it as a unique name. This allows python printing to
|
|
// be able to export and import more consistently named graphs
|
|
bool meaningfulName(const std::string& name) {
|
|
if (name.size() == 0)
|
|
return false;
|
|
if (name[0] == '$')
|
|
return false;
|
|
if (name[0] != '_')
|
|
return true;
|
|
for (size_t i = 1; i < name.size(); ++i) {
|
|
if (!isdigit(name[i]))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void lambdaLiftFork(Node* fork_node) {
|
|
// Fork a new graph from its orignal owning graph
|
|
auto forked_graph = std::make_shared<Graph>();
|
|
auto body_block = fork_node->blocks()[0];
|
|
|
|
// Make sure we capture everything in the new graph.
|
|
// The uncaptured values will be added to the fork signature.
|
|
std::unordered_map<Value*, Value*> uncaptures_map;
|
|
auto env = [&](Value* v) -> Value* {
|
|
if (!uncaptures_map.count(v)) {
|
|
// Capture values for both graphs
|
|
uncaptures_map[v] = forked_graph->addInput()->copyMetadata(v);
|
|
fork_node->addInput(v);
|
|
}
|
|
return uncaptures_map[v];
|
|
};
|
|
forked_graph->block()->cloneFrom(body_block, env);
|
|
|
|
// Separate the subgraph and clean up the orignal one
|
|
fork_node->g_(attr::Subgraph, forked_graph);
|
|
fork_node->eraseBlock(0);
|
|
}
|
|
|
|
} // namespace script
|
|
} // namespace jit
|
|
} // namespace torch
|