pytorch/test/test_sparse.py
William Wen 92fdea8a39 remove skips due to https://github.com/pytorch/torchdynamo/issues/1991 (#138133)
Closes https://github.com/pytorch/pytorch/issues/93479. A bunch of other dynamo-wrapped tests also exhibit "torch.* returned non-Tensor output unimplemented" making the issue seem less relevant to me. Some tests are marked as xfail as they fail for other reasons.

If these tests are indeed important, we should create a new issue to track them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138133
Approved by: https://github.com/ezyang
2024-10-17 17:42:46 +00:00

5525 lines
251 KiB
Python

# Owner(s): ["module: sparse"]
import torch
import itertools
import functools
import operator
import random
import unittest
from torch.testing import make_tensor
from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \
load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \
DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \
parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \
skipIfCrossRef
from torch.testing._internal.common_cuda import TEST_CUDA
from numbers import Number
from typing import Dict, Any
from packaging import version
from torch.testing._internal.common_cuda import \
(SM53OrLater, SM80OrLater, TEST_MULTIGPU)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride,
deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes)
from torch.testing._internal.common_methods_invocations import \
(op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs)
from torch.testing._internal.common_dtype import (
all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types,
floating_and_complex_types_and, integral_types, floating_types_and,
)
from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse
from torch.testing._internal.opinfo.refs import (
ElementwiseBinaryPythonRefInfo,
ReductionPythonRefInfo
)
def _op_supports_any_sparse(op):
return (op.supports_sparse
or op.supports_sparse_csr
or op.supports_sparse_csc
or op.supports_sparse_bsr
or op.supports_sparse_bsc)
reduction_ops_with_sparse_support = [
op for op in reduction_ops if 'masked.' not in op.name and
_op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)]
binary_ufuncs_with_sparse_support = [
op for op in binary_ufuncs if _op_supports_any_sparse(op) and
not isinstance(op, ElementwiseBinaryPythonRefInfo)]
like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name]
if TEST_SCIPY:
import scipy.sparse
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
# batched grad doesn't support sparse
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
CUSPARSE_SPMM_COMPLEX128_SUPPORTED = (
IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2")
) or (not IS_WINDOWS and not TEST_WITH_ROCM)
HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0")
def all_sparse_layouts(test_name='layout', include_strided=False):
return parametrize(test_name, [
subtest(torch.strided, name='Strided'),
subtest(torch.sparse_coo, name='SparseCOO'),
subtest(torch.sparse_csr, name='SparseCSR'),
subtest(torch.sparse_csc, name='SparseCSC'),
subtest(torch.sparse_bsr, name='SparseBSR'),
subtest(torch.sparse_bsc, name='SparseBSC'),
][(0 if include_strided else 1):])
def gradcheck_semantics(test_name='gradcheck'):
gradcheck_sparse = functools.partial(gradcheck, masked=False)
gradcheck_masked = functools.partial(gradcheck, masked=True)
gradcheck_sparse.masked = False
gradcheck_masked.masked = True
return parametrize(test_name, [
subtest(gradcheck_sparse, name='sparse'),
subtest(gradcheck_masked, name='masked')])
class CrossRefSparseFakeMode(torch._subclasses.CrossRefFakeMode):
def __init__(self) -> None:
super().__init__(
self.ignore_op, check_strides=False,
check_aliasing=False,
) # TODO: enable stride/alias checking
# empty_like excluded for now due to sparse complex
# aten._to_dense.default this one is getting called with csc
@staticmethod
def ignore_op(func):
return func in (
torch.ops.aten.empty_like.default,
torch.ops.aten.set_.source_Storage_storage_offset,
torch.ops.aten.sspaddmm.out,
torch.ops.aten._spdiags.default,
torch.ops.aten._to_dense.default,
torch.ops.aten.indices.default,
torch.ops.aten._indices.default,
torch.ops.aten.values.default,
torch.ops.aten._values.default,
)
class TestSparseLegacyAndDeprecation(TestCase):
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
def test_legacy_warnings(self):
def f1():
"torch.sparse.SparseTensor() is deprecated."\
" Please use torch.sparse_coo_tensor((0,), dtype=)"
x_ref = torch.sparse_coo_tensor((0,), dtype=torch.float64)
x = torch.sparse.DoubleTensor()
self.assertEqual(x, x_ref)
def f2():
"torch.sparse.SparseTensor(cdata=x._cdata) is deprecated."\
" Please use torch.sparse_coo_tensor(x._indices(), x._values(), x.shape)"
x_ref = torch.tensor([[1, 2], [3, 4]], dtype=torch.float64).to_sparse()
x = torch.sparse.DoubleTensor(cdata=x_ref._cdata)
y = torch.sparse_coo_tensor(x._indices(), x._values(), x.shape)
self.assertEqual(x, x_ref)
self.assertEqual(y, x_ref)
def f3():
"torch.sparse.SparseTensor(indices, values, *, device=) is deprecated."\
" Please use torch.sparse_coo_tensor(indices, values, dtype=, device=)"
x_ref = torch.sparse_coo_tensor([[0, 0, 1, 1], [0, 1, 0, 1]], [1, 2, 3, 4], dtype=torch.float64)
x = torch.sparse.DoubleTensor(torch.tensor([[0, 0, 1, 1], [0, 1, 0, 1]]),
torch.tensor([1, 2, 3, 4], dtype=torch.float64))
self.assertEqual(x, x_ref)
def f4():
"torch.sparse.SparseTensor(indices, values, shape, *, device=) is deprecated."\
" Please use torch.sparse_coo_tensor(indices, values, shape, dtype=, device=)"
x_ref = torch.sparse_coo_tensor([[0, 0, 1, 1], [0, 1, 0, 1]], [1, 2, 3, 4], (2, 3), dtype=torch.float64)
x = torch.sparse.DoubleTensor(torch.tensor([[0, 0, 1, 1], [0, 1, 0, 1]]),
torch.tensor([1, 2, 3, 4], dtype=torch.float64), (2, 3))
self.assertEqual(x, x_ref)
def f5():
"torch.sparse.SparseTensor(shape, *, device=) is deprecated."\
" Please use torch.sparse_coo_tensor(shape, dtype=, device=)"
x_ref = torch.sparse_coo_tensor((2, 3), dtype=torch.float64)
x = torch.sparse.DoubleTensor(2, 3)
self.assertEqual(x, x_ref)
for test_f in [f1, f2, f3, f4, f5]:
with self.assertWarns(UserWarning, msg=test_f.__doc__) as cm:
test_f()
test_f()
# Check warn-once:
self.assertEqual(len(cm.warnings), 1)
class TestSparseBase(TestCase):
def run(self, result=None):
if TEST_WITH_CROSSREF:
with CrossRefSparseFakeMode():
return super().run(result)
else:
return super().run(result)
class TestSparse(TestSparseBase):
def setUp(self):
TestCase.setUp(self)
self.index_tensor = lambda *args, **kwargs: torch.tensor(*args, **kwargs, dtype=torch.int64)
def sparse_empty_factory(*args, **kwargs):
kwargs['layout'] = kwargs.get('layout', torch.sparse_coo)
return torch.empty(*args, **kwargs)
self.sparse_empty = sparse_empty_factory
def sparse_tensor_factory(*args, **kwargs):
return torch.sparse_coo_tensor(*args, **kwargs)
self.sparse_tensor = sparse_tensor_factory
def _gen_sparse(self, sparse_dim, nnz, with_size, dtype, device, coalesced):
if isinstance(with_size, Number):
with_size = [with_size] * sparse_dim
x, i, v = self.genSparseTensor(with_size, sparse_dim, nnz, not coalesced, dtype=dtype, device=device)
if not coalesced:
self.assert_uncoalesced(x)
return x, i, v
def assert_uncoalesced(self, x):
"""
Test if a CPU tensor is uncoalesced. This is used to ensure
correctness of the uncoalesced tensor generation algorithm.
"""
assert not x.is_coalesced()
existing_indices = set()
indices = x._indices()
for i in range(x._nnz()):
index = str(indices[:, i])
if index in existing_indices:
return True
else:
existing_indices.add(index)
def randn(self, *args, **kwargs):
"""
Variant of torch.randn that also works in the TEST_CUDA case.
"""
# TODO: Put this in torch.cuda.randn
return torch.empty(*args, **kwargs).normal_()
@dtypes(torch.double)
def test_print_coalesced(self, device, dtype):
self._test_print(device, dtype, True)
@dtypes(torch.double)
def test_print_uncoalesced(self, device, dtype):
self._test_print(device, dtype, False)
def _test_print(self, device, dtype, coalesced):
shape_sparse_dim_nnz = [
((), 0, 2),
((0,), 0, 10),
((2,), 0, 3),
((100, 3), 1, 3),
((100, 20, 3), 2, 0),
((10, 0, 3), 0, 3),
((10, 0, 3), 0, 0),
]
printed = []
for shape, sparse_dim, nnz in shape_sparse_dim_nnz:
indices_shape = torch.Size((sparse_dim, nnz))
values_shape = torch.Size((nnz,) + shape[sparse_dim:])
printed.append(f"# shape: {torch.Size(shape)}")
printed.append(f"# nnz: {nnz}")
printed.append(f"# sparse_dim: {sparse_dim}")
printed.append(f"# indices shape: {indices_shape}")
printed.append(f"# values shape: {values_shape}")
indices = torch.arange(indices_shape.numel(), dtype=self.index_tensor(0).dtype,
device=device).view(indices_shape)
for d in range(sparse_dim):
indices[d].clamp_(max=(shape[d] - 1)) # make it valid index
if not coalesced and indices.numel() > 0:
indices[:, -1] = indices[:, 0] # make it uncoalesced
values_numel = values_shape.numel()
values = torch.arange(values_numel, dtype=dtype,
device=device).view(values_shape).div_(values_numel / 2.)
sp_tensor = self.sparse_tensor(indices, values, shape, dtype=dtype, device=device)
dtypes = [torch.int32]
if values.dtype == torch.double:
dtypes.append(torch.float)
else:
dtypes.append(torch.double)
for dtype in dtypes:
printed.append(f"########## {dtype} ##########")
x = sp_tensor.detach().to(dtype)
printed.append("# sparse tensor")
printed.append(str(x))
if x.dtype.is_floating_point:
printed.append("# after requires_grad_")
printed.append(str(x.requires_grad_()))
printed.append("# after addition")
printed.append(str(x + x))
printed.append("# _indices")
printed.append(str(x._indices()))
printed.append("# _values")
printed.append(str(x._values()))
printed.append('')
self.assertExpected('\n'.join(printed))
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_basic(self, device, dtype, coalesced):
def test_shape(sparse_dims, nnz, with_size):
if isinstance(with_size, Number):
with_size = [with_size] * sparse_dims
x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)
self.assertEqual(i, x._indices())
self.assertEqual(v, x._values())
self.assertEqual(x.ndimension(), len(with_size))
self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2)
self.assertEqual(list(x.size()), with_size)
# Test .indices() and .values()
if not coalesced:
with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"):
x.indices()
with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"):
x.values()
else:
self.assertEqual(x.indices(), x._indices())
self.assertEqual(x.values(), x._values())
test_shape(3, 10, 100)
test_shape(3, 10, [100, 100, 100])
test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0])
test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0])
# Make sure that coalesce handles duplicate indices correctly
i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device)
v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device)
self.assertEqual(x.coalesce()._nnz(), 9)
@coalescedonoff
@dtypes(torch.double, torch.cdouble, torch.bfloat16)
@precisionOverride({torch.bfloat16: 1e-2})
def test_coalesce(self, device, dtype, coalesced):
def _test_coalesce(t):
tc = t.coalesce()
self.assertEqual(tc.to_dense(), t.to_dense())
self.assertTrue(tc.is_coalesced())
# Our code below doesn't work when nnz is 0, because
# then it's a 0D tensor, not a 2D tensor.
if t._nnz() == 0:
self.assertEqual(t._indices(), tc._indices())
self.assertEqual(t._values(), tc._values())
return tc
value_map: Dict[Any, Any] = {}
for idx, val in zip(t._indices().t(), t._values()):
idx_tup = tuple(idx.tolist())
if idx_tup in value_map:
value_map[idx_tup] += val
else:
value_map[idx_tup] = val.clone() if isinstance(val, torch.Tensor) else val
new_indices = sorted(value_map.keys())
_new_values = [value_map[idx] for idx in new_indices]
if t._values().ndimension() < 2:
new_values = t._values().new(_new_values)
else:
new_values = torch.stack(_new_values)
new_indices = t._indices().new(new_indices).t()
tg = t.new(new_indices, new_values, t.size())
self.assertEqual(tc._indices(), tg._indices())
self.assertEqual(tc._values(), tg._values())
if t.is_coalesced():
self.assertEqual(tc._indices(), t._indices())
self.assertEqual(tc._values(), t._values())
for empty_i, empty_v, empty_nnz in itertools.product([True, False], repeat=3):
sparse_size = [] if empty_i else [2, 1]
dense_size = [1, 0, 2] if empty_v else [1, 2]
nnz = 0 if empty_nnz else 5
t, _, _ = self._gen_sparse(len(sparse_size), nnz, sparse_size + dense_size, dtype, device, coalesced)
_test_coalesce(t) # this tests correctness
@dtypes(torch.double)
@skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/89395")
def test_coalesce_reference_cycle(self, device, dtype):
# Test coalesce doesn't create autograd graph cycles (gh-52253)
# Sanity check that the helper class works as expected
t = torch.rand(2)
t_ref = torch._C._WeakTensorRef(t)
self.assertFalse(t_ref.expired())
del t
self.assertTrue(t_ref.expired())
def test_sparse_sum():
i = torch.tensor([[0], [4]], dtype=torch.long, device=device)
v = torch.tensor([[[-0.4567, -1.8797, 0.0380, 1.4316]]],
dtype=dtype, device=device)
S = torch.sparse_coo_tensor(i, v)
S = S.coalesce()
S.requires_grad_(True)
S2 = S.coalesce()
self.assertTrue(S2.is_coalesced())
return torch._C._WeakTensorRef(S2)
ref = test_sparse_sum()
self.assertTrue(ref.expired())
@dtypes(torch.double)
def test_ctor_large_sizes(self, device, dtype):
# Test that integer overflow is detected when computing numel
# of a sparse tensor with large dimensions (gh-57416). Notice
# that numel is computed internally when constructing a
# tensor, hence the overflow may appear during the tensor
# construction step.
N = 100000
indices = torch.tensor([[N, N - 1]] * 4, dtype=torch.int64, device=device)
values = torch.tensor([1, 2], dtype=dtype, device=device)
self.assertRaises(RuntimeError,
lambda: torch.sparse_coo_tensor(
indices, values, (N + 1,) * 4, device=device))
@dtypes(torch.double, torch.cdouble)
def test_ctor_size_checks(self, device, dtype):
indices = self.index_tensor([
[0, 0, 0],
[0, 3, 0],
[0, 0, 0],
[0, 0, 0],
], device=device)
values = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device)
# indices inconsistent with size
self.assertRaises(
RuntimeError,
lambda: self.sparse_tensor(indices, values, torch.Size([2, 1, 1])))
# values inconsistent with size
values = torch.tensor([
[2, 1, 2, 1],
[1, 0, 5, 2],
], dtype=dtype, device=device)
self.assertRaises(
RuntimeError,
lambda: self.sparse_tensor(indices, values, torch.Size([2, 4, 2, 1])))
@coalescedonoff
@dtypes(torch.double)
def test_ctor_is_coalesced_with_gradcheck(self, device, dtype, coalesced):
for sparse_size, nnz in (((3, 3), 5), ((2, 3, 1, 5), 11)):
t, _, _ = self._gen_sparse(len(sparse_size), nnz, sparse_size, dtype, device, coalesced)
self.assertEqual(t.is_coalesced(), coalesced)
def func(indices, values, shape, is_coalesced):
s = torch.sparse_coo_tensor(indices, values, shape, check_invariants=True, is_coalesced=is_coalesced)
self.assertEqual(s.is_coalesced(), is_coalesced)
return s.to_dense(masked_grad=False)
if coalesced:
torch.autograd.gradcheck(func, (t._indices(), t._values().requires_grad_(True), t.shape, False))
torch.autograd.gradcheck(func, (t._indices(), t._values().requires_grad_(True), t.shape, True))
else:
torch.autograd.gradcheck(func, (t._indices(), t._values().requires_grad_(True), t.shape, False))
with self.assertRaisesRegex(RuntimeError,
"cannot set is_coalesced to true if indices correspond to uncoalesced COO tensor"):
torch.autograd.gradcheck(func, (t._indices(), t._values().requires_grad_(True), t.shape, True))
@dtypes(*floating_and_complex_types_and(torch.float16, torch.bfloat16))
@unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error")
@gradcheck_semantics()
def test_to_dense_with_gradcheck(self, device, dtype, gradcheck):
def test_tensor(x, res):
x.to_dense() # Tests triple to_dense for memory corruption
x.to_dense()
x.to_dense()
dense_x = x.to_dense()
safe_dense_x = self.safeToDense(x)
dense_x = dense_x.to(res.dtype)
safe_dense_x = safe_dense_x.to(res.dtype)
self.assertEqual(res, dense_x)
self.assertEqual(res, safe_dense_x)
# Only run autograd test for float64
if x.dtype != torch.float64:
return
def fn(x):
return x.to_dense(masked_grad=gradcheck.masked)
x.requires_grad_(True)
gradcheck(fn, (x,))
for value_type in [torch.double, torch.cdouble]:
i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
], device=device)
# we don't have to_dense for half types on CPU because it is implemented
# with a slower add_ operation
v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device)
res = torch.tensor([
[[2, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[1, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 3, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 4]],
], dtype=dtype, device=device)
test_tensor(x, res)
test_tensor(res, res)
i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
], device=device)
v = torch.empty(4, 0, dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device)
res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device)
test_tensor(x, res)
@coalescedonoff
@dtypes(torch.float16, torch.bfloat16, torch.float64, torch.int, torch.cfloat, torch.cdouble)
def test_to_sparse(self, device, dtype, coalesced):
shape = [5, 2, 10, 4]
max_nnz = 1
for value_type in [torch.double, torch.cdouble]:
for dim, dim_sz in enumerate(shape, 1):
max_nnz *= dim_sz
rnnz = torch.randint(2, max_nnz, (1,)).item()
for nnz in [0, 1, rnnz]:
expected, _, _ = self._gen_sparse(dim, nnz, shape, dtype=value_type, device=device,
coalesced=coalesced)
expected = expected.to(dtype)
d = expected.to_dense()
result = d.to_sparse(dim)
self.assertEqual(d, result.to_dense())
self.assertEqual(expected.size(), result.size())
self.assertEqual(dim, result.sparse_dim())
@dtypes(torch.double, torch.cdouble)
def test_sparse_bool(self, device, dtype):
a = torch.tensor([True, False], dtype=dtype, device=device).to(torch.bool)
b = a.to_sparse().to_dense()
self.assertEqual(a, b)
@skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/108667")
@dtypes(torch.double, torch.cdouble)
def test_scalar(self, device, dtype):
# tensor with value
a = self.sparse_tensor(self.index_tensor([], device=device).unsqueeze(1), 12.3, [], dtype=dtype, device=device)
self.assertEqual(1, a._values().numel())
self.assertEqual(a, a.clone())
a_coalesced = a.coalesce()
self.assertTrue(a_coalesced.is_coalesced())
self.assertEqual(torch.tensor(12.3, dtype=dtype, device=device), a.to_dense())
self.assertEqual(a, a.to_dense().to_sparse())
# tensor with multiple values
a = self.sparse_tensor(self.index_tensor([], device=device).unsqueeze(1).expand(0, 2),
[12.3, 12.3], [], dtype=dtype, device=device)
self.assertEqual(2, a._values().numel())
self.assertEqual(a, a.clone())
a_coalesced = a.coalesce()
self.assertTrue(a_coalesced.is_coalesced())
self.assertEqual(torch.tensor(12.3 * 2, dtype=dtype, device=device), a.to_dense())
self.assertEqual(a.coalesce(), a.coalesce().to_dense().to_sparse())
# tensor without value
a = self.sparse_empty((), dtype=dtype, device=device)
self.assertEqual(0, a._values().numel())
self.assertEqual(a, a.clone())
a_coalesced = a.coalesce()
self.assertTrue(a_coalesced.is_coalesced())
self.assertEqual(torch.tensor(0, dtype=dtype, device=device), a.to_dense())
self.assertEqual(a, a.to_dense().to_sparse())
@dtypes(torch.double, torch.cdouble)
def test_shared(self, device, dtype):
i = self.index_tensor([[2]], device=device)
v = torch.tensor([5], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3]))
v[0] = 6
self.assertEqual(torch.tensor([0, 0, 6], dtype=dtype, device=device), self.safeToDense(x))
i[0][0] = 0
self.assertEqual(torch.tensor([6, 0, 0], dtype=dtype, device=device), self.safeToDense(x))
i = self.index_tensor([[2]], device=device)
v = torch.empty((1, 0), dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 0]))
i[0][0] = 0
self.assertEqual(torch.empty((3, 0), dtype=dtype, device=device), self.safeToDense(x))
@dtypes(torch.double, torch.cdouble)
@unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error")
@gradcheck_semantics()
def test_to_dense_hybrid(self, device, dtype, gradcheck):
def test_tensor(x, res):
x.to_dense() # Tests double to_dense for memory corruption
x.to_dense()
x.to_dense()
self.assertEqual(res, x.to_dense())
self.assertEqual(res, self.safeToDense(x))
def fn(x):
return x.to_dense(masked_grad=gradcheck.masked)
x.requires_grad_(True)
gradcheck(fn, (x,))
i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
], device=device)
v = torch.tensor([[2, 3], [1, 2], [3, 4], [4, 5]], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 2]))
res = torch.tensor([
[[2, 3],
[0, 0],
[0, 0],
[0, 0]],
[[1, 2],
[0, 0],
[0, 0],
[0, 0]],
[[3, 4],
[0, 0],
[0, 0],
[4, 5]],
], dtype=dtype, device=device)
test_tensor(x, res)
i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
], device=device)
v = torch.empty((4, 2, 0), dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 2, 0]))
res = torch.empty((3, 4, 2, 0), dtype=dtype, device=device)
test_tensor(x, res)
@dtypes(torch.double, torch.cdouble)
def test_contig(self, device, dtype):
def test_tensor(x, exp_i, exp_v):
x = x.coalesce()
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
i = self.index_tensor([
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
], device=device)
v = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([100, 100]))
exp_i = self.index_tensor([
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
], device=device)
exp_v = torch.tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7], dtype=dtype, device=device)
test_tensor(x, exp_i, exp_v)
i = self.index_tensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
], device=device)
v = torch.tensor([3, 2, 4, 1], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]))
exp_i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
], device=device)
exp_v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device)
test_tensor(x, exp_i, exp_v)
i = self.index_tensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
], device=device)
v = torch.empty([4, 0], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]))
exp_i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
], device=device)
exp_v = torch.empty([4, 0], dtype=dtype, device=device)
test_tensor(x, exp_i, exp_v)
# Duplicate indices
i = self.index_tensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
], device=device)
v = torch.tensor([3, 2, 4, 1], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]))
exp_i = self.index_tensor([
[0, 2],
[0, 3],
[0, 4],
], device=device)
exp_v = torch.tensor([6, 4], dtype=dtype, device=device)
test_tensor(x, exp_i, exp_v)
i = self.index_tensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
], device=device)
v = torch.empty([4, 0], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]))
exp_i = self.index_tensor([
[0, 2],
[0, 3],
[0, 4],
], device=device)
exp_v = torch.empty([2, 0], dtype=dtype, device=device)
test_tensor(x, exp_i, exp_v)
@dtypes(torch.double, torch.cdouble)
def test_contig_hybrid(self, device, dtype):
def test_tensor(x, exp_i, exp_v):
x = x.coalesce()
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
i = self.index_tensor([
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
], device=device)
v = torch.tensor([
[1, 2], [2, 3], [3, 4], [4, 5], [5, 6],
[6, 7], [7, 8], [8, 9], [9, 10], [10, 11],
], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([100, 100, 2]))
exp_i = self.index_tensor([
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
], device=device)
exp_v = torch.tensor([
[2, 3], [1, 2], [6, 7], [4, 5], [10, 11],
[3, 4], [5, 6], [9, 10], [8, 9], [7, 8],
], dtype=dtype, device=device)
test_tensor(x, exp_i, exp_v)
i = self.index_tensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
], device=device)
v = torch.tensor([[3, 3, 3], [2, 2, 2], [4, 4, 4], [1, 1, 1]], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3]))
exp_i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
], device=device)
exp_v = torch.tensor([[2, 2, 2], [1, 1, 1], [3, 3, 3], [4, 4, 4]], dtype=dtype, device=device)
test_tensor(x, exp_i, exp_v)
i = self.index_tensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
], device=device)
v = torch.empty([4, 3, 0], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3, 0]))
exp_i = self.index_tensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
], device=device)
exp_v = torch.empty([4, 3, 0], dtype=dtype, device=device)
test_tensor(x, exp_i, exp_v)
# Duplicate indices
i = self.index_tensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
], device=device)
v = torch.tensor([[3, 2, 3], [2, 1, 1], [4, 3, 4], [1, 1, 1]], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3]))
exp_i = self.index_tensor([
[0, 2],
[0, 3],
[0, 4],
], device=device)
exp_v = torch.tensor([[6, 4, 5], [4, 3, 4]], dtype=dtype, device=device)
test_tensor(x, exp_i, exp_v)
i = self.index_tensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
], device=device)
v = torch.empty([4, 3, 0], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3, 0]))
exp_i = self.index_tensor([
[0, 2],
[0, 3],
[0, 4],
], device=device)
exp_v = torch.empty([2, 3, 0], dtype=dtype, device=device)
test_tensor(x, exp_i, exp_v)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_clone(self, device, dtype, coalesced):
def test_shape(sparse_dims, nnz, with_size):
x = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0]
if not coalesced:
self.assertFalse(x.is_coalesced())
y = x.clone()
self.assertFalse(y.is_coalesced())
x = x.coalesce()
self.assertTrue(x.is_coalesced())
y = x.clone()
self.assertTrue(y.is_coalesced())
test_shape(4, 20, 5)
test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0])
test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0])
@coalescedonoff
@dtypes(torch.double, torch.cdouble, torch.bfloat16)
@precisionOverride({torch.bfloat16: 2e-2})
def test_Sparse_to_Sparse_copy_(self, device, dtype, coalesced):
# This is for testing torch.copy_(SparseTensor, SparseTensor)
sparse_dims = 3
nnz = 10
sizes = [2, 3, 4, 5] # hybrid sparse
x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced)
x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes, dtype, device, coalesced)
# test copy
x2_dense = x2.to_dense()
x1.copy_(x2)
self.assertEqual(x2_dense, x1.to_dense())
# test type conversion (when x1.copy_(x2), x1.dtype should stay the same)
x1 = x1.to(torch.float32)
x2 = x2.to(torch.float16)
x1_dtype = x1.dtype
x1.copy_(x2)
self.assertEqual(x1_dtype, x1.dtype)
x2 = x2.to(torch.float64)
x1_dtype = x1.dtype
x1.copy_(x2)
self.assertEqual(x1_dtype, x1.dtype)
# test no broadcast
self.assertRaises(RuntimeError, lambda: x1.copy_(x2.narrow_copy(0, 0, 1)))
# test raise error on copy_() between dense and sparse Tensors
self.assertRaises(RuntimeError, lambda: x1.copy_(torch.randn(5, 5)))
# test autograd
x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced)
x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes, dtype, device, coalesced)
x2.requires_grad_(True)
x1.copy_(x2)
y = x1 * 2
x2_clone = x2.clone()
y.backward(x2_clone)
expected_grad = x2_clone * 2
self.assertEqual(expected_grad.to_dense(), x2.grad.to_dense())
self.assertEqual(None, x1.grad)
@coalescedonoff
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
@dtypes(torch.double, torch.cdouble)
def test_Sparse_to_Sparse_copy_multi_gpu(self, device, dtype, coalesced):
# This is for testing torch.copy_(SparseTensor, SparseTensor) across GPU devices
sparse_dims = 3
nnz = 10
sizes = [2, 3, 4, 5] # hybrid sparse
x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced)
x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes, dtype, device, coalesced)
x1 = x1.to('cuda:0')
def test_cross_device(x1, x2):
x1_device = x1.device
x1.copy_(x2)
self.assertEqual(x2.to('cuda:0').to_dense(), x1.to_dense())
self.assertEqual(x1_device, x1.device)
test_cross_device(x1, x2.to('cuda:1')) # test across gpu devices
test_cross_device(x1, x2.to('cpu')) # test between cpu and gpu
# test autograd
x2 = x2.to('cuda:1')
x2.requires_grad_(True)
x1.copy_(x2)
y = x1 * 2
x2_clone = x2.clone().to('cuda:0')
y.backward(x2_clone)
expected_grad = x2_clone * 2
self.assertEqual(expected_grad.to_dense(), x2.grad.to('cuda:0').to_dense())
self.assertEqual(None, x1.grad)
@onlyCUDA
def test_cuda_empty(self, device):
def test_tensor(x):
y = x.to(device)
self.assertEqual(x.sparse_dim(), y.sparse_dim())
self.assertEqual(x.dense_dim(), y.dense_dim())
x = y.cpu()
self.assertEqual(y.sparse_dim(), x.sparse_dim())
self.assertEqual(y.dense_dim(), x.dense_dim())
x = torch.sparse_coo_tensor((2, 3, 4), dtype=torch.float32)
test_tensor(x)
x = torch.sparse_coo_tensor((2, 3, 4), dtype=torch.float16)
test_tensor(x)
x = torch.sparse_coo_tensor((2, 3, 4), dtype=torch.float16)
test_tensor(x)
x = torch.sparse_coo_tensor((2, 3, 4, 0), dtype=torch.float32)
test_tensor(x)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_transpose(self, device, dtype, coalesced):
def test_shape(sparse_dims, nnz, with_size):
x = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0]
y = self.safeToDense(x)
for i, j in itertools.combinations(range(4), 2):
x = x.transpose_(i, j)
y = y.transpose(i, j)
self.assertEqual(self.safeToDense(x), y)
x = x.transpose(i, j)
y = y.transpose(i, j)
self.assertEqual(self.safeToDense(x), y)
test_shape(4, 6, 3)
test_shape(4, 3, [7, 7, 7, 3, 3, 3, 0])
test_shape(4, 0, [0, 0, 7, 3, 3, 3, 0])
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
@unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error")
@gradcheck_semantics()
def test_permute(self, device, dtype, coalesced, gradcheck):
# trivial checks
s = torch.rand(3, 3, 3, device=device, dtype=dtype).to_sparse()
with self.assertRaisesRegex(RuntimeError, "does not match the length"):
s.permute(dims=(1, 0))
with self.assertRaisesRegex(RuntimeError, "duplicate dims"):
s.permute(dims=(1, 1, 1))
# Calling permute on a sparse tensor with an empty tuple used to segfault,
# see https://github.com/pytorch/pytorch/issues/116325
x = torch.rand((), device=device, dtype=dtype).to_sparse()
x.permute(())
self.assertEqual(len(x.values()), 1)
def test_shape(sparse_dims, nnz, with_size):
ndim = len(with_size)
valid_sparse_dims = torch.arange(-ndim, -ndim + sparse_dims)
valid_dense_dims = torch.arange(-ndim + sparse_dims, 0)
for dims in itertools.permutations(range(-ndim, 0)):
s = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0]
d = self.safeToDense(s)
dims_sparse, _ = torch.tensor(dims[:sparse_dims]).sort()
dims_dense, _ = torch.tensor(dims[sparse_dims:]).sort()
if (valid_sparse_dims == dims_sparse).all() and (valid_dense_dims == dims_dense).all():
# if valid permutation, test for correctness
s_permuted = s.permute(dims)
self.assertEqual(s_permuted, d.permute(dims))
# if s is coalesced, and perm does not touch 0-dim,
# the result has to be coalesced as well
if dims[0] == 0:
self.assertEqual(s_permuted.is_coalesced(), s.is_coalesced())
else:
self.assertFalse(s_permuted.is_coalesced())
gradcheck(lambda t: t.permute(dims).to_dense(masked_grad=gradcheck.masked), s.requires_grad_())
else:
# otherwise check if exception is thrown
fail_message = "transpositions between sparse and dense dimensions are not allowed"
with self.assertRaisesRegex(RuntimeError, fail_message):
s.permute(dims)
test_shape(2, 3, [2, 3, 4, 5])
test_shape(2, 3, [2, 2, 0])
# if nnz=0, it is not true that t == t.to_dense().to_sparse()
# unless t.sparse_dim == t.dim (i.e. t is not hybrid)
test_shape(3, 0, [0, 0, 2])
@coalescedonoff
@onlyCPU
@dtypes(torch.double)
def test_coalesce_transpose_mm(self, device, dtype, coalesced):
def test_shape(di, dj, dk, nnz):
x, _, _ = self._gen_sparse(2, nnz, [dj, di], dtype, device, coalesced)
y = torch.randn(dj, dk, dtype=dtype, device=device)
x_coalesced = x.coalesce()
self.assertTrue(x_coalesced.is_coalesced())
x_coalesced_t = x_coalesced.t()
# Transpose is `colasced`-preserving if the indices tensor is empty.
self.assertEqual(x_coalesced_t.is_coalesced(), di * nnz == 0)
res = torch.mm(x_coalesced_t, y)
expected = torch.mm(self.safeToDense(x_coalesced_t), y)
self.assertEqual(res, expected)
test_shape(10, 20, 30, 20)
test_shape(0, 20, 30, 0)
test_shape(10, 0, 30, 0)
test_shape(10, 20, 0, 0)
test_shape(10, 20, 0, 20)
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1166")
@dtypes(torch.double, torch.cdouble)
def test_t_empty(self, device, dtype):
def test_in_place(x):
shape_original = x.shape
x.t_()
self.assertEqual(torch.Size([shape_original[1], shape_original[0]]), x.size())
self.assertEqual(0, x._indices().numel())
self.assertEqual(0, x._values().numel())
self.assertEqual(x.sparse_dim(), 2)
self.assertEqual(x.dense_dim(), 0)
def test_not_in_place(x):
shape_original = x.shape
y = x.t()
self.assertEqual(torch.Size([shape_original[1], shape_original[0]]), y.size())
self.assertEqual(0, y._indices().numel())
self.assertEqual(0, y._values().numel())
self.assertEqual(x.sparse_dim(), 2)
self.assertEqual(x.dense_dim(), 0)
x = self.sparse_empty(2, 3, dtype=dtype, device=device)
test_in_place(x)
test_not_in_place(x)
x = self.sparse_empty(2, 0, dtype=dtype, device=device)
test_in_place(x)
test_not_in_place(x)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_add_zeros(self, device, dtype, coalesced):
def test_shape(sparse_dims, nnz, sizes):
x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced)
zeros = torch.sparse_coo_tensor(sizes, device=x.device)
r1 = zeros + x
r2 = x + zeros
self.assertEqual(r1, x)
self.assertEqual(r2, x)
test_shape(1, 20, [1])
test_shape(4, 20, [3, 17, 19, 5])
test_shape(2, 20, [3, 17, 19, 5])
test_shape(2, 20, [3, 17, 19, 0])
@dtypes(torch.double, torch.cdouble)
def test_add_sub_nnz(self, device, dtype):
# nnz should not grow unbounded (gh-34964)
x = torch.randn(10, dtype=dtype, device=device).to_sparse()
x.add_(x)
x.add_(x)
self.assertLessEqual(x._nnz(), 10)
x.sub_(2 * x)
x.sub_(2 * x)
self.assertLessEqual(x._nnz(), 10)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_cat(self, device, dtype, coalesced):
# shapes: list of tuples (sparse_dims, nnz, sizes)
def test_shapes(shapes, dim, fail_message=None):
inputs = [self._gen_sparse(shape[0], shape[1], shape[2], dtype, device, coalesced)[0]
for shape in shapes]
if fail_message:
with self.assertRaisesRegex(RuntimeError, fail_message):
torch.cat(inputs, dim)
else:
result = torch.cat(inputs, dim)
dense_result = torch.cat([t.to_dense() for t in inputs], dim)
self.assertEqual(dense_result, result.to_dense())
test_shapes(
[(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4]), (3, 10, [2, 4, 4])], 1)
# mismatched sizes
test_shapes([(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4])], 0,
"All tensors must have the same shape: \\[2, 3, 4].*\\[2, 1, 4]")
# hybrid sparse/dense
test_shapes(
[(2, 10, [2, 3, 4]), (2, 10, [2, 1, 4]), (2, 10, [2, 4, 4])], 1)
# cat along dense dim
test_shapes([(2, 10, [2, 3, 4]), (2, 10, [2, 3, 7])], 2)
test_shapes([(1, 10, [2, 3, 4]), (1, 10, [2, 3, 4])], 1)
test_shapes([(1, 10, [2, 3, 4]), (1, 10, [2, 3, 4])], 2)
# mismatched dimensions
test_shapes([(2, 10, [2, 3, 4]), (3, 10, [2, 3, 4])], 0,
"All tensors must have the same.*2, 1, but tensor at position 1 has 3, 0.")
# wrapped dimension
test_shapes(
[(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4]), (3, 10, [2, 4, 4])], -2)
# sparse with dense
sp = self._gen_sparse(3, 10, [2, 3, 4], dtype, device, coalesced)[0]
dn = sp.to_dense()
with self.assertRaisesRegex(RuntimeError,
"Concatenating sparse tensors, but a dense tensor was found at position 1."):
torch.cat((sp, dn))
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_unsqueeze(self, device, dtype, coalesced):
def test_shape(sparse_dims, nnz, sizes, unsqueeze_dim, fail_message=None):
x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced)
if fail_message:
with self.assertRaisesRegex(IndexError, fail_message):
torch.unsqueeze(x, unsqueeze_dim)
else:
result = torch.unsqueeze(x, unsqueeze_dim)
dense_result = torch.unsqueeze(x.to_dense(), unsqueeze_dim)
self.assertEqual(dense_result, result.to_dense())
# basic case
test_shape(3, 10, [5, 7, 11], 0)
# hybrid sparse/dense, unsqueeze along sparse dim
test_shape(3, 10, [5, 7, 11, 13, 17], 0)
test_shape(3, 10, [5, 7, 11, 13, 17], 3)
# unsqueeze along dense dimensions
test_shape(3, 10, [5, 7, 11, 13, 17], 4)
test_shape(3, 10, [5, 7, 11, 13, 17], 5)
# wrapped dimensions
test_shape(3, 10, [5, 7, 11, 13, 17], -1)
test_shape(3, 10, [5, 7, 11, 13, 17], -6)
# bounds
test_shape(3, 10, [5, 7, 11, 13, 17], -7, "Dimension out of range")
test_shape(3, 10, [5, 7, 11, 13, 17], 6, "Dimension out of range")
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_select(self, device, dtype, coalesced):
def test_shape(sparse_dims, nnz, sizes, select_dim, select_index, fail_message=None):
x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced)
if fail_message:
with self.assertRaisesRegex(IndexError, fail_message):
torch.select(x, select_dim, select_index)
else:
result = torch.select(x, select_dim, select_index)
if result.is_sparse:
result = result.to_dense()
dense_result = torch.select(x.to_dense(), select_dim, select_index)
self.assertEqual(dense_result, result)
sizes = [5, 7, 11, 13, 17]
# hybrid sparse/dense, select sparse dim, result is dense
for i in range(sizes[0]):
test_shape(1, 10, sizes, 0, i)
test_shape(1, 10, sizes, 0, sizes[0] + 1, r'select[(][)][:] index \d out of range.*')
# hybrid sparse/dense, select sparse dim, result is sparse
for d in range(3):
for i in range(sizes[d]):
test_shape(3, 10, sizes, d, i)
# hybrid sparse/dense, select dense dim, result is sparse
for d in range(1, 3):
for i in range(sizes[d]):
test_shape(1, 10, sizes, d, i)
@dtypes(*integral_types())
def test_select_no_type_promotion(self, device, dtype):
# see https://github.com/pytorch/pytorch/issues/82150
idx = torch.tensor([[0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1]])
val = torch.ones(6, dtype=dtype)
s = torch.sparse_coo_tensor(idx, val, size=(3, 3))
for t in (s, s * torch.tensor(0, dtype=dtype)):
# empty checks
self.assertEqual(t.dtype, t[2].dtype)
self.assertEqual(t.dtype, t[0, 1].dtype)
# sum should not promote
self.assertEqual(t.dtype, t[0, 0].dtype)
self.assertEqual(t.dtype, t[1, 1].dtype)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_index_select(self, device, dtype, coalesced):
def test_shape(sparse_dims, nnz, sizes, select_dim, select_index, fail_message=None):
if isinstance(select_index, int):
select_index = [select_index]
if isinstance(select_index, list):
select_index = torch.tensor(select_index, device=device, dtype=torch.long)
x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced)
if fail_message:
with self.assertRaisesRegex(IndexError, fail_message):
torch.index_select(x, select_dim, select_index)
else:
result = torch.index_select(x, select_dim, select_index)
if result.is_sparse:
result = result.to_dense()
dense_result = torch.index_select(x.to_dense(), select_dim, select_index)
self.assertEqual(dense_result, result)
sizes = [5, 7, 11, 13, 17]
for d in range(len(sizes)):
for index in [0, sizes[d] - 1, [0, sizes[d] // 2, sizes[d] - 1]]:
test_shape(1, 10, sizes, d, index)
test_shape(len(sizes) // 2, 10, sizes, d, index)
test_shape(len(sizes), 10, sizes, d, index)
def _test_index_select_exhaustive_index(self, sizes, dims, device, dtype, coalesced):
t = make_tensor(sizes, dtype=dtype, device=device)
t_sparse = t.to_sparse().coalesce() if coalesced else t.to_sparse()
t_small_sparse, _, _ = self._gen_sparse(len(sizes), 2, sizes, dtype, device, coalesced)
t_small = t_small_sparse.to_dense()
for d in dims:
# NOTE: indices are negative
idx_dim_d_range = list(range(-sizes[d], 0))
for idx_len in range(sizes[d], sizes[d] + 1):
# creates all possible valid indices into dim d of lenght idx_len
for idx in itertools.product(*itertools.repeat(idx_dim_d_range, idx_len)):
t_idx = torch.tensor(idx, dtype=torch.long, device=device)
# NOTE: index_select for dense does not support negative indices,
# hence + sizes[d]. See https://github.com/pytorch/pytorch/issues/76347
# tests the nnz > sizes[d] branch
dense_result = t.index_select(d, t_idx + sizes[d])
sparse_result = t_sparse.index_select(d, t_idx)
self.assertEqual(dense_result, sparse_result)
# tests the nnz <= sizes[d] branch
small_dense_result = t_small.index_select(d, t_idx + sizes[d])
small_sparse_result = t_small_sparse.index_select(d, t_idx)
self.assertEqual(small_dense_result, small_sparse_result)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_index_select_exhaustive_index_small(self, device, dtype, coalesced):
# will trigger brute-force algo
self._test_index_select_exhaustive_index((3, 3, 4), range(3), device, dtype, coalesced)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_index_select_exhaustive_index_large(self, device, dtype, coalesced):
# will trigger more sophisticated algos
self._test_index_select_exhaustive_index((100, 50, 3, 3), (2, 3), device, dtype, coalesced)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_index_select_empty_and_non_contiguous_index(self, device, dtype, coalesced):
# empty index
idx_empty = torch.tensor([], dtype=torch.long, device=device)
t = make_tensor((5, 5), dtype=dtype, device=device)
res_dense = t.index_select(0, idx_empty)
res_sparse = t.to_sparse().index_select(0, idx_empty)
self.assertEqual(res_dense, res_sparse)
# non-contigous index
idx = torch.randint(low=0, high=5, size=(10, 2), device=device)[:, 0]
def run_test(sizes):
# case nnz > size[d]
t = make_tensor(sizes, dtype=dtype, device=device)
res_dense = t.index_select(0, idx)
res_sparse = t.to_sparse().index_select(0, idx)
self.assertEqual(res_dense, res_sparse)
# case nnz <= size[d]
t_small_sparse, _, _ = self._gen_sparse(len(sizes), 2, sizes, dtype, device, coalesced)
res_sparse = t_small_sparse.index_select(0, idx)
res_dense = t_small_sparse.to_dense().index_select(0, idx)
self.assertEqual(res_dense, res_sparse)
# brute-force
run_test((10, 10))
# more sophisticated algos
run_test((10, 100, 100))
@onlyCPU
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_index_select_parallelization(self, device, dtype, coalesced):
"""
Test with sizes that will trigger parallelization (i.e. with sizes
that are >= at::internal::GRAIN_SIZE)
"""
def run_test(nnz, size):
t_sparse, _, _ = self._gen_sparse(1, nnz, (size,), dtype, device, coalesced)
t_dense = t_sparse.to_dense()
# idx_small to (sort) and (binary) search into t_sparse
idx_small = torch.randint(size, (nnz // 2,), device=device)
# idx_large to (sort) and (binary) search into idx_large
# NOTE: when coalesced=True, the (binary) search will be
# done over t_sparse anyway, as it is already sorted.
idx_large = torch.randint(size, (nnz * 2,), device=device)
for idx in (idx_small, idx_large):
res_dense = t_dense.index_select(0, idx)
res_sparse = t_sparse.index_select(0, idx)
self.assertEqual(res_dense, res_sparse)
# NOTE: GRAIN_SIZE = 32768
# case nnz <= size[d]
tlen = 70000 # > 2 * GRAIN_SIZE
run_test(tlen, tlen)
# case nnz > size[d]
run_test(tlen, tlen // 2)
@onlyCPU
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_mm(self, device, dtype, coalesced):
def test_shape(di, dj, dk, nnz):
x, _, _ = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)
t = torch.randn(di, dk, dtype=dtype, device=device)
y = torch.randn(dj, dk, dtype=dtype, device=device)
alpha = random.random()
beta = random.random()
res = torch.addmm(t, x, y, beta=beta, alpha=alpha)
expected = torch.addmm(t, self.safeToDense(x), y, beta=beta, alpha=alpha)
self.assertEqual(res, expected)
res = torch.addmm(t, x, y)
expected = torch.addmm(t, self.safeToDense(x), y)
self.assertEqual(res, expected)
res = torch.mm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(res, expected)
test_shape(10, 100, 100, 20)
test_shape(100, 1000, 200, 20)
test_shape(64, 10000, 300, 20)
test_shape(0, 100, 100, 0)
test_shape(10, 0, 100, 0)
test_shape(10, 100, 0, 0)
test_shape(10, 100, 0, 20)
@unittest.skipIf(
IS_WINDOWS and TEST_CUDA,
"bmm sparse-dense CUDA is not yet supported in Windows, at least up to CUDA 10.1"
)
@coalescedonoff
@dtypes(torch.double)
def test_bmm(self, device, dtype, coalesced):
def test_shape(num_mats, dim_i, dim_j, dim_k, nnz):
a_list = []
b_list = []
for mat_idx in range(num_mats):
a_mat = self._gen_sparse(2, nnz, [dim_i, dim_j], dtype, device, coalesced)[0]
b_mat = torch.randn([dim_j, dim_k], dtype=dtype, device=device)
a_list.append(a_mat)
b_list.append(b_mat)
a = torch.stack(a_list)
b = torch.stack(b_list)
ab = a.bmm(b)
# Compare each matrix against result from mm()
for mat_idx in range(num_mats):
a_mat = a_list[mat_idx]
b_mat = b_list[mat_idx]
ab_mat_bmm = ab[mat_idx]
ab_mat_mm = a_mat.mm(b_mat)
self.assertEqual(ab_mat_bmm, ab_mat_mm)
test_shape(10, 10, 100, 99, 20)
test_shape(10, 100, 1000, 200, 20)
test_shape(10, 64, 10000, 300, 20)
test_shape(10, 0, 100, 99, 0)
test_shape(10, 10, 0, 100, 0)
test_shape(10, 10, 100, 0, 0)
test_shape(10, 10, 100, 0, 20)
test_shape(10, 10, 100, 0, 20)
a = torch.rand([10, 23, 32], dtype=dtype, device=device)
a[3] = torch.zeros(23, 32, dtype=dtype, device=device)
a[6] = torch.zeros(23, 32, dtype=dtype, device=device)
a = a.to_sparse()
b = torch.rand([10, 32, 10], dtype=dtype, device=device)
b[4] = torch.zeros(32, 10, dtype=dtype, device=device)
b[6] = torch.zeros(32, 10, dtype=dtype, device=device)
ab = a.bmm(b)
for mat_idx in range(ab.size(0)):
ab_mat = ab[mat_idx]
ab_mat_check = a[mat_idx].mm(b[mat_idx])
self.assertEqual(ab_mat, ab_mat_check)
ab_traspose_check = b.transpose(1, 2).to_sparse().bmm(
a.transpose(1, 2).to_dense()
).transpose(1, 2)
self.assertEqual(ab, ab_traspose_check)
@onlyCUDA
@coalescedonoff
@dtypes(torch.double)
@unittest.skipIf(
IS_WINDOWS,
"bmm sparse-dense CUDA is not yet supported in Windows, at least up to CUDA 10.1"
)
def test_bmm_deterministic(self, device, dtype, coalesced):
def test_shape(num_mats, dim_i, dim_j, dim_k, nnz):
a_list = []
b_list = []
for mat_idx in range(num_mats):
a_list.append(self._gen_sparse(2, nnz, [dim_i, dim_j], dtype, device, coalesced)[0])
b_list.append(torch.randn([dim_j, dim_k], dtype=dtype, device=device))
a = torch.stack(a_list).cuda()
b = torch.stack(b_list).cuda()
with DeterministicGuard(torch.are_deterministic_algorithms_enabled()):
torch.use_deterministic_algorithms(False)
ab_nondeterministic = torch.bmm(a, b)
torch.use_deterministic_algorithms(True)
ab_deterministic = torch.bmm(a, b)
diff_abs = (ab_deterministic - ab_nondeterministic).abs()
diff_rel = diff_abs / ab_deterministic.abs()
diff_rel[torch.isnan(diff_rel)] = 0
# deterministic and non-deterministic results should either be
# equal or within a small relative difference
equal_abs_or_rel = diff_abs.eq(0).logical_or(diff_rel.lt(0.001))
self.assertTrue(equal_abs_or_rel.all())
test_shape(10, 10, 100, 99, 20)
test_shape(10, 100, 1000, 200, 20)
test_shape(10, 64, 10000, 300, 20)
test_shape(10, 0, 100, 99, 0)
test_shape(10, 10, 0, 100, 0)
test_shape(10, 10, 100, 0, 0)
test_shape(10, 10, 100, 0, 20)
test_shape(10, 10, 100, 0, 20)
@onlyCUDA
@unittest.skipIf(
IS_WINDOWS and TEST_CUDA,
"bmm sparse-dense CUDA is not yet supported in Windows, at least up to CUDA 10.1"
)
def test_bmm_oob(self, device):
# Targets an out of bounds error when the sparse tensor has no non-zero
# values in the first batch dimension (#131977).
# NOTE: This test is separated from the other bmm tests to avoid
# interference from prior memory allocations on the device. Since CUDA
# doesn't perform bounds checking, we need the error to cause an
# illegal memory access (by indexing into unallocated memory) for the
# test to fail.
torch.cuda.empty_cache()
indices = torch.tensor([[1], [0], [0]], device=device)
values = torch.tensor([1.], device=device)
a = torch.sparse_coo_tensor(indices, values, size=(2, 1, 1))
b = torch.zeros((2, 1, 1), device=device)
ab = torch.bmm(a, b)
self.assertEqual(ab, torch.zeros((2, 1, 1), device=device))
@onlyCUDA
@unittest.skipIf(
not IS_WINDOWS or not TEST_WITH_ROCM,
"this test ensures bmm sparse-dense CUDA gives an error when run on Windows with CUDA < 11.0"
)
@dtypes(torch.double)
def test_bmm_windows_error(self, device, dtype):
a = torch.rand(2, 2, 2, dtype=dtype).to_sparse().cuda()
b = torch.rand(2, 2, 2, dtype=dtype).cuda()
with self.assertRaisesRegex(
RuntimeError,
"bmm sparse-dense CUDA is not supported on Windows with cuda before 11.0"):
ab = a.bmm(b)
@onlyCPU
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_saddmm(self, device, dtype, coalesced):
def test_shape(di, dj, dk, nnz):
x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0]
t = self._gen_sparse(2, nnz, [di, dk], dtype, device, coalesced)[0]
y = torch.randn(dj, dk, dtype=dtype, device=device)
alpha = random.random()
beta = random.random()
res = torch.saddmm(t, x, y, beta=beta, alpha=alpha)
expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y, beta=beta, alpha=alpha)
self.assertEqual(self.safeToDense(res), expected)
res = torch.saddmm(t, x, y)
expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y)
self.assertEqual(self.safeToDense(res), expected)
res = torch.smm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(self.safeToDense(res), expected)
test_shape(7, 5, 3, 20)
test_shape(1000, 100, 100, 20)
test_shape(3000, 64, 300, 20)
test_shape(0, 100, 100, 0)
test_shape(1000, 0, 100, 0)
test_shape(1000, 100, 0, 0)
@onlyCPU
@coalescedonoff
# adding a graph break before self.assertFalse(weight._indices().is_contiguous())
# makes the test pass so some existent sparse related bug
@skipIfTorchDynamo("skip")
@dtypes(torch.double, torch.cdouble)
def test_sspaddmm(self, device, dtype, coalesced):
def test_shape(di, dj, dk, nnz):
x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0]
t = self._gen_sparse(2, nnz, [di, dk], dtype, device, coalesced)[0]
y = torch.randn(dj, dk, dtype=dtype, device=device)
alpha = random.random()
beta = random.random()
res = t.sspaddmm(x, y, beta=beta, alpha=alpha)
expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y, beta=beta, alpha=alpha)
self.assertEqual(self.safeToDense(res), expected)
res = t.sspaddmm(x, y)
expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y)
self.assertEqual(self.safeToDense(res), expected)
test_shape(7, 5, 3, 20)
test_shape(1000, 100, 100, 20)
test_shape(3000, 64, 300, 20)
test_shape(0, 100, 100, 0)
test_shape(1000, 0, 100, 0)
test_shape(1000, 100, 0, 0)
# Test code from issue https://github.com/pytorch/pytorch/issues/45113
batch_size, input_size, hidden_size = 5, 3, 7
# Create coalesced sparse tensor with non-contiguous indices
weight = torch.randn(hidden_size, input_size, dtype=dtype, device=device).to_sparse()
self.assertTrue(weight.is_coalesced())
non_contig_indices = weight.indices().mT.contiguous().mT
weight = torch.sparse_coo_tensor(
indices=non_contig_indices, values=weight.values(), size=weight.shape)
weight._coalesced_(True)
self.assertFalse(weight._indices().is_contiguous())
# Create un/coalesced sparse tensor
bias = torch.randn((hidden_size, 1), dtype=dtype, device=device).to_sparse()
bias = torch.cat([bias] * batch_size, dim=1)
if coalesced:
bias = bias.coalesce()
x = torch.randn(input_size, batch_size, dtype=dtype, device=device)
res = bias.sspaddmm(weight, x)
true_result = (bias.to_dense() + torch.matmul(weight.to_dense(), x)).to_sparse()
self.assertEqual(self.safeToDense(res), self.safeToDense(true_result))
@coalescedonoff
@precisionOverride({torch.bfloat16: 5e-2, torch.float16: 5e-2})
@dtypes(torch.double, torch.cdouble, torch.bfloat16, torch.float16)
def test_sparse_addmm(self, device, dtype, coalesced):
if (dtype is torch.bfloat16 or dtype is torch.float16) and device.startswith("cuda"):
self.skipTest('addmm_sparse_cuda is not implemented for BFloat16 and Half')
def test_shape(m, n, p, nnz, broadcast, alpha_beta=None):
if alpha_beta is None:
alpha = random.random()
beta = random.random()
else:
alpha, beta = alpha_beta
if broadcast:
D1 = make_tensor((), dtype=dtype, device=device, requires_grad=True)
else:
D1 = make_tensor([n, p], dtype=dtype, device=device, requires_grad=True)
D2 = make_tensor([m, p], dtype=dtype, device=device, requires_grad=True)
S = self._gen_sparse(2, nnz, [n, m], dtype, device, coalesced)[0]
S_dense = S.to_dense().requires_grad_(True)
S.requires_grad_(True)
Y = torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha)
Y_dense = torch.addmm(D1, S_dense, D2, beta=beta, alpha=alpha)
self.assertEqual(Y, Y_dense)
if dtype not in {torch.double, torch.cdouble}:
# gradcheck will likely fail with low-precision input dtypes.
return
def fn(S, D1, D2, beta=beta, alpha=alpha):
return torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha)
gradcheck(fn, (S, D1, D2), masked=True)
test_shape(7, 8, 9, 20, False, None)
test_shape(7, 8, 9, 20, True, None)
test_shape(7, 8, 9, 20, False, (1, 0))
test_shape(7, 8, 9, 20, True, (1, 0))
test_shape(7, 8, 9, 20, False, (1, 1))
test_shape(7, 8, 9, 20, True, (1, 1))
@coalescedonoff
@dtypes(torch.double)
@unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error")
def test_sparse_mm(self, device, dtype, coalesced):
def test_shape(d1, d2, d3, nnz, transposed):
if transposed:
D = torch.randn(d3, d2, dtype=dtype,
device=device).t_().requires_grad_(True)
else:
D = torch.randn(d2, d3, dtype=dtype, device=device).requires_grad_(True)
S = self._gen_sparse(2, nnz, [d1, d2], dtype, device, coalesced)[0]
S_dense = S.to_dense().requires_grad_(True)
S.requires_grad_(True)
self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D))
def fn(S, D):
return torch.sparse.mm(S, D)
gradcheck(fn, (S, D), masked=True)
test_shape(7, 8, 9, 20, False)
test_shape(7, 8, 9, 20, True)
@coalescedonoff
@dtypes(torch.double)
@unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error")
@gradcheck_semantics()
def test_sparse_mul(self, device, dtype, coalesced, gradcheck):
# https://github.com/pytorch/pytorch/issues/79914
a = torch.tensor([[0., 1]], dtype=dtype, device=device).to_sparse().requires_grad_(True)
b = torch.tensor([[0., 1]], dtype=dtype, device=device).to_sparse().requires_grad_(True)
gradcheck(lambda x, y: torch.sparse.sum(x * y).to_dense(masked_grad=gradcheck.masked), [a, b])
def test_shape(sparse_dims, nnz, with_shape):
a = self._gen_sparse(sparse_dims, nnz, with_shape, dtype, device, coalesced)[0].requires_grad_(True)
b = self._gen_sparse(sparse_dims, nnz, with_shape, dtype, device, coalesced)[0].requires_grad_(True)
self.assertEqual((a * b).to_dense(), a.to_dense() * b.to_dense(), masked=True)
gradcheck(lambda x, y: (x * y).to_dense(), [a, b])
# Issues with 0-dim indices/values
gradcheck(lambda x, y: torch.sparse.sum(x * y).to_dense(), [a, b], masked=True)
# TODO: Re-enable these
# test_shape(2, 3, [2, 3, 4, 5])
# test_shape(2, 3, [2, 2, 0])
@coalescedonoff
@dtypes(torch.double)
def test_dsmm(self, device, dtype, coalesced):
def test_shape(di, dj, dk, nnz):
x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0]
y = self.randn(dj, dk, dtype=dtype, device=device)
res = torch.dsmm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(res, expected)
test_shape(7, 5, 3, 20)
test_shape(1000, 100, 100, 20)
test_shape(3000, 64, 300, 20)
test_shape(0, 100, 100, 0)
test_shape(1000, 0, 100, 0)
test_shape(1000, 100, 0, 0)
test_shape(1000, 100, 0, 20)
@coalescedonoff
@dtypes(torch.double)
def test_hsmm(self, device, dtype, coalesced):
def test_shape(di, dj, dk, nnz):
x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0]
y = self.randn(dj, dk, dtype=dtype, device=device)
res = torch.hsmm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(res.to_dense(), expected)
test_shape(7, 5, 3, 20)
test_shape(1000, 100, 100, 20)
test_shape(3000, 64, 300, 20)
test_shape(0, 100, 100, 0)
test_shape(1000, 0, 100, 0)
test_shape(1000, 100, 0, 0)
test_shape(1000, 100, 0, 20)
@coalescedonoff
@dtypes(torch.double)
def test_spadd(self, device, dtype, coalesced):
def _test_spadd_shape(nnz, shape_i, shape_v=None):
shape = shape_i + (shape_v or [])
x, _, _ = self._gen_sparse(len(shape_i), nnz, shape, dtype, device, coalesced)
y = self.randn(*shape, dtype=dtype, device=device)
r = random.random()
res = torch.add(y, x, alpha=r)
expected = y + r * self.safeToDense(x)
self.assertEqual(res, expected)
# Non contiguous dense tensor
s = list(shape)
s[0] = shape[-1]
s[-1] = shape[0]
y = self.randn(*s, dtype=dtype, device=device)
y.transpose_(0, len(s) - 1)
r = random.random()
res = torch.add(y, x, alpha=r)
expected = y + r * self.safeToDense(x)
self.assertEqual(res, expected)
x, i, v = self._gen_sparse(len(shape_i), nnz, shape, dtype, device, coalesced)
nnz = i.size(1)
# Non contiguous sparse indices tensor
x_ = self.sparse_tensor(i[:, ::2], v[:(nnz + 1) // 2], x.shape, dtype=dtype, device=device)
res = torch.add(y, x_, alpha=r)
expected = y + r * self.safeToDense(x_)
self.assertEqual(res, expected)
# Non contiguous sparse values tensor
x_ = self.sparse_tensor(i[:, :(nnz + 1) // 2], v[::2], x.shape, dtype=dtype, device=device)
res = torch.add(y, x_, alpha=r)
expected = y + r * self.safeToDense(x_)
self.assertEqual(res, expected)
# Non contiguous sparse indices and values tensors
x_ = self.sparse_tensor(i[:, 1::2], v[1::2], x.shape, dtype=dtype, device=device)
res = torch.add(y, x_, alpha=r)
expected = y + r * self.safeToDense(x_)
self.assertEqual(res, expected)
def _test_spadd():
_test_spadd_shape(10, [5, 6])
_test_spadd_shape(10, [10, 10, 10])
_test_spadd_shape(10, [50, 30, 20])
_test_spadd_shape(10, [5, 5, 5, 5, 5, 5])
_test_spadd_shape(0, [0, 30, 20])
_test_spadd_shape(0, [50, 0, 20])
_test_spadd_shape(0, [50, 30, 0])
def _test_spadd_hybrid():
_test_spadd_shape(10, [5, 6], [2, 3])
_test_spadd_shape(10, [10, 10, 10], [3])
_test_spadd_shape(10, [50, 30, 20], [2])
_test_spadd_shape(10, [5, 5, 5, 5, 5, 5], [2])
_test_spadd_shape(0, [0, 30, 20], [2, 0])
_test_spadd_shape(0, [50, 0, 20], [2, 0])
_test_spadd_shape(0, [50, 30, 0], [2, 0])
_test_spadd_shape(10, [50, 30, 20], [2, 0])
_test_spadd()
_test_spadd_hybrid()
@coalescedonoff
@dtypes(torch.float)
def test_sparse_add_out_bfloat16(self, device, dtype, coalesced):
# fp32
x, _, _ = self._gen_sparse(3, 5, 10, dtype, device, coalesced)
y, _, _ = self._gen_sparse(3, 5, 10, dtype, device, coalesced)
res_fp32 = torch.add(x, y)
# bfloat16
x = x.bfloat16()
y = y.bfloat16()
res_bf16 = torch.add(x, y)
res_bf16 = res_bf16.float() # to compare with reference
self.assertEqual(res_fp32, res_bf16, atol=1e-2, rtol=0)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_norm(self, device, dtype, coalesced):
def test_shape(sparse_dims, nnz, with_size):
x, _, _ = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)
y = x.coalesce()
self.assertEqual(x.norm(), y._values().norm())
test_shape(3, 10, 100)
test_shape(4, 10, [100, 100, 100, 5, 5, 5, 0])
test_shape(4, 0, [0, 0, 100, 5, 5, 5, 0])
# Unsupported arguments should error
kwarg_error_pairs = [
({'keepdim': True},
RuntimeError, r'norm_sparse currently does not support keepdim=True'),
({'dim': 0},
RuntimeError, r'norm_sparse currently only supports full reductions'),
({'dtype': torch.double, 'p': 'fro'},
ValueError, r'dtype argument is not supported in frobenius norm'),
({'dtype': torch.double, 'p': 0},
RuntimeError, r"norm_sparse currently does not support 'dtype' argument")
]
x = self._gen_sparse(3, 10, 100, dtype, device, coalesced)[0]
for kwargs, err, msg in kwarg_error_pairs:
with self.assertRaisesRegex(err, msg):
x.norm(**kwargs)
@coalescedonoff
@dtypes(torch.double)
@unittest.skipIf(TEST_WITH_CROSSREF, "fallback triggers cuda device error")
def test_sparse_sum(self, device, dtype, coalesced):
def run_tests(S, td=None):
D = S.coalesce().to_dense().detach().requires_grad_(True)
if td is None:
S_sum = torch.sparse.sum(S)
D_sum = D.sum()
self.assertEqual(S_sum.item(), D_sum.item())
def fn(S):
return torch.sparse.sum(S)
gradcheck(fn, (S,), masked=True)
else:
S_sum = torch.sparse.sum(S, td)
D_sum = D.sum(td)
self.assertEqual(S_sum.to_dense() if S_sum.is_sparse else S_sum, D_sum)
def fn(S):
res = torch.sparse.sum(S, td)
return res.to_dense(masked_grad=True)
gradcheck(fn, (S,), masked=True)
nnz = 10
sparse_dims = 2
with_size = [5, 5, 1, 4] # use a dense dim = 1 to test for squeeze
test_dims = []
for i in range(1, 5):
test_dims += itertools.combinations(range(len(with_size)), i)
# https://github.com/pytorch/pytorch/issues/16501
x = torch.tensor([[1., 0., 0., 1.],
[0., 1., 0., 0.],
[0., 1., 1., 0.],
[0., 1., 0., 2.]], dtype=dtype, device=device).to_sparse()
self.assertEqual(torch.sparse.sum(x, dim=0), torch.sparse.sum(x, dim=-2))
self.assertEqual(torch.sum(x.to_dense(), dim=0), torch.sparse.sum(x, dim=0).to_dense())
S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0]
# dim out of range
self.assertRaises(IndexError, lambda: torch.sparse.sum(S, 5))
# dim 0 appears multiple times in the list of dims
self.assertRaises(RuntimeError, lambda: torch.sparse.sum(S, [0, 0]))
# sum an empty tensor
empty_S = torch.sparse_coo_tensor(size=with_size, dtype=dtype, device=device)
self.assertEqual(torch.sparse.sum(empty_S, [0]).to_dense(), torch.sum(empty_S.to_dense(), [0]))
self.assertEqual(torch.sparse.sum(empty_S), torch.tensor(0, dtype=dtype, device=device))
empty_S.requires_grad_(True)
empty_S_sum = torch.sparse.sum(empty_S)
empty_S_sum.backward()
self.assertEqual(empty_S.grad.to_dense(), empty_S.clone().detach().to_dense())
# test values().sum()
S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0]
run_tests(S.requires_grad_(True))
for test_dim in test_dims:
S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0]
run_tests(S.requires_grad_(True), test_dim)
def _test_basic_ops_shape(self, nnz_x1, nnz_x2, shape_i, shape_v, dtype, device, coalesced):
shape = shape_i + (shape_v)
x1, _, _ = self._gen_sparse(len(shape_i), nnz_x1, shape, dtype, device, coalesced)
x2, _, _ = self._gen_sparse(len(shape_i), nnz_x2, shape, dtype, device, coalesced)
y1 = x1 + x2
y2 = x1.clone()
y2.add_(x2)
expected = self.safeToDense(x1) + self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 - x2
y2 = x1.clone()
y2.sub_(x2)
expected = self.safeToDense(x1) - self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 * x2
y2 = x1.clone()
y2.mul_(x2)
expected = self.safeToDense(x1) * self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 * 37.5
y2 = x1.clone()
y2.mul_(37.5)
expected = self.safeToDense(x1) * 37.5
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 / 37.5
y2 = x1.clone()
y2.div_(37.5)
expected = self.safeToDense(x1) / 37.5
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 // 37.5
y2 = x1.clone()
y2.floor_divide_(37.5)
expected = self.safeToDense(x1) // 37.5
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
# TODO: add back inplace support
y1 = x1 ** 2
y2 = x1.clone()
y2 = y2.pow(2)
expected = self.safeToDense(x1) ** 2
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y = x1.clone()
y.zero_()
expected = torch.zeros(x1.size(), dtype=dtype, device=device)
self.assertEqual(self.safeToDense(y), expected)
self.assertEqual(x1.is_coalesced(), coalesced)
y = x1.coalesce()
z = x1.coalesce()
self.assertEqual(x1.is_coalesced(), coalesced)
self.assertTrue(y.is_coalesced())
y._values().add_(1)
if not x1.is_coalesced():
# check that coalesce is out of place if the original tensor is not
# coalesced.
self.assertEqual(z._values() + 1, y._values())
else:
# check that coalesce is in-place if the original tensor is
# coalesced.
self.assertEqual(z._values(), y._values())
@coalescedonoff
@dtypes(torch.double)
def test_basic_ops(self, device, dtype, coalesced):
def _test_basic_ops():
self._test_basic_ops_shape(9, 12, [5, 6], [], dtype, device, coalesced)
self._test_basic_ops_shape(9, 12, [10, 10, 10], [], dtype, device, coalesced)
self._test_basic_ops_shape(9, 12, [50, 30, 20], [], dtype, device, coalesced)
self._test_basic_ops_shape(9, 12, [5, 5, 5, 5, 5, 5], [], dtype, device, coalesced)
self._test_basic_ops_shape(0, 12, [10, 10, 10], [], dtype, device, coalesced)
self._test_basic_ops_shape(9, 0, [10, 10, 10], [], dtype, device, coalesced)
self._test_basic_ops_shape(0, 0, [10, 10, 10], [], dtype, device, coalesced)
self._test_basic_ops_shape(0, 0, [10, 10, 0], [], dtype, device, coalesced)
self._test_basic_ops_shape(0, 0, [], [], dtype, device, coalesced)
def _test_basic_ops_hybrid():
self._test_basic_ops_shape(9, 12, [5, 6], [2, 3], dtype, device, coalesced)
self._test_basic_ops_shape(9, 12, [10, 10, 10], [3], dtype, device, coalesced)
self._test_basic_ops_shape(9, 12, [50, 30, 20], [2], dtype, device, coalesced)
self._test_basic_ops_shape(9, 12, [5, 5, 5, 5, 5, 5], [2], dtype, device, coalesced)
self._test_basic_ops_shape(0, 12, [10, 10, 10], [2], dtype, device, coalesced)
self._test_basic_ops_shape(9, 0, [10, 10, 10], [2], dtype, device, coalesced)
self._test_basic_ops_shape(0, 0, [10, 10, 10], [2], dtype, device, coalesced)
self._test_basic_ops_shape(9, 12, [10, 10, 10], [2, 0], dtype, device, coalesced)
self._test_basic_ops_shape(0, 12, [10, 10, 10], [2, 0], dtype, device, coalesced)
self._test_basic_ops_shape(9, 0, [10, 10, 10], [2, 0], dtype, device, coalesced)
self._test_basic_ops_shape(0, 0, [10, 10, 10], [2, 0], dtype, device, coalesced)
self._test_basic_ops_shape(0, 0, [10, 10, 0], [2, 0], dtype, device, coalesced)
_test_basic_ops()
_test_basic_ops_hybrid()
@dtypes(torch.double, torch.cdouble)
def test_add_dense_sparse_mismatch(self, device, dtype):
def test_shape(dense_size, sparse_dims_shape, dense_dims_shape, sparse_size):
x = torch.zeros(dense_size, dtype=dtype, device=device)
sparse_y = self.sparse_tensor(torch.zeros(sparse_dims_shape, dtype=torch.int64, device=device),
torch.randn(dense_dims_shape, dtype=dtype, device=device),
torch.Size(sparse_size))
with self.assertRaisesRegex(
RuntimeError,
"add: expected 'self' and 'other' to have same size"):
x + sparse_y
test_shape([3, 4], [1, 4], [4, 4, 4], [3, 4, 4])
test_shape([3, 4, 0], [1, 4], [4, 4, 4, 0], [3, 4, 4, 0])
@skipIfTorchDynamo("Not a TorchDynamo suitable test")
@dtypes(torch.double, torch.cdouble)
def test_add_noncontiguous(self, device, dtype):
indices = self.index_tensor([[1, 2], [0, 2]], device=device)
values = torch.tensor([1.], dtype=dtype, device=device).expand(2, 3, 4, 5)
x = self.sparse_tensor(indices, values, dtype=dtype, device=device)
assert not x._values().is_contiguous()
y = x + x
expected = self.safeToDense(x) + self.safeToDense(x)
self.assertEqual(self.safeToDense(y), expected)
def _test_sparse_mask_shape(self, nnz_x1, nnz_x2, shape_i, shape_v, dtype, device, coalesced):
shape = shape_i + (shape_v or [])
x1, _, _ = self._gen_sparse(len(shape_i), nnz_x1, shape, dtype, device, coalesced)
x2, _, _ = self._gen_sparse(len(shape_i), nnz_x2, shape, dtype, device, coalesced)
y1 = x1 + x2
y2 = x1.clone()
y2.add_(x2)
expected = self.safeToDense(x1) + self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_sparse_mask(self, device, dtype, coalesced):
def _test_sparse_mask_fixed():
i = self.index_tensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
], device=device)
v = torch.tensor([1, 2, 3, 4], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([5, 4]), dtype=dtype, device=device).coalesce()
dense = torch.tensor([
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
[17, 18, 19, 20],
], dtype=dtype, device=device)
exp_v = torch.tensor([7, 14, 3, 20], dtype=dtype, device=device)
res_dense_lhs = dense.sparse_mask(x)
sparse = dense.to_sparse()
res_sparse_lhs = sparse.sparse_mask(x)
expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4]), dtype=dtype, device=device)
self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce())
# check no side effects for the coalesce flag.
self.assertTrue(sparse.is_coalesced())
self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce())
i = self.index_tensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
], device=device)
v = torch.empty([4, 0], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([5, 4, 0])).coalesce()
dense = torch.empty([5, 4, 0], dtype=dtype, device=device)
exp_v = torch.empty([4, 0], dtype=dtype, device=device)
res_dense_lhs = dense.sparse_mask(x)
sparse = dense.to_sparse(2)
res_sparse_lhs = sparse.sparse_mask(x)
expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 0]), dtype=dtype, device=device)
self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce())
# check no side effects for the coalesce flag.
self.assertTrue(sparse.is_coalesced())
self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce())
_test_sparse_mask_fixed()
self._test_sparse_mask_shape(9, 12, [5, 6], [], dtype, device, coalesced)
self._test_sparse_mask_shape(9, 12, [10, 10, 10], [], dtype, device, coalesced)
self._test_sparse_mask_shape(9, 12, [50, 30, 20], [], dtype, device, coalesced)
self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5], [], dtype, device, coalesced)
self._test_sparse_mask_shape(0, 12, [10, 10, 10], [], dtype, device, coalesced)
self._test_sparse_mask_shape(9, 0, [10, 10, 10], [], dtype, device, coalesced)
self._test_sparse_mask_shape(0, 0, [10, 10, 10], [], dtype, device, coalesced)
self._test_sparse_mask_shape(0, 0, [10, 10, 0], [], dtype, device, coalesced)
# check repetitions and matchings in the intersection
lhs = torch.randint(0, 5, (100,), device=device)
rhs = torch.randint(0, 5, (100,), device=device).to_sparse()
self.assertEqual(lhs.to_sparse().sparse_mask(rhs), lhs.sparse_mask(rhs))
# check coalesce
sparse_c = torch.rand(3, 3, device=device).to_sparse()
sparse_unc = torch.rand(3, 3, device=device).to_sparse()._coalesced_(False)
for lhs, rhs in [(sparse_c, sparse_unc), (sparse_unc, sparse_c)]:
res_all_sparse = lhs.sparse_mask(rhs)
res_dense_sparse = lhs.to_dense().sparse_mask(rhs)
self.assertEqual(res_all_sparse.coalesce(), res_dense_sparse.coalesce())
self.assertEqual(rhs.is_coalesced(), res_all_sparse.is_coalesced())
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_sparse_mask_hybrid(self, device, dtype, coalesced):
def _test_sparse_mask_hybrid_fixed():
i = self.index_tensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
])
v = torch.tensor([[1, 2], [2, 3], [3, 4], [4, 5]])
# TODO: This is also testing that, if coalesce is a no-op,
# the indices don't get permuted. I don't know if we actually
# want to give this invariant.
x = self.sparse_tensor(i, v, torch.Size([5, 4, 2])).coalesce()
dense = torch.tensor([
[[1, 3], [2, 2], [3, 3], [4, 2]],
[[5, 7], [6, 7], [7, 9], [8, 9]],
[[9, 2], [10, 4], [11, 1], [12, 3]],
[[13, 5], [14, 1], [15, 1], [16, 6]],
[[17, 7], [18, 2], [19, 7], [20, 1]],
])
res_dense_lhs = dense.sparse_mask(x)
sparse = dense.to_sparse(2)
res_sparse_lhs = sparse.sparse_mask(x)
exp_v = torch.tensor([[7, 9], [14, 1], [3, 3], [20, 1]])
expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 2]))
self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce())
# check no side effects for the coalesce flag
self.assertTrue(sparse.is_coalesced())
self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce())
i = self.index_tensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
])
v = torch.empty(4, 2, 0)
x = self.sparse_tensor(i, v, torch.Size([5, 4, 2, 0])).coalesce()
dense = torch.empty(5, 4, 2, 0)
res_dense_lhs = dense.sparse_mask(x)
sparse = dense.to_sparse(2)
res_sparse_lhs = sparse.sparse_mask(x)
exp_v = torch.empty(4, 2, 0)
expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 2, 0]))
self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce())
# check no side effects for the coalesce flag
self.assertTrue(sparse.is_coalesced())
self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce())
_test_sparse_mask_hybrid_fixed()
self._test_sparse_mask_shape(9, 12, [5, 6], [2, 3], dtype, device, coalesced)
self._test_sparse_mask_shape(9, 12, [10, 10, 10], [3], dtype, device, coalesced)
self._test_sparse_mask_shape(9, 12, [50, 30, 20], [2], dtype, device, coalesced)
self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5], [2], dtype, device, coalesced)
self._test_sparse_mask_shape(0, 12, [10, 10, 10], [2], dtype, device, coalesced)
self._test_sparse_mask_shape(9, 0, [10, 10, 10], [2], dtype, device, coalesced)
self._test_sparse_mask_shape(0, 0, [10, 10, 10], [2], dtype, device, coalesced)
self._test_sparse_mask_shape(9, 12, [10, 10, 10], [2, 0], dtype, device, coalesced)
self._test_sparse_mask_shape(0, 12, [10, 10, 10], [2, 0], dtype, device, coalesced)
self._test_sparse_mask_shape(9, 0, [10, 10, 10], [2, 0], dtype, device, coalesced)
self._test_sparse_mask_shape(0, 0, [10, 10, 10], [2, 0], dtype, device, coalesced)
self._test_sparse_mask_shape(0, 0, [10, 10, 0], [2, 0], dtype, device, coalesced)
@dtypes(torch.double, torch.cdouble)
@skipIfCrossRef
def test_sparse_mask_backward(self, device, dtype):
from itertools import product, repeat
shape = (5, 5)
sparse_dims = len(shape)
nnzs = (0, 5, 15, 25)
lhs_data = torch.arange(1, 26, device=device).reshape(shape).to(dtype).to_sparse(sparse_dims)
rhs_data = lhs_data.clone()
for nnz in nnzs:
for lhs_is_coalesced, rhs_is_coalesced in product(*repeat((True, False), 2)):
lhs = torch.sparse_coo_tensor(
lhs_data._indices()[:, :nnz],
lhs_data._values()[:nnz],
lhs_data.shape
).clone()._coalesced_(lhs_is_coalesced).requires_grad_(True)
rhs = torch.sparse_coo_tensor(
lhs_data._indices()[:, -nnz:],
lhs_data._values()[-nnz:],
lhs_data.shape
).clone()._coalesced_(rhs_is_coalesced)
# To test masked semantics we need to make sure that
# sparsity_pattern(lhs) == sparsity_pattern(lhs.grad).
# lhs.sparse_mask(lhs_mask) accomplishes that.
lhs_mask = lhs.detach().clone()
gradcheck(lambda x: x.sparse_mask(lhs_mask).sparse_mask(rhs).to_dense(masked_grad=True), (lhs,), masked=True)
gradcheck(lambda x: x.sparse_mask(rhs).to_dense(masked_grad=False), (lhs,), masked=False)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_zeros(self, device, dtype, coalesced):
def _test_zeros(nnzs, shape, out_shape_i, out_shape_v=None):
out_shape = out_shape_i + (out_shape_v or [])
for nnz in nnzs:
out, _, _ = self._gen_sparse(len(out_shape_i), nnz, out_shape, dtype, device, coalesced)
torch.zeros(*shape, out=out, dtype=dtype, device=device)
self.assertEqual(tuple(out.size()), tuple(shape))
self.assertTrue(out._indices().numel() == out._values().numel() == 0)
self.assertEqual(out._nnz(), 0)
self.assertEqual(out.sparse_dim(), len(shape))
self.assertEqual(out.dense_dim(), 0)
def test_shape(i_shapes, v_shapes, shape, nnzs):
for i_dim in range(1, len(i_shapes) + 1):
for v_dim in range(len(v_shapes) + 1):
_test_zeros(nnzs, shape, i_shapes[:i_dim], v_shapes[:v_dim])
test_shape([2, 3, 4], [3, 4, 5, 6], [2, 3, 4], [9, 12])
test_shape([0, 3, 4], [3, 4, 5, 6], [2, 3, 4], [0])
test_shape([2, 3, 4], [0, 4, 5, 6], [2, 3, 4], [9, 12])
test_shape([2, 3, 4], [3, 4, 5, 6], [2, 3, 0], [9, 12])
test_shape([0, 3, 4], [3, 4, 5, 6], [2, 3, 0], [0])
test_shape([2, 3, 4], [0, 4, 5, 6], [2, 3, 0], [9, 12])
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_zeros_like(self, device, dtype, coalesced):
def _test_zeros_like(nnzs, template_shape_i, template_shape_v=None):
template_shape_v = template_shape_v or []
template_shape = template_shape_i + template_shape_v
for nnz in nnzs:
t, _, _ = self._gen_sparse(len(template_shape_i), nnz, template_shape, dtype, device, coalesced)
res = torch.zeros_like(t)
self.assertEqual(tuple(res.size()), tuple(template_shape))
self.assertTrue(res._indices().numel() == res._values().numel() == 0)
self.assertEqual(res._nnz(), 0)
self.assertEqual(res.sparse_dim(), len(template_shape_i))
self.assertEqual(res.dense_dim(), len(template_shape_v))
def test_shape(i_shapes, v_shapes, nnzs):
for i_dim in range(1, len(i_shapes) + 1):
for v_dim in range(len(v_shapes) + 1):
_test_zeros_like(nnzs, i_shapes[:i_dim], v_shapes[:v_dim])
test_shape([2, 3, 4], [3, 4, 5, 6], [9, 12])
test_shape([0, 3, 4], [3, 4, 5, 6], [0])
test_shape([2, 3, 4], [0, 4, 5, 6], [9, 12])
test_shape([2, 3, 4], [3, 4, 5, 6], [9, 12])
test_shape([0, 3, 4], [3, 4, 5, 6], [0])
test_shape([2, 3, 4], [0, 4, 5, 6], [9, 12])
sparse_tensor, _, _ = self._gen_sparse(len([2, 3]), 9, [2, 3] + [5, 6], dtype, device, coalesced)
data = (sparse_tensor, sparse_tensor, sparse_tensor, sparse_tensor.unsqueeze(0))
mem_formats = [torch.channels_last, torch.contiguous_format, torch.preserve_format, torch.channels_last_3d]
for x, mem_format in zip(data, mem_formats):
with self.assertRaisesRegex(RuntimeError, "memory format option is only supported by strided tensors"):
result = torch.zeros_like(x, memory_format=mem_format)
result = torch.zeros_like(x, layout=torch.strided, memory_format=mem_format)
self.assertTrue(result.layout == torch.strided)
dense_tensor = sparse_tensor.to_dense()
result = torch.zeros_like(dense_tensor, layout=torch.sparse_coo)
self.assertEqual(dense_tensor.shape, result.shape)
self.assertEqual(result.layout, torch.sparse_coo)
sparse_zeros = torch.sparse_coo_tensor(dense_tensor.shape)
self.assertEqual(result._indices().shape, sparse_zeros._indices().shape)
self.assertEqual(result._values().shape, sparse_zeros._values().shape)
def _assert_sparse_invars(self, t):
# SparseTensor has the following invariants:
# - sparse_dim + dense_dim = len(SparseTensor.shape)
# - SparseTensor._indices().shape = (sparse_dim, nnz)
# - SparseTensor._values().shape = (nnz, SparseTensor.shape[sparse_dim:])
self.assertEqual(t.sparse_dim() + t.dense_dim(), len(t.shape))
self.assertEqual(tuple(t._indices().shape), (t.sparse_dim(), t._nnz()))
self.assertEqual(tuple(t._values().shape), (t._nnz(), ) + t.shape[t.sparse_dim():])
def _test_empty_like(self, sparse_tensor, dtype, device, coalesced):
result = torch.empty_like(sparse_tensor)
self.assertTrue(result.is_sparse)
self._assert_sparse_invars(result)
self.assertEqual(result.shape, sparse_tensor.shape)
self.assertEqual(result.dtype, sparse_tensor.dtype)
self.assertEqual(result.device, sparse_tensor.device)
self.assertEqual(result.sparse_dim(), sparse_tensor.sparse_dim())
self.assertEqual(result.dense_dim(), sparse_tensor.dense_dim())
sparse_tensor, _, _ = self._gen_sparse(len([2, 3]), 9, [2, 3] + [5, 6], dtype, device, coalesced)
data = (sparse_tensor, sparse_tensor, sparse_tensor, sparse_tensor.unsqueeze(0))
mem_formats = [torch.channels_last, torch.contiguous_format, torch.preserve_format, torch.channels_last_3d]
for x, mem_format in zip(data, mem_formats):
with self.assertRaisesRegex(RuntimeError, "memory format option is only supported by strided tensors"):
result = torch.empty_like(x, memory_format=mem_format)
result = torch.empty_like(x, layout=torch.strided, memory_format=mem_format)
self.assertTrue(result.layout == torch.strided)
with self.assertRaisesRegex(
RuntimeError, r"Could not run 'aten::empty_strided' with arguments from the 'Sparse(CPU|CUDA)' backend"
):
dense_tensor = sparse_tensor.to_dense()
result = torch.empty_like(dense_tensor, layout=torch.sparse_coo)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_empty_like(self, device, dtype, coalesced):
# tests https://github.com/pytorch/pytorch/issues/43699
if coalesced:
input_coalesced = torch.sparse_coo_tensor(
indices=torch.tensor([[0, 1, 2]]),
values=torch.tensor([3.0, -4.0, 5.0]),
size=[3, ],
dtype=dtype,
device=device
).coalesce()
self._test_empty_like(input_coalesced, dtype, device, coalesced)
# hybrid sparse input
input_coalesced = torch.sparse_coo_tensor(
indices=torch.tensor([[1, 3], [2, 4]]),
values=torch.tensor([[-1.0, 3.0], [-5.0, 7.0]]),
size=[4, 5, 2],
dtype=dtype,
device=device
).coalesce()
self._test_empty_like(input_coalesced, dtype, device, coalesced)
if not coalesced:
# test uncoalesced input
input_uncoalesced = torch.sparse_coo_tensor(
indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0),
values=torch.tensor([2.0, -3.0, -4.0, 1.0, -1.0, 1.5]),
size=[3, ],
dtype=dtype,
device=device
)
self._test_empty_like(input_uncoalesced, dtype, device, coalesced)
# test on empty sparse tensor
input_uncoalesced = torch.sparse_coo_tensor(
indices=torch.zeros([2, 0]),
values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]),
size=[0, 0, 5, 5, 5, 5, 5, 5, 0],
dtype=dtype,
device=device
)
self._test_empty_like(input_uncoalesced, dtype, device, coalesced)
def _test_narrow(self, input, narrow_args):
expected = input.to_dense().narrow(*narrow_args)
self.assertEqual(expected, input.narrow_copy(*narrow_args).to_dense())
def _all_narrow_combs(self, shape):
for dim, dim_sz in enumerate(shape):
for start in range(dim_sz):
for length in range(dim_sz - start):
yield [dim, start, length]
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_narrow(self, device, dtype, coalesced):
shape = [3, 3, 4, 2]
input, _, _ = self._gen_sparse(4, 19, shape, dtype, device, coalesced)
for narrow_args in self._all_narrow_combs(shape):
self._test_narrow(input, narrow_args)
self.assertRaises(RuntimeError, lambda: input.narrow_copy(-1, 0, 3)) # dim < 0
self.assertRaises(RuntimeError, lambda: input.narrow_copy(10, 0, 3)) # dim > input.dim()
self.assertRaises(RuntimeError, lambda: input.narrow_copy(0, shape[0] + 1, 3)) # start > size of dim
self.assertRaises(RuntimeError, lambda: input.narrow_copy(0, 2, shape[0])) # start+length > size of dim
with_dense, _, _ = self._gen_sparse(2, 7, shape, dtype, device, coalesced)
for narrow_args in self._all_narrow_combs(shape):
self._test_narrow(with_dense, narrow_args)
self.assertRaises(RuntimeError, lambda: with_dense.narrow_copy(10, 0, 3)) # dim > sparseDim + denseDim
def _test_log1p_tensor(self, sparse_tensor, coalesced):
def is_integral(dtype):
return dtype in integral_types()
dense_tensor = sparse_tensor.to_dense()
expected_output = dense_tensor.log1p()
is_integral_dtype = is_integral(sparse_tensor.dtype)
self.assertEqual(expected_output, sparse_tensor.log1p().to_dense())
if is_integral_dtype:
with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"):
sparse_tensor.coalesce().log1p_()
else:
self.assertEqual(expected_output, sparse_tensor.coalesce().log1p_().to_dense())
if not coalesced:
# test in-place op on uncoalesced input
with self.assertRaisesRegex(RuntimeError, "log1p_ requires coalesced input"):
sparse_tensor.log1p_()
if is_integral_dtype:
with self.assertRaisesRegex(RuntimeError, "only Tensors of floating point dtype can require gradients"):
sparse_tensor.requires_grad_()
@coalescedonoff
@dtypes(*all_types())
def test_log1p(self, device, dtype, coalesced):
if coalesced:
input_coalesced = torch.sparse_coo_tensor(
indices=torch.tensor([[0], [1], [2]]).transpose(1, 0),
values=torch.tensor([3.0, 4.0, 5.0]),
size=[3, ],
device=device,
dtype=dtype
).coalesce()
self._test_log1p_tensor(input_coalesced, coalesced)
# hybrid sparse input
input_coalesced = torch.sparse_coo_tensor(
indices=torch.tensor([[1, 3], [2, 4]]),
values=torch.tensor([[1.0, 3.0], [5.0, 7.0]]),
size=[4, 5, 2],
device=device,
dtype=dtype
).coalesce()
self._test_log1p_tensor(input_coalesced, coalesced)
if not coalesced:
# test uncoalesced input
input_uncoalesced = torch.sparse_coo_tensor(
indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0),
values=torch.tensor([2.0, 3.0, 4.0, 1.0, 1.0, 1.0]),
size=[3, ],
device=device,
dtype=dtype
)
self._test_log1p_tensor(input_uncoalesced, coalesced)
# test on empty sparse tensor
input_uncoalesced = torch.sparse_coo_tensor(
indices=torch.zeros([2, 0]),
values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]),
size=[0, 0, 5, 5, 5, 5, 5, 5, 0],
device=device,
dtype=dtype
)
# empty tensors are coalesced at creation (nnz < 2) we must force the uncoalesced state
input_uncoalesced._coalesced_(False)
self._test_log1p_tensor(input_uncoalesced, coalesced)
def _test_neg_negative(self, sparse_tensor):
dense_tensor = sparse_tensor.to_dense()
expected_output = dense_tensor.neg()
ops = (
torch.neg, torch.Tensor.neg, torch.Tensor.neg_,
torch.negative, torch.Tensor.negative, torch.Tensor.negative_,
operator.neg
)
for op in ops:
sparse_tensor_copy = sparse_tensor.clone()
self.assertEqual(expected_output, op(sparse_tensor_copy).to_dense())
if op in (torch.neg, torch.negative):
sparse_tensor_out = torch.zeros_like(sparse_tensor)
op(sparse_tensor, out=sparse_tensor_out)
self.assertEqual(expected_output, sparse_tensor_out.to_dense())
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_neg_negative(self, device, dtype, coalesced):
if coalesced:
input_coalesced = torch.sparse_coo_tensor(
indices=torch.tensor([[0, 1, 2]]),
values=torch.tensor([3.0, -4.0, 5.0]),
size=[3, ],
dtype=dtype,
device=device
).coalesce()
self._test_neg_negative(input_coalesced)
# hybrid sparse input
input_coalesced = torch.sparse_coo_tensor(
indices=torch.tensor([[1, 3], [2, 4]]),
values=torch.tensor([[-1.0, 3.0], [-5.0, 7.0]]),
size=[4, 5, 2],
dtype=dtype,
device=device
).coalesce()
self._test_neg_negative(input_coalesced)
if not coalesced:
# test uncoalesced input
input_uncoalesced = torch.sparse_coo_tensor(
indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0),
values=torch.tensor([2.0, -3.0, -4.0, 1.0, -1.0, 1.5]),
size=[3, ],
dtype=dtype,
device=device
)
self._test_neg_negative(input_uncoalesced)
# test on empty sparse tensor
input_uncoalesced = torch.sparse_coo_tensor(
indices=torch.zeros([2, 0]),
values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]),
size=[0, 0, 5, 5, 5, 5, 5, 5, 0],
dtype=dtype,
device=device
)
self._test_neg_negative(input_uncoalesced)
def _test_asin_arcsin(self, sparse_tensor, coalesced):
def is_integral(dtype):
return dtype in integral_types()
is_integral_dtype = is_integral(sparse_tensor.dtype)
dense_tensor = sparse_tensor.to_dense()
expected_output = dense_tensor.asin()
ops = (
torch.asin, torch.Tensor.asin,
torch.arcsin, torch.Tensor.arcsin,
)
for op in ops:
self.assertEqual(expected_output, op(sparse_tensor).to_dense())
if op in (torch.asin, torch.arcsin):
sparse_tensor_out = torch.zeros_like(sparse_tensor)
if not is_integral_dtype:
op(sparse_tensor, out=sparse_tensor_out)
self.assertEqual(expected_output, sparse_tensor_out.to_dense())
else:
with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"):
op(sparse_tensor, out=sparse_tensor_out)
for op in (torch.Tensor.asin_, torch.Tensor.arcsin_):
if is_integral_dtype:
# test coalesce on integral dtype tensor
with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"):
op(sparse_tensor.clone().coalesce()).to_dense()
else:
self.assertEqual(expected_output, op(sparse_tensor.clone().coalesce()).to_dense())
if not coalesced:
# test in-place op on uncoalesced input
with self.assertRaisesRegex(RuntimeError, "asin_ requires coalesced input"):
op(sparse_tensor)
@coalescedonoff
@dtypes(*all_types())
def test_asin_arcsin(self, device, dtype, coalesced):
if coalesced:
input_coalesced = torch.sparse_coo_tensor(
indices=torch.tensor([[0, 1, 2, 3]]),
values=torch.tensor([0.5, -0.5, 0.7, -0.7]),
size=[4, ],
dtype=dtype,
device=device
).coalesce()
self._test_asin_arcsin(input_coalesced, coalesced)
# hybrid sparse input
input_coalesced = torch.sparse_coo_tensor(
indices=torch.tensor([[1, 3], [2, 4]]),
values=torch.tensor([[-0.1, 0.24], [-0.44, 0.1]]),
size=[4, 5, 2],
dtype=dtype,
device=device
).coalesce()
self._test_asin_arcsin(input_coalesced, coalesced)
if not coalesced:
# test uncoalesced input
input_uncoalesced = torch.sparse_coo_tensor(
indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0),
values=torch.tensor([0.3, -0.3, -0.4, 0.3, -0.5, 0.15]),
size=[3, ],
dtype=dtype,
device=device
)
self._test_asin_arcsin(input_uncoalesced, coalesced)
# test on empty sparse tensor
input_uncoalesced = torch.sparse_coo_tensor(
indices=torch.zeros([2, 0]),
values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]),
size=[0, 0, 5, 5, 5, 5, 5, 5, 0],
dtype=dtype,
device=device
)
# empty tensors are coalesced at creation (nnz < 2) we must force the uncoalesced state
input_uncoalesced._coalesced_(False)
self._test_asin_arcsin(input_uncoalesced, coalesced)
@coalescedonoff
@dtypes(torch.double)
def test_mv(self, device, dtype, coalesced):
def test_shape(di, dj, dk, nnz):
x, _, _ = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)
t = torch.randn(dk, dtype=dtype, device=device)
res = x.matmul(t)
expected = self.safeToDense(x).matmul(t)
self.assertEqual(res, expected)
test_shape(10, 100, 100, 20)
test_shape(100, 1000, 1000, 20)
test_shape(64, 10000, 10000, 20)
test_shape(0, 100, 100, 0)
test_shape(10, 0, 0, 0)
test_shape(10, 100, 100, 0)
test_shape(10, 100, 100, 20)
with self.assertRaisesRegex(RuntimeError, r"mv: expected self\.size\(-1\) == vec\.size\(-1\)"):
test_shape(10, 100, 10, 20)
with self.assertRaisesRegex(RuntimeError, "mv: two tensor dim should be 2 and 1"):
x, _, _ = self._gen_sparse(2, 20, [10, 100], dtype, device, coalesced)
y, _, _ = self._gen_sparse(2, 20, [10, 100], dtype, device, coalesced)
res = x.mv(y)
@dtypes(*floating_and_complex_types())
def test_sparse_add_coalesce(self, device, dtype):
i = self.index_tensor([[1, 2, 1]], device=device)
v = torch.tensor([3, 4, 5], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3]))
y = self.sparse_tensor(i, v, torch.Size([3]))
z = x + y
self.assertFalse(z._indices().numel() != 2 and z.is_coalesced())
i = self.index_tensor([[1, 2, 1]], device=device)
v = torch.empty([3, 0], dtype=dtype, device=device)
x = self.sparse_tensor(i, v, torch.Size([3, 0]))
y = self.sparse_tensor(i, v, torch.Size([3, 0]))
z = x + y
self.assertFalse(z._indices().numel() != 2 and z.is_coalesced())
@onlyCUDA
def test_storage_not_null(self, device):
x = torch.sparse_coo_tensor((2,), dtype=torch.float32, device=device)
self.assertNotEqual(x.get_device(), -1)
x = torch.sparse_coo_tensor((2, 0), dtype=torch.float32, device=device)
self.assertNotEqual(x.get_device(), -1)
@onlyCUDA
@deviceCountAtLeast(2)
def test_same_gpu(self, devices):
def check_device(x, device_id):
self.assertEqual(x.get_device(), device_id)
self.assertEqual(x._values().get_device(), device_id)
self.assertEqual(x._indices().get_device(), device_id)
dev1, dev2 = devices[0], devices[1]
i = self.index_tensor([[2]], device=dev2)
v = torch.tensor([5], device=dev2)
x = self.sparse_tensor(i, v, torch.Size([3]), device=1)
check_device(x, 1)
i = self.index_tensor([[2]], device=dev2)
v = torch.empty(1, 0, device=dev2)
x = self.sparse_tensor(i, v, torch.Size([3, 0]), device=1)
check_device(x, 1)
x = self.sparse_empty(3, device=1)
check_device(x, 1)
x = self.sparse_empty(3, 0, device=1)
check_device(x, 1)
def _test_new_device(self, size, device=torch.cuda):
with torch.cuda.device(device):
x = torch.sparse_coo_tensor(size, device='cuda', dtype=torch.float64)
self.assertEqual(x.get_device(), device)
x1 = x.new()
x2 = x.new(2, 3)
self.assertEqual(x1.get_device(), device)
self.assertEqual(x2.get_device(), device)
@onlyCUDA
def test_new_device_single_gpu(self):
self._test_new_device((), 0)
self._test_new_device((30, 20), 0)
self._test_new_device((30, 20, 10), 0)
self._test_new_device((30, 20, 10, 0), 0)
@onlyCUDA
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_new_device_multi_gpu(self):
self._test_new_device((), 1)
self._test_new_device((30, 20), 1)
self._test_new_device((30, 20, 10), 1)
self._test_new_device((30, 20, 10, 0), 1)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_new(self, device, dtype, coalesced):
def test_shape(sparse_dims, nnz, with_size):
x, indices, values = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)
if not x.is_cuda:
# CUDA sparse tensors currently requires the size to be
# specified if nDimV > 0
out = x.new(indices, values).coalesce()
x_c = x.coalesce()
self.assertEqual((out.indices(), out.values()), (x_c.indices(), x_c.values()))
self.assertEqual(x.new(indices, values, x.size()), x)
test_shape(3, 10, 100)
test_shape(3, 0, [100, 100, 0])
@onlyCPU # not really, but we only really want to run this once
@dtypes(torch.float64, torch.float32, torch.float16, torch.cfloat, torch.cdouble)
def test_factory(self, device, dtype):
for test_empty_tensor in [True, False]:
if test_empty_tensor:
default_size = torch.Size([1, 3, 0])
size = torch.Size([3, 3, 0])
else:
default_size = torch.Size([1, 3])
size = torch.Size([3, 3])
for include_size in [True, False]:
for use_tensor_idx in [True, False]:
for use_tensor_val in [True, False]:
for use_cuda in ([False] if not torch.cuda.is_available() else [True, False]):
# have to include size with cuda sparse tensors
include_size = include_size or use_cuda
long_dtype = torch.int64
device = torch.device('cpu') if not use_cuda else \
torch.device(torch.cuda.device_count() - 1)
indices = torch.tensor(([0], [2]), dtype=long_dtype) if use_tensor_idx else ([0], [2])
if test_empty_tensor:
values = torch.empty(1, 0).to(dtype)
else:
if use_tensor_val:
values = torch.tensor([1.], dtype=dtype)
else:
values = 1.
if include_size:
sparse_tensor = torch.sparse_coo_tensor(indices, values, size, dtype=dtype,
device=device, requires_grad=True)
else:
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=dtype,
device=device, requires_grad=True)
self.assertEqual(indices, sparse_tensor._indices())
self.assertEqual(values, sparse_tensor._values())
self.assertEqual(size if include_size else default_size, sparse_tensor.size())
self.assertEqual(dtype, sparse_tensor.dtype)
if use_cuda:
self.assertEqual(device, sparse_tensor._values().device)
self.assertEqual(True, sparse_tensor.requires_grad)
@dtypes(torch.double, torch.cdouble)
def test_factory_size_check(self, device, dtype):
indices = self.index_tensor([[1, 2],
[0, 2]], device=device)
values = torch.tensor([.5, .5], dtype=dtype, device=device)
sizes = torch.Size([2, 3])
with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"):
torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device)
indices.fill_(-1)
with self.assertRaisesRegex(RuntimeError, "found negative index"):
torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device)
indices = self.index_tensor([[1, 2],
[0, 2]], device=device)
values = torch.empty([2, 1, 0], dtype=dtype, device=device)
sizes = torch.Size([2, 3, 1, 0])
with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"):
torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device)
indices = self.index_tensor([[1, 2],
[0, 2]], device=device)
values = torch.empty([2, 2, 2], dtype=dtype, device=device)
sizes = torch.Size([0, 0, 2, 2])
with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"):
torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device)
indices = self.index_tensor([[1, 2],
[0, 2]], device=device)
values = torch.tensor([[1, 1, 1], [1, 1, 1]], dtype=dtype, device=device)
sizes = torch.Size([3, 3, 2])
with self.assertRaisesRegex(RuntimeError, "values has incorrect size"):
torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device)
indices = self.index_tensor([[1, 2],
[0, 2]], device=device)
values = torch.empty([2, 1, 0], dtype=dtype, device=device)
sizes = torch.Size([3, 3, 2, 0])
with self.assertRaisesRegex(RuntimeError, "values has incorrect size"):
torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device)
def test_factory_empty_indices(self, device):
tensor = torch.sparse_coo_tensor(torch.Size([2, 0]), device=device)
expected_indices = torch.empty((2, 0), dtype=torch.long, device=device)
self.assertEqual(tensor._indices(), expected_indices)
tensor = torch.sparse_coo_tensor(torch.Size([2, 2, 0]), device=device)
expected_indices = torch.empty((3, 0), dtype=torch.long, device=device)
self.assertEqual(tensor._indices(), expected_indices)
tensor = torch.sparse_coo_tensor(torch.Size([2, 2, 0, 0]), device=device)
expected_indices = torch.empty((4, 0), dtype=torch.long, device=device)
self.assertEqual(tensor._indices(), expected_indices)
@dtypes(torch.double, torch.cdouble)
def test_factory_nnz(self, device, dtype):
indices = self.index_tensor([[0]], device=device) # (sparse_dim, nnz): (1, 1)
values = torch.tensor([[1, 1], [1, 1]], dtype=dtype, device=device) # (nnz, ...): (2, 2)
sizes = torch.Size([2, 2])
with self.assertRaisesRegex(RuntimeError, "indices and values must have same nnz"):
torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device)
indices = self.index_tensor([[0]], device=device) # (sparse_dim, nnz): (1, 1)
values = torch.empty([2, 0], dtype=dtype, device=device) # (nnz, ...): (2, 0)
sizes = torch.Size([2, 0])
with self.assertRaisesRegex(RuntimeError, "indices and values must have same nnz"):
torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device)
@dtypes(torch.double, torch.cdouble)
def test_factory_nnz_zero(self, device, dtype):
def test_shape(i_shape, v_shape, size, expected_size):
if size:
t = torch.sparse_coo_tensor(torch.empty(i_shape), torch.empty(v_shape), torch.Size(size),
dtype=dtype, device=device)
else:
t = torch.sparse_coo_tensor(torch.empty(i_shape), torch.empty(v_shape), dtype=dtype, device=device)
expected_indices = torch.empty(i_shape, device=device, dtype=torch.int64)
expected_values = torch.empty(v_shape, device=device, dtype=dtype)
expected_size = torch.Size(expected_size)
self.assertEqual(t._indices(), expected_indices)
self.assertEqual(t._values(), expected_values)
self.assertEqual(t.size(), expected_size)
test_shape([1, 0], [0, 2, 4, 0], None, [0, 2, 4, 0])
test_shape([3, 0], [0, 2, 4, 0], None, [0, 0, 0, 2, 4, 0])
test_shape([1, 0], [0, 2, 4, 0], [0, 2, 4, 0], [0, 2, 4, 0])
test_shape([3, 0], [0, 2, 4, 0], [0, 0, 0, 2, 4, 0], [0, 0, 0, 2, 4, 0])
test_shape([3, 0], [0, 2, 4, 0], [1, 2, 3, 2, 4, 0], [1, 2, 3, 2, 4, 0])
@dtypes(torch.double, torch.cdouble)
def test_factory_dense_dim(self, device, dtype):
indices = self.index_tensor([[0]], device=device)
values = torch.tensor([[[1, 1, 1], [1, 1, 1]]], dtype=dtype, device=device)
sizes = torch.Size([1, 3, 4])
with self.assertRaisesRegex(RuntimeError, "values has incorrect size"):
torch.sparse_coo_tensor(indices, values, sizes)
indices = self.index_tensor([[0]], device=device)
values = torch.empty([1, 2, 3, 0], dtype=dtype, device=device)
sizes = torch.Size([1, 3, 4, 0])
with self.assertRaisesRegex(RuntimeError, "values has incorrect size"):
torch.sparse_coo_tensor(indices, values, sizes)
@onlyCPU
@dtypes(torch.float16, torch.float32, torch.float64, torch.cfloat, torch.cdouble, torch.int64)
def test_factory_type_inference(self, device, dtype):
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=dtype))
self.assertEqual(dtype, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1]))
self.assertEqual(torch.int64, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.HalfTensor(1, 0))
self.assertEqual(torch.float16, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.FloatTensor(1, 0))
self.assertEqual(torch.float32, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.DoubleTensor(1, 0))
self.assertEqual(torch.float64, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.LongTensor(1, 0))
self.assertEqual(torch.int64, t.dtype)
@onlyCUDA
def test_factory_device_type_inference(self, device):
# both indices/values are CUDA
cpu_cuda = ('cpu', 'cuda')
cpu_cuda_none = cpu_cuda + (None,)
for indices_device, values_device, device in itertools.product(cpu_cuda,
cpu_cuda,
cpu_cuda_none):
indices = torch.tensor(([0], [2]), device=indices_device)
values = torch.tensor([1.], device=values_device)
empty_values = torch.empty(1, 0).to(values_device)
shape = (1, 3)
empty_shape = (1, 3, 0)
if device is None and indices_device != values_device:
with self.assertRaises(RuntimeError):
torch.sparse_coo_tensor(indices, values, shape, device=device)
with self.assertRaises(RuntimeError):
torch.sparse_coo_tensor(indices, empty_values, empty_shape, device=device)
else:
t = torch.sparse_coo_tensor(indices, values, shape, device=device)
t_empty = torch.sparse_coo_tensor(indices, empty_values, empty_shape, device=device)
should_be_cuda = (device == 'cuda' or (device is None and values_device == 'cuda'))
self.assertEqual(should_be_cuda, t.is_cuda)
self.assertEqual(t.is_cuda, t_empty.is_cuda)
@onlyCPU
def test_factory_copy(self, device):
def test_tensor(indices, values, indices_equal, values_equal):
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64, device=device)
if indices_equal:
self.assertEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
else:
self.assertNotEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
if values_equal:
self.assertEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
else:
self.assertNotEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
# both correct
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.tensor([1.], dtype=torch.float64)
test_tensor(indices, values, True, True)
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.DoubleTensor(1, 0)
test_tensor(indices, values, True, True)
# only indices correct
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.tensor([1.], dtype=torch.float32)
test_tensor(indices, values, True, False)
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.tensor([1.], dtype=torch.float16)
test_tensor(indices, values, True, False)
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.FloatTensor(1, 0)
test_tensor(indices, values, True, True) # An empty tensor's data_ptr is always equal to 0
# only values correct
indices = torch.tensor(([0], [2]), dtype=torch.int32)
values = torch.tensor([1.], dtype=torch.float64)
test_tensor(indices, values, False, True)
indices = torch.tensor(([0], [2]), dtype=torch.int32)
values = torch.DoubleTensor(1, 0)
test_tensor(indices, values, False, True)
# neither correct
indices = torch.tensor(([0], [2]), dtype=torch.int32)
values = torch.tensor([1.], dtype=torch.float32)
test_tensor(indices, values, False, False)
indices = torch.tensor(([0], [2]), dtype=torch.int32)
values = torch.FloatTensor(1, 0)
test_tensor(indices, values, False, True) # An empty tensor's data_ptr is always equal to 0
# complex support
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = make_tensor([1, ], dtype=torch.cdouble, device=device)
test_tensor(indices, values, True, False)
indices = torch.tensor(([0], [2]), dtype=torch.int32)
values = make_tensor([1, 1], dtype=torch.cdouble, device=device)
test_tensor(indices, values, False, False)
@onlyCPU # just run once, we test both cpu and cuda
def test_legacy_new_device(self, device):
i = torch.tensor([[0, 1, 1], [2, 0, 2]])
v = torch.tensor([3., 4., 5.])
size = torch.Size([2, 3])
x = torch.sparse_coo_tensor(i, v, size, device='cpu')
self.assertRaises(RuntimeError, lambda: x.new(device='cuda'))
self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cuda'))
self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cuda'))
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda'))
if torch.cuda.is_available():
x = torch.sparse_coo_tensor(i, v, size, device='cuda')
self.assertRaises(RuntimeError, lambda: x.new(device='cpu'))
self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cpu'))
self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cpu'))
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu'))
def test_legacy_new(self, device):
i = torch.tensor([[0, 1, 1], [2, 0, 2]])
v = torch.tensor([3., 4., 5.])
size = torch.Size([2, 3])
s = torch.sparse_coo_tensor(i, v, size)
self.assertEqual(torch.sparse_coo, s.new(device='cpu').layout)
self.assertRaises(TypeError, lambda: s.new(v.untyped_storage()))
self.assertRaises(TypeError, lambda: s.new(v))
self.assertEqual(torch.sparse_coo, s.new(torch.Size([2, 3])).layout)
self.assertRaises(TypeError, lambda: s.new([6]))
@onlyCPU # not really, but we only really want to run this once
def test_dtypes(self, device):
all_sparse_dtypes = all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)
do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu'))
if torch.cuda.is_available():
do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
def _test_empty_full(self, device, dtype, requires_grad):
shape = (2, 3)
layout = torch.sparse_coo
def check_value(tensor, value=None, dtype=dtype, requires_grad=requires_grad):
self.assertEqual(shape, tensor.shape)
self.assertIs(dtype, tensor.dtype)
self.assertIs(layout, tensor.layout)
self.assertEqual(tensor.requires_grad, requires_grad)
if tensor.is_cuda and device is not None:
self.assertEqual(device, tensor.device)
if value is not None:
fill = tensor.empty(shape, dtype=dtype).fill_(value)
self.assertEqual(tensor, fill)
v = torch.sparse_coo_tensor(shape, dtype=dtype, device=device, requires_grad=requires_grad)
check_value(v)
out = v.new()
check_value(torch.zeros(shape, out=out, device=device, requires_grad=requires_grad))
int64_dtype = torch.int64
check_value(v.new_empty(shape), requires_grad=False)
check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False),
dtype=int64_dtype, requires_grad=False)
check_value(torch.empty_like(v), requires_grad=False)
check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
dtype=int64_dtype, requires_grad=False)
@onlyCPU # not really, but we only really want to run this once
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
@parametrize('requires_grad', (True, False))
def test_empty_full(self, device, dtype, requires_grad):
if requires_grad and not (dtype.is_floating_point or dtype.is_complex):
self.skipTest(f'requires_grad==True requires float or complex dtype, got {dtype}')
self._test_empty_full(device, dtype, requires_grad)
if torch.cuda.is_available():
self._test_empty_full(None, dtype, requires_grad)
self._test_empty_full(torch.device('cuda:0'), dtype, requires_grad)
def test_is_sparse(self, device):
x = torch.randn(3, 3)
self.assertFalse(x.is_sparse)
x = torch.randn(3, 3, 0)
self.assertFalse(x.is_sparse)
x = self.sparse_empty(1, 0, device=device)
self.assertTrue(x.is_sparse)
def test_resize_as(self, device):
def do_test(t):
y = t.new().resize_as_(t).zero_()
self.assertEqual(y.shape, t.shape)
# Check that y can be added to t. Currently, this requires that
# sparse_dim and dense_dim match.
self.assertEqual(t, t + y)
do_test(self.sparse_empty([3, 0], device=device))
do_test(self.sparse_empty([3, 3], device=device))
def _test_resize_shape(self, x_i, x_v, x_size, y_i, y_v, y_size, dtype, device):
x_v_numel = torch.zeros(x_v).numel()
x = torch.sparse_coo_tensor(torch.zeros(x_i),
torch.arange(x_v_numel).resize_(x_v).to(torch.float),
torch.Size(x_size), dtype=dtype, device=device)
x_dense = x.to_dense()
y = torch.sparse_coo_tensor(torch.zeros(y_i),
torch.ones(y_v).to(torch.float),
torch.Size(y_size), dtype=dtype, device=device)
y_dense = y.to_dense()
x.resize_as_(y)
x_dense.resize_as_(y_dense)
self.assertEqual(x.shape, y.shape)
self.assertEqual(x.sparse_dim(), y.sparse_dim())
self.assertEqual(x.dense_dim(), y.dense_dim())
self.assertEqual(x.shape, x_dense.shape)
self.assertEqual(y.shape, y_dense.shape)
# Here we make sure that the original data are preserved after resizing
self.assertEqual(x.to_dense().view(-1)[0:x_v_numel].view(x_v),
x_dense.view(-1)[0:x_v_numel].view(x_v))
@dtypes(torch.double, torch.cdouble)
def test_resize(self, device, dtype):
# 1. Expand the size of some dense dimensions [Supported]
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 4], [2, 2, 4],
dtype=dtype, device=device)
self._test_resize_shape([1, 1], [1, 2, 0], [2, 2, 0],
[1, 1], [1, 2, 4], [2, 2, 4],
dtype=dtype, device=device)
# 2. Expand the size of some sparse dimensions [Supported]
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 3], [4, 2, 3],
dtype=dtype, device=device)
# 3. Change the shapes of both sparse and dense dimensions when nnz is zero [Supported]
self._test_resize_shape([1, 0], [0, 2, 3], [2, 2, 3],
[2, 0], [0, 2, 4, 5], [1, 1, 2, 4, 5],
dtype=dtype, device=device)
self._test_resize_shape([1, 0], [0, 2, 3], [2, 2, 3],
[2, 0], [0, 2, 4, 0], [1, 1, 2, 4, 0],
dtype=dtype, device=device)
# 4. Add dims to dense dimensions [Not Supported]
with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 3, 4], [2, 2, 3, 4],
dtype=dtype, device=device)
with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 3, 0], [2, 2, 3, 0],
dtype=dtype, device=device)
# 5. Remove dims from dense dimensions [Not Supported]
with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2], [2, 2],
dtype=dtype, device=device)
# 6. Change the number of sparse dimensions on a non-empty sparse tensor [Not Supported]
with self.assertRaisesRegex(RuntimeError, "changing the number of sparse dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[2, 1], [1, 2, 3], [1, 2, 2, 3],
dtype=dtype, device=device)
# 7. Shrink the size of some sparse dimensions on a non-empty sparse tensor [Not Supported]
with self.assertRaisesRegex(RuntimeError, "shrinking the size of sparse dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 3], [1, 2, 3],
dtype=dtype, device=device)
# 8. Shrink the size of some dense dimensions on a non-empty sparse tensor [Not Supported]
with self.assertRaisesRegex(RuntimeError, "shrinking the size of dense dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 2], [2, 2, 2],
dtype=dtype, device=device)
with self.assertRaisesRegex(RuntimeError, "shrinking the size of dense dimensions"):
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
[1, 1], [1, 2, 0], [2, 2, 0],
dtype=dtype, device=device)
def test_is_nonzero(self, device):
self.assertTrue(torch.sparse_coo_tensor(([0],), 1., (1,), device=device).is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0],), 0., (1,), device=device).is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0], [0]), 0., (1, 1), device=device).is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (0., 0.), (1,), device=device).is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (-1., 1.), (1,), device=device).is_nonzero())
# scalar sparse tensor
self.assertTrue(torch.sparse_coo_tensor(torch.zeros(0, 1), 12.3, [], device=device).is_nonzero())
with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with no values is ambiguous"):
torch.sparse_coo_tensor(([0, 1],), torch.empty(2, 0), (4, 0), device=device).is_nonzero()
self.assertTrue(torch.sparse_coo_tensor(([0],), 2.3 - 4.5j, (1,), dtype=torch.cfloat, device=device)
.is_nonzero())
self.assertTrue(torch.sparse_coo_tensor(([0],), 2.3 - 4.5j, (1,), dtype=torch.cdouble, device=device)
.is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0],), 0. + 0j, (1,), dtype=torch.cfloat, device=device)
.is_nonzero())
self.assertFalse(torch.sparse_coo_tensor(([0],), 0. + 0j, (1,), dtype=torch.cdouble, device=device)
.is_nonzero())
@dtypes(torch.double, torch.cdouble)
def test_change_tensor_metadata(self, device, dtype):
i = self.index_tensor([[0], [1]], device=device)
v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device)
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]), dtype=dtype, device=device)
i.resize_(2, 3)
v.resize_(4, 5)
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
i = self.index_tensor([[0], [1]], device=device)
v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device)
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
i.resize_as_(self.index_tensor([0, 1], device=device))
v.resize_as_(torch.tensor([3, 4, 5], dtype=dtype, device=device))
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
i = self.index_tensor([[0], [1]], device=device)
v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device)
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
i.as_strided_((2, 1), (1, 1))
v.as_strided_((1, 3), (1, 1))
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
i = self.index_tensor([[0], [1]], device=device)
v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device)
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
i.set_(self.index_tensor([0, 1], device=device))
v.set_(torch.tensor([3, 4, 5], dtype=dtype, device=device))
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
i = self.index_tensor([[0], [1]], device=device)
v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device)
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
i.transpose_(0, 1)
v.transpose_(0, 1)
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
@coalescedonoff
@dtypes(torch.double)
def test_pickle(self, device, dtype, coalesced):
import pickle
shape_sparse_dim_nnz = [
((), 0, 2),
((0,), 0, 10),
((2,), 0, 3),
((100, 3), 1, 3),
((100, 20, 3), 2, 0),
((10, 0, 3), 0, 3),
((10, 0, 3), 0, 0),
]
for shape, sparse_dim, nnz in shape_sparse_dim_nnz:
indices_shape = torch.Size((sparse_dim, nnz))
values_shape = torch.Size((nnz,) + shape[sparse_dim:])
indices = torch.arange(indices_shape.numel(), dtype=self.index_tensor(0).dtype,
device=device).view(indices_shape)
for d in range(sparse_dim):
indices[d].clamp_(max=(shape[d] - 1)) # make it valid index
if not coalesced and indices.numel() > 0:
indices[:, -1] = indices[:, 0] # make it uncoalesced
values_numel = values_shape.numel()
values = torch.arange(values_numel, dtype=dtype,
device=device).view(values_shape).div_(values_numel / 2.)
sp_tensor = self.sparse_tensor(indices, values, shape)
serialized = pickle.dumps(sp_tensor)
sp_tensor_loaded = pickle.loads(serialized)
self.assertEqual(sp_tensor, sp_tensor_loaded)
def test_any(self, device):
t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([False, False]), device=device)
t_any = torch.tensor(False)
self.assertEqual(torch.any(t), t_any)
t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([True, False]), device=device)
t_any = torch.tensor(True)
self.assertEqual(torch.any(t), t_any)
def test_isnan(self, device):
t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [0, 2])), torch.tensor([1, 4]), device=device)
t_nan = torch.sparse_coo_tensor(torch.tensor(([0, 0], [0, 2])), torch.tensor([False, False]), device=device)
self.assertEqual(torch.isnan(t).int(), t_nan.int())
t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [0, 2])), torch.tensor([1, float("nan")]), device=device)
t_nan = torch.sparse_coo_tensor(torch.tensor(([0, 0], [0, 2])), torch.tensor([False, True]), device=device)
self.assertEqual(torch.isnan(t).int(), t_nan.int())
@coalescedonoff
@dtypes(torch.float32, torch.float64)
def test_div_rounding_mode(self, device, dtype, coalesced):
sparse, _, _ = self._gen_sparse(2, 10, (10, 10), dtype,
device, coalesced)
dense = self.safeToDense(sparse)
for mode in (None, 'floor', 'trunc'):
actual = sparse.div(-2, rounding_mode=mode)
expect = dense.div(-2, rounding_mode=mode)
self.assertEqual(self.safeToDense(actual), expect)
# Test inplace
actual = sparse.clone().div_(-2, rounding_mode=mode)
self.assertEqual(self.safeToDense(actual), expect)
# Test out argument
actual.zero_()
torch.div(sparse, -2, rounding_mode=mode, out=actual)
self.assertEqual(self.safeToDense(actual), expect)
def test_div_by_sparse_error(self, device):
self.assertRaisesRegex(RuntimeError, 'Sparse division requires',
lambda: torch.tensor(1., device=device).to_sparse()
/ torch.tensor(1., device=device).to_sparse())
def test_floor_divide_by_sparse_error(self, device):
self.assertRaisesRegex(RuntimeError, 'Sparse floor division requires',
lambda: torch.tensor(1., device=device).to_sparse()
// torch.tensor(1., device=device).to_sparse())
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
@onlyCPU
def test_sparse_to_numpy(self, device):
t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([1, 4]))
self.assertRaises(TypeError, lambda: t.numpy())
@coalescedonoff
@dtypes(torch.double)
def test_softmax(self, device, dtype, coalesced):
import torch.nn.functional as F
def to_dense(sparse, fill_value=None):
"""
Return dense tensor from a sparse tensor using given fill value.
"""
if fill_value is None or fill_value == 0:
return sparse.to_dense()
sparse = sparse.coalesce()
dense = torch.full(sparse.shape, fill_value, dtype=sparse.dtype, device=sparse.device)
for idx, value in zip(sparse._indices().t(), sparse._values()):
dense[tuple(idx)] = value
return dense
def softmax_to_dense(sparse, dim):
"""Dense softmax of a sparse tensor. Useful only for testing softmax
correctness.
When computing softmax of a sparse tensor, the value of
unspecified items is negative infinity rather than zero so
that
softmax(sparse.to_dense(fill_value=-inf), dim) == softmax(sparse, dim).to_dense()
holds for non-empty lines. One empty lines, the softmax
values are defined as 0 in order to preserve the sparsity
of result.
Note that in PyTorch, ``to_dense`` method does not
implement the ``fill_value`` keyword argument.
"""
dtype = sparse.dtype
device = sparse.device
dense = to_dense(sparse, fill_value=-float('inf'))
r = F.softmax(dense, dim)
# softmax on empty lines results nan, replace with zeros to match the definition
r[r != r] = 0
return r
def sparse_softmax(sparse, dim):
"""Pure Python softmax of a sparse tensor. Assuming -inf for
unspecified sparse tensor data. This is a prototype of
sparse softmax algorithm in Python.
"""
dtype = sparse.dtype
device = sparse.device
# softmax is non-linear operation, so sparse tensors must
# be coalesced.
sparse = sparse.coalesce()
inf = float('inf')
indices = sparse._indices()
values = sparse._values()
if dim < sparse.sparse_dim():
nnz = sparse._nnz()
# compute pool indices
size = sparse.size()
strides = torch.ones((sparse.sparse_dim(), 1), dtype=indices.dtype, device=indices.device)
for i in reversed(range(sparse.sparse_dim() - 1)):
strides[i, 0] = strides[i + 1, 0] * size[i + 1]
strides[dim, 0] = 0
pool = (indices * strides).sum(dim=0)
i2p = {}
for i in range(nnz):
c = int(pool[i])
if c not in i2p:
i2p[c] = len(i2p)
pool[i] = i2p[c]
# compute max
dense_size = tuple(size[sparse.sparse_dim():])
mx = torch.empty((pool.max() + 1,) + dense_size, dtype=dtype, device=device)
mx[:] = -inf
for n in range(nnz):
p = pool[n]
mx[p] = torch.max(mx[p], values[n])
# apply exp to (v - mx) and sum the results
exp_values = torch.empty_like(values)
exp_sums = torch.zeros_like(mx)
for n in range(nnz):
p = pool[n]
v = exp_values[n] = (values[n] - mx[p]).exp()
exp_sums[p] = exp_sums[p] + v
# normalize with the sum of exponents
for n in range(nnz):
p = pool[n]
exp_values[n] = exp_values[n] / exp_sums[p]
return torch.sparse_coo_tensor(indices,
exp_values,
sparse.size(),
dtype=dtype, device=device)
elif dim < sparse.sparse_dim() + sparse.dense_dim():
return torch.sparse_coo_tensor(indices,
F.softmax(values, dim - sparse.sparse_dim() + 1),
sparse.size(),
dtype=dtype, device=device)
else:
raise ValueError(
f'`dim(={dim})` must be smaller than `sparse_dim(={sparse.sparse_dim()}) + dense_dim(={sparse.dense_dim()})`')
def softmax_jacobian_analytic(x, dim):
"""Return Jacobian of softmax using analytic formula
D_jS_i = S_i * (1[i==j] - S_j).
where S = softmax(x, dim), x is dense tensor, i,j in
range(x.shape[dim]).
"""
y = F.softmax(x, dim)
y[y != y] = 0 # replace nan-s with zeros
J = torch.zeros((x.shape[dim],) + tuple(x.shape), dtype=x.dtype, device=x.device)
si = [slice(None)] * len(y.shape)
sj = [slice(None)] * len(y.shape)
s = [slice(None)] * len(J.shape)
for i in range(y.shape[dim]):
si[dim] = i
s[dim + 1] = i
yi = y[tuple(si)]
for j in range(y.shape[dim]):
sj[dim] = j
s[0] = j
if i == j:
J[tuple(s)] = yi * (1 - yi)
else:
yj = y[tuple(sj)]
J[tuple(s)] = - yi * yj
sj[dim] = slice(None)
si[dim] = slice(None)
s[dim + 1] = slice(None)
return J
def softmax_jacobian_autograd(x, dim, log=False):
"""Return Jacobian of softmax using PyTorch autograd feature.
x can be dense or sparse tensor.
"""
import itertools
if x.is_sparse:
x = x.coalesce()
dtype = x.dtype
device = x.device
shape = tuple(x.shape)
J = torch.zeros((shape[dim],) + shape, dtype=dtype, device=device)
for i in range(shape[dim]):
if x.is_sparse:
sparse_dim = x.sparse_dim()
dense_dim = x.dense_dim()
if dim < sparse_dim:
ranges = []
for j, sz in enumerate(shape[:sparse_dim]):
if dim == j:
ranges.append([i])
else:
ranges.append(list(range(sz)))
indices = torch.tensor(list(itertools.product(*ranges)), dtype=torch.long, device=device).t()
values = torch.ones((indices.shape[1],) + shape[sparse_dim:], dtype=dtype, device=device)
else:
ranges = []
for j, sz in enumerate(shape[:sparse_dim]):
ranges.append(list(range(sz)))
indices = torch.tensor(list(itertools.product(*ranges)), dtype=torch.long, device=device).t()
values = torch.zeros((indices.shape[1],) + shape[sparse_dim:], dtype=dtype, device=device)
sv = [slice(None)] * (dense_dim + 1)
sv[dim - sparse_dim + 1] = i
values[tuple(sv)] = 1
v = torch.sparse_coo_tensor(indices, values, shape, dtype=dtype, device=device)
else:
v = torch.zeros_like(x)
sv = [slice(None)] * len(v.shape)
sv[dim] = i
v[tuple(sv)] = 1
x_ = x.clone()
x_.requires_grad_(True)
if log:
if x_.is_sparse:
y = torch.sparse.log_softmax(x_, dim)
else:
y = F.log_softmax(x_, dim)
else:
if x_.is_sparse:
y = torch.sparse.softmax(x_, dim)
else:
y = F.softmax(x_, dim)
# replace nan-s with zeros
y.data[y != y] = 0
y.backward(v)
g = x_.grad
if not g.is_sparse:
# replace nan-s with zeros
g.data[g != g] = 0
J[i] = g.to_dense() if g.is_sparse else g
return J
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1166")
def test_op(sparse_dims, nnz, with_size, coalesced):
if isinstance(with_size, Number):
with_size = [with_size] * sparse_dims
x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)
def sparse_log(x):
return torch.sparse_coo_tensor(x._indices(), x._values().log(),
x.size(), dtype=x.dtype, device=x.device)
# Check dim out of bounds
with self.assertRaisesRegex(IndexError, r"Dimension out of range"):
torch.sparse.softmax(x, x.dim())
with self.assertRaisesRegex(IndexError, r"Dimension out of range"):
torch.sparse.softmax(x, -x.dim() - 1)
for dim in range(x.dim()):
# Check sparse softmax definition
# check Python sparse softmax
y = sparse_softmax(x, dim)
r1 = softmax_to_dense(x, dim)
r2 = y.to_dense()
self.assertEqual(r1, r2)
# check C++ sparse softmax
for d in (dim, dim - x.dim()):
y1 = torch.sparse.softmax(x, d)
self.assertEqual(y, y1)
# check C++ sparse log_softmax
ly1 = torch.sparse.log_softmax(x, d)
self.assertEqual(ly1, sparse_log(y1))
# Check autograd support on sparse softmax
# check softmax Jacobian definition for dense input
x1 = to_dense(x, fill_value=float('-inf'))
J = softmax_jacobian_analytic(x1, dim)
assert J.shape[0] == x.shape[dim]
assert J.shape[dim + 1] == x.shape[dim]
# check softmax Jacobian from autograd, dense input
J2 = softmax_jacobian_autograd(x1, dim)
self.assertEqual(J, J2)
# check softmax Jacobian from autograd, sparse input
J3 = softmax_jacobian_autograd(x, dim)
self.assertEqual(J, J3)
'''
y = softmax(x, dim)
z = log(y) = log_softmax(x, dim)
Dy/Dx = J
Dz/Dx = Dz/Dy Dy/Dx = 1/y * J
=> J = J_log * y
'''
# log_softmax Jacobian from autograd, dense input
J2_log = softmax_jacobian_autograd(x1, dim, log=True)
# log_softmax Jacobian from autograd, sparse input
J3_log = softmax_jacobian_autograd(x, dim, log=True)
J = J.transpose(0, dim + 1)
J2_log = J2_log.transpose(0, dim + 1)
J3_log = J3_log.transpose(0, dim + 1)
self.assertEqual(J, J2_log * r1)
self.assertEqual(J, J3_log * r1)
if dim == 0:
# check dtype argument
other_dtype = torch.float32
y2 = torch.sparse.softmax(x, dim, dtype=other_dtype)
self.assertEqual(y2.dtype, other_dtype)
self.assertEqual(y2, y1.type(other_dtype))
ly2 = torch.sparse.log_softmax(x, dim, dtype=other_dtype)
self.assertEqual(ly2.dtype, other_dtype)
self.assertEqual(ly2, ly1.type(other_dtype))
test_op(1, 10, [3], coalesced)
test_op(1, 10, [2, 3], coalesced)
test_op(1, 10, [3, 2], coalesced)
test_op(2, 10, [2, 3, 4], coalesced)
test_op(2, 10, [3, 4], coalesced)
test_op(2, 5, [5, 4], coalesced)
test_op(2, 10, [3, 4, 2], coalesced)
test_op(3, 10, [3, 4, 2], coalesced)
test_op(3, 100, [3, 4, 2], coalesced)
test_op(3, 100, [3, 4, 2, 3], coalesced)
test_op(3, 100, [3, 4, 2, 3, 5, 2], coalesced)
test_op(4, 100, [3, 4, 2, 3, 5, 2], coalesced)
def _check_zero_nnz_softmax_op(self, func, ndim, device, dtype):
# create a sparse tensor with shape (0,..., 3) it has no materialize values
t = torch.sparse_coo_tensor([[] for _ in range(ndim)], [], (0,) * (ndim - 1) + (3,), device=device, dtype=dtype)
out = func(t, 0)
self.assertEqual(out, torch.zeros_like(t))
# gradient
t = t.requires_grad_()
gradcheck(lambda x: func(x, 0).to_dense(), (t,), masked=True)
@dtypes(torch.double, torch.float)
@unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error")
def test_softmax_zero_nnz(self, device, dtype):
self._check_zero_nnz_softmax_op(torch.sparse.softmax, 1, device, dtype)
self._check_zero_nnz_softmax_op(torch.sparse.softmax, 10, device, dtype)
@dtypes(torch.double, torch.float)
@unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error")
def test_log_softmax_zero_nnz(self, device, dtype):
self._check_zero_nnz_softmax_op(torch.sparse.log_softmax, 1, device, dtype)
self._check_zero_nnz_softmax_op(torch.sparse.log_softmax, 10, device, dtype)
# TODO: Check after why ROCm's cusparseXcsrgemm2Nnz function doesn't return the same nnz value as CUDA
@skipIfRocm
@coalescedonoff
@dtypes(*floating_and_complex_types())
@dtypesIfCUDA(*floating_types_and(*[torch.half] if SM53OrLater else [],
*[torch.bfloat16] if SM80OrLater else [],
torch.complex64,
*[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else []))
@unittest.skipIf(TEST_WITH_CROSSREF, "not working with fake tensor")
@precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2, torch.complex64: 1e-2, torch.float32: 1e-2})
def test_sparse_matmul(self, device, dtype, coalesced):
"""
This function test `torch.sparse.mm` when both the mat1 and mat2 are sparse tensors.
"""
def ref_sparse_mm(a, b):
return a.to_dense() @ b.to_dense()
def grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b):
def test_grad_dense(a_s, b_s, g_s):
a = a_s.to_dense().detach()
b = b_s.to_dense().detach()
g = g_s.to_dense().detach()
a.requires_grad_(True)
b.requires_grad_(True)
c = a @ b
c.backward(g)
return a.grad.sparse_mask(a_s.coalesce()), b.grad.sparse_mask(b_s.coalesce())
a, _, _ = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced)
b, _, _ = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced)
a.requires_grad_(True)
b.requires_grad_(True)
c = torch.sparse.mm(a, b)
c2 = c.to_dense().detach()
c2 = torch.rand_like(c2)
g = c2.sparse_mask(c.coalesce())
c.backward(g)
a_grad, b_grad = test_grad_dense(a, b, g)
# We convert grad to dense since dense and sparse mm
# implementations handle materialized zeroes differently.
self.assertEqual(a.grad.to_dense(), a_grad.to_dense())
self.assertEqual(b.grad.to_dense(), b_grad.to_dense())
def test_sparse_matmul(sparse_dims, nnz, shape_a, shape_b):
a, i_a, v_a = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced)
b, i_b, v_b = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced)
# dense implementation
r1 = ref_sparse_mm(a, b)
# cpp implementation
r2 = torch.sparse.mm(a, b)
self.assertEqual(r1, r2.to_dense())
# Check result is truly coalesced
self.assertTrue(r2.is_coalesced() and is_coalesced_indices(r2))
if dtype in [torch.double, torch.cdouble]:
a.requires_grad_(True)
b.requires_grad_(True)
# check autograd support on sparse matmul
def fn(D1, D2):
return torch.sparse.mm(D1, D2).to_dense()
if a.is_cuda:
# For cuda, `nondet_tol` is set with `1e-5`
# This is because cuSparse sometimes returns approximate zero values like `~e-323`
# TODO: Check this cuSparse issue.
# This happens when you do chain multiplication `torch.sparse.mm` operations
gradcheck(fn, (a, b), nondet_tol=1e-5, masked=True)
else:
gradcheck(fn, (a, b), masked=True)
grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b)
def test_error_cases():
def fn(sparse_dims, nnz, shape_a, shape_b):
a, i_a, v_a = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced)
b, i_b, v_b = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced)
r2 = torch.sparse.mm(a, b)
# This is not a matrix
self.assertRaises(RuntimeError, lambda: fn(3, 4, [2, 2, 2], [2, 2, 2]))
# Shapes does not
self.assertRaisesRegex(RuntimeError,
r"mat1 and mat2 shapes cannot be multiplied \(2x3 and 4x2\)",
lambda: fn(2, 10, [2, 3], [4, 2]))
def different_dtypes():
a, i_a, v_a = self._gen_sparse(2, 10, [2, 2], dtype, device, coalesced)
b, i_b, v_b = self._gen_sparse(2, 10, [2, 2], dtype, device, coalesced)
r2 = torch.sparse.mm(a.to(torch.float64), a.to(torch.float32))
self.assertRaisesRegex(RuntimeError, 'mat1 dtype Double does not match mat2 dtype Float', different_dtypes)
def test_backward_noncontiguous():
# Sparse.mm backward used to wrong with non-contiguous grads,
# see https://github.com/pytorch/pytorch/issues/102493.
n_reps = 7
for _ in range(n_reps):
A = torch.eye(5).to_sparse().requires_grad_(True)
B = torch.eye(5).to_sparse()
out = torch.sparse.mm(A, B)
out.coalesce().values().sum().backward()
self.assertEqual(A.grad, A)
for n in range(2, 5):
for m in range(2, 8):
for p in range(2, 8):
test_sparse_matmul(2, 10, [n, m], [m, p])
test_sparse_matmul(2, 0, [0, 0], [0, 0])
test_sparse_matmul(2, 0, [0, 10], [10, 0])
test_error_cases()
test_backward_noncontiguous()
@coalescedonoff
@dtypes(torch.double)
def test_assign(self, device, dtype, coalesced):
def assign_to():
a, i_a, v_a = self._gen_sparse(2, 5, [2, 3], dtype, device, coalesced)
a[0] = 100
self.assertRaises(TypeError, assign_to)
@dtypes(torch.double, torch.cdouble)
def test_full_broadcast_to(self, device, dtype):
def can_broadcast(s0, s1):
s0 = tuple(reversed(s0))
s1 = tuple(reversed(s1))
for i in range(len(s0)):
if s0[i] != 1 and s0[i] != s1[i]:
return False
return True
sizes = (
(), (1,), (2,), (1, 1), (3, 1), (3, 2), (4, 1, 1), (4, 3, 2)
)
for s0, s1 in itertools.combinations(sizes, r=2):
t = make_tensor(s0, dtype=dtype, device=device, low=-9, high=9)
for sparse_dims in range(1, len(s0) + 1):
s = t.to_sparse(sparse_dims)
if can_broadcast(s0, s1):
t_res = torch.broadcast_to(t, s1)
s_res = torch._sparse_broadcast_to(s, s1)
torch._validate_sparse_coo_tensor_args(s_res._indices(), s_res._values(), s_res.shape)
if s_res.is_coalesced():
# ensure that is_coalesced is estimated correctly
self.assertEqual(s_res, torch.sparse_coo_tensor(s_res._indices(), s_res._values(), s_res.shape).coalesce())
self.assertEqual(s_res.to_dense(), t_res)
else:
with self.assertRaisesRegex(RuntimeError,
r"The expanded size of the tensor \(\d\) "
r"must match the existing size \(\d\)"):
torch._sparse_broadcast_to(s, s1)
@coalescedonoff
@dtypes(torch.double, torch.cdouble)
def test_sparse_broadcast_to(self, device, dtype, coalesced):
def test(sparse_dims, nnz, with_size, new_size):
x = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0]
y = self.safeToDense(x)
x1 = torch._sparse_broadcast_to(x, new_size)
y1 = y.broadcast_to(new_size)
self.assertEqual(self.safeToDense(x1), y1)
test(4, 6, [7, 3, 1, 3, 0], [7, 3, 4, 3, 0])
test(4, 6, [7, 3, 1, 3, 0], [2, 7, 3, 1, 3, 0])
test(4, 6, [7, 3, 1, 3, 1, 3], [7, 3, 1, 3, 2, 3])
test(4, 6, [7, 3, 1, 3, 2, 1], [7, 3, 1, 3, 2, 3])
def _test_mul_skips(self, device, dtype, coalesced):
skipTestIfUncoalesced = False
# This case always coalesce inputs and that could lead to loss of precision,
# hence it is inhibited for float16/bfloat16 by providing already coalesced tensors.
if not coalesced and dtype in {torch.float16, torch.bfloat16}:
skipTestIfUncoalesced = True
# to_dense is problematic for boolean non-coalesced CUDA tensors
# see https://github.com/pytorch/pytorch/issues/81648
if not coalesced and dtype == torch.bool and torch.device(device).type == "cuda":
skipTestIfUncoalesced = True
if skipTestIfUncoalesced:
self.skipTest(f"Test with dtype={dtype}, device={device} runs only with coalesced inputs")
@coalescedonoff
# NOTE: addcmul_out is not implemented for bool.
@dtypes(*all_types_and_complex_and(torch.bfloat16, torch.float16))
@precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2})
def test_sparse_sparse_mul(self, device, dtype, coalesced):
self._test_mul_skips(device, dtype, coalesced)
shape = (2, 3, 4, 10)
nnz = 10
def check(self, x, y):
res_sparse = x * y
res_dense = x.to_dense() * y.to_dense()
self.assertEqual(res_sparse.to_dense(), res_dense)
def check_empty(sparse_shape, nnz, dense_shape, coalesce):
from itertools import product
for nnz_val, shape_suffix in product((nnz, 0), ((), (0,))):
empty_sparse_shape = sparse_shape + shape_suffix
empty_dense_shape = dense_shape + shape_suffix
x = self._gen_sparse(sparse_dim, nnz_val, empty_sparse_shape, dtype, device, coalesce)[0]
check(self, x, x)
# TODO: uncomment once backward is implemented for sparse tensors that broadcast in dense dims.
# def check_autograd(x, y):
# if dtype in {torch.double, torch.cdouble}:
# xa = x.detach().clone().requires_grad_(True)
# ya = y.detach().clone().requires_grad_(True)
# gradcheck(lambda a, b: (a * b).to_dense(), (xa, ya), masked=True)
# gradcheck(lambda a, b: (a * b).to_dense(), (ya, xa), masked=True)
for dim in range(len(shape) + 1):
sub_shape = shape[dim:]
sparse_dim = len(sub_shape) // 2
check_empty(sub_shape, nnz, shape, coalesced)
x = self._gen_sparse(sparse_dim, nnz, sub_shape, dtype, device, coalesced)[0]
y = self._gen_sparse(sparse_dim, nnz, sub_shape, dtype, device, coalesced)[0]
check(self, x, y)
# TODO: uncomment once supported
# check_autograd(x, y)
# check broadcasting in dense dims
for d in range(sparse_dim, len(sub_shape)):
new_shape = sub_shape[:d] + (1,) + sub_shape[d + 1:]
y = self._gen_sparse(sparse_dim, nnz, new_shape, dtype, device, coalesced)[0]
check(self, x, y)
# TODO: uncomment once supported
# check_autograd(x, y)
@coalescedonoff
@dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16))
@precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2})
def test_sparse_dense_mul(self, device, dtype, coalesced):
self._test_mul_skips(device, dtype, coalesced)
shape = (2, 3, 4, 10)
nnz = 10
def check(self, s, d):
res = d * s
# check commutativity
self.assertEqual(res, s * d)
# check correctness
self.assertEqual(res.to_dense(), s.to_dense() * d)
# check in-placeness for dense
if d.dim() >= s.dim():
dc = d.clone()
self.assertEqual(d.mul_(s), dc.mul_(s.to_dense()))
# check in-placeness for sparse
if s.dim() >= d.dim():
# for sparse
sc = s.clone()
self.assertEqual(s.mul_(d).to_dense(), sc.to_dense().mul_(d))
for dim in range(len(shape) + 1):
sub_shape = shape[dim:]
sparse_dim = len(sub_shape) // 2
def check_empty(sparse_shape, nnz, dense_shape, coalesce):
from itertools import product
for nnz_val, shape_suffix in product((nnz, 0), ((), (0,))):
empty_sparse_shape = sparse_shape + shape_suffix
empty_dense_shape = dense_shape + shape_suffix
s = self._gen_sparse(sparse_dim, nnz_val, empty_sparse_shape, dtype, device, coalesce)[0]
d = make_tensor(empty_dense_shape, dtype=dtype, device=device)
check(self, s, d)
# check scalar multiplication
s = self._gen_sparse(sparse_dim, nnz, sub_shape, dtype, device, coalesced)[0]
for scalar in (True, 1, 1.0):
res_sparse_right = s * scalar
res_sparse_left = scalar * s
res_dense = s.to_dense() * scalar
# check correctness and dtype
self.assertEqual(s.to(res_sparse_right.dtype), res_sparse_right)
self.assertEqual(res_sparse_right, res_sparse_left)
self.assertEqual(res_sparse_right.dtype, res_dense.dtype)
self.assertEqual(res_sparse_left.dtype, res_dense.dtype)
# check scalar as 0-dim sparse tensor
tscalar = torch.tensor(scalar, device=device)
sscalar = tscalar.to_sparse()
res_sparse_right = s * sscalar
res_sparse_left = sscalar * s
self.assertEqual(res_sparse_right, res_sparse_left)
self.assertEqual(s.to(res_sparse_right.dtype), res_sparse_right)
# check non-coalesced 0-dim scalar
# we skip torch.bool because for such tensors
# coalesce.to_dense != to_dense
if dtype == torch.bool:
return
for scalar_dtype in (int, float):
scalar = scalar_dtype(1)
idx = torch.tensor([], device=device).reshape(0, 2)
val = torch.tensor([scalar, scalar], device=device)
sscalar = torch.sparse_coo_tensor(idx, val, ())
res_dense = s.to_dense() * sscalar.to_dense()
self.assertEqual((s * sscalar).to_dense(), res_dense)
self.assertEqual((sscalar * s).to_dense(), res_dense)
# Case 1: sparse broadcasts over dense
s = self._gen_sparse(sparse_dim, nnz, sub_shape, dtype, device, coalesced)[0]
d = make_tensor(shape, dtype=dtype, device=device)
check(self, s, d)
check_empty(sub_shape, nnz, shape, coalesced)
# Case 2: dense broadcasts over sparse
s = self._gen_sparse(3, nnz, shape, dtype, device, coalesced)[0]
d = make_tensor(sub_shape, dtype=dtype, device=device)
check(self, s, d)
check_empty(shape, nnz, sub_shape, coalesced)
@unittest.skipIf(not TEST_NUMPY, "NumPy is not available")
@onlyCPU
@dtypes(*all_types_and_complex_and(torch.bool))
def test_sparse_spdiags(self, device, dtype):
make_diags = functools.partial(make_tensor, dtype=dtype, device=device)
make_offsets = functools.partial(torch.tensor, dtype=torch.long, device=device)
if TEST_SCIPY:
def reference(diags, offsets, shape):
return scipy.sparse.spdiags(diags, offsets, *shape).toarray()
else:
def reference(diags, offsets, shape):
result = torch.zeros(shape, dtype=dtype, device=device)
for i, off in enumerate(offsets):
res_view = result.diagonal(off)
data = diags[i]
if off > 0:
data = data[off:]
m = min(res_view.shape[0], data.shape[0])
res_view[:m] = data[:m]
return result
def check_valid(diags, offsets, shape, layout=None):
ref_out = reference(diags, offsets, shape)
out = torch.sparse.spdiags(diags, offsets, shape, layout=layout)
if layout is None:
ex_layout = torch.sparse_coo
else:
ex_layout = layout
out_dense = out.to_dense()
self.assertTrue(out.layout == ex_layout, f"Output layout {out.layout} expected {ex_layout}")
self.assertEqual(out_dense, ref_out, f"Result:\n{out_dense} does not match reference:\n{ref_out}")
def check_invalid(args, error):
with self.assertRaisesRegex(RuntimeError, error):
torch.sparse.spdiags(*args)
def valid_cases():
# some normal cases
yield (make_diags((1, 5)), make_offsets([0]), (5, 5))
yield (make_diags((3, 3)), make_offsets([-1, 0, 1]), (4, 4))
# noncontigous diags
yield (make_diags((5, 4), noncontiguous=True), make_offsets([-1, 1, 0, 2, -2]), (5, 5))
# noncontigous offsets
yield (make_diags((3, 4)), make_offsets([1, -1, 0, -2, 2])[::2], (5, 5))
# noncontigous diags + offsets
yield (make_diags((3, 4), noncontiguous=True), make_offsets([1, -1, 0, -2, 2])[::2], (5, 5))
# correct dimensionality, 2d, 2d , and shapes match, but the number of diagonals is zero
yield (make_diags((0, 3)), make_offsets([]), (3, 3))
# forward rotation of upper diagonals
yield (make_diags((3, 8)), make_offsets([1, 2, 3]), (4, 4))
# rotation exausts input space to read from
yield (make_diags((2, 3)), make_offsets([2, 1]), (3, 3))
# Simple cases repeated with special output format
yield (make_diags((1, 5)), make_offsets([0]), (5, 5), torch.sparse_csc)
yield (make_diags((3, 3)), make_offsets([-1, 0, 1]), (4, 4), torch.sparse_csr)
# vector diags
yield (make_diags((3, )), make_offsets([1]), (4, 4))
# Scalar offset
yield (make_diags((1, 3)), make_offsets(2), (4, 4))
# offsets out of range
yield (make_diags((1, 3)), make_offsets([3]), (3, 3))
yield (make_diags((1, 3)), make_offsets([-3]), (3, 3))
for case in valid_cases():
check_valid(*case)
def invalid_cases():
yield (make_diags((1, 3)), make_offsets([0]), (3, 2, 3)), "Output shape must be 2d"
yield (make_diags((2, 3)), make_offsets([[1, 2], [0, 3]]), (3, 3)), "Offsets must be scalar or vector"
yield (make_diags((3, 2, 3)), make_offsets([0, 1, 2]), (4, 4)), "Diagonals must be vector or matrix"
yield (make_diags((3, 3)), make_offsets([-1, 0]), (3, 3)), \
r"Number of diagonals \(\d\) does not match the number of offsets \(\d\)"
yield (make_diags((5,)), make_offsets([0, 1, 2, 3, 4]), (3, 3)), \
r"Number of diagonals \(\d\) does not match the number of offsets \(\d\)"
yield (make_diags((2, 2)), make_offsets([-1, 0]), (2, 3), torch.strided), \
r"Only output layouts \(\w+, \w+, \w+\) are supported, got \w+"
yield (make_diags((2, 5)), make_offsets([0, 0]), (5, 5)), "Offset tensor contains duplicate values"
yield (make_diags((1, 5)), make_offsets([0]).to(torch.int32), (5, 5)), r"Offset Tensor must have dtype Long but got \w+"
for case, error_regex in invalid_cases():
check_invalid(case, error_regex)
def test_small_nnz_coalesced(self):
# creating a coo tensor with nnz == 0 is always coalesced
self.assertTrue(torch.sparse_coo_tensor([[], []], [], (2, 2)).is_coalesced())
# same for a coo tensor with only 1 nnz
self.assertTrue(torch.sparse_coo_tensor([[0], [0]], [1], (2, 2)).is_coalesced())
# two or more nnz coalesced is false as it can't be verified without an expensive check
self.assertFalse(torch.sparse_coo_tensor([[0, 0], [0, 0]], [1, 2], (2, 2)).is_coalesced())
# even if there are no duplicates
self.assertFalse(torch.sparse_coo_tensor([[0, 1], [0, 1]], [1, 2], (2, 2)).is_coalesced())
@coalescedonoff
@dtypes(*all_types_and_complex_and(torch.bool))
def test_sum(self, device, dtype, coalesced):
def run_test(shape, nnz):
a = self._gen_sparse(2, nnz, shape, dtype, device, coalesced)[0]
self.assertEqual(a.sum(), a._values().sum())
if dtype.is_floating_point or dtype.is_complex:
a.requires_grad_(True)
a_inter = a.sum()
a_inter.abs().backward()
with torch.no_grad():
self.assertEqual(a.grad, torch.ones(shape, dtype=dtype, device=device) * torch.sgn(a_inter))
for shape in [(10, 5), (10, 10)]:
run_test(shape, 0)
run_test(shape, max(shape))
run_test(shape, shape[0] * shape[1])
class TestSparseOneOff(TestCase):
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
def test_cuda_from_cpu(self):
with self.assertRaisesRegex(
RuntimeError,
"Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!"):
torch.sparse_coo_tensor(torch.zeros(1, 4).long().cuda(),
torch.randn(4, 4, 4),
[3, 4, 4])
with self.assertRaisesRegex(
RuntimeError,
"Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!"):
torch.sparse_coo_tensor(torch.zeros(1, 4).long().cuda(),
torch.randn(4, 4, 4, 0),
[3, 4, 4, 0])
with self.assertRaisesRegex(
RuntimeError,
"Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!"):
torch.sparse_coo_tensor(torch.empty(1, 0).long().cuda(),
torch.randn(0, 4, 4, 0),
[0, 4, 4, 0])
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
def test_cuda_sparse_cpu_dense_add(self):
x = torch.zeros(3, 4, 4)
sparse_y = torch.sparse_coo_tensor(torch.zeros(1, 4).long().cuda(),
torch.randn(4, 4, 4).cuda(),
[3, 4, 4])
with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"):
x + sparse_y
x = torch.zeros(3, 4, 4, 0)
sparse_y = torch.sparse_coo_tensor(torch.zeros(1, 4).long().cuda(),
torch.randn(4, 4, 4, 0).cuda(),
[3, 4, 4, 0])
with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"):
x + sparse_y
x = torch.zeros(0, 4, 4, 0)
sparse_y = torch.sparse_coo_tensor(torch.empty(1, 0).long().cuda(),
torch.randn(0, 4, 4, 0).cuda(),
[0, 4, 4, 0])
with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"):
x + sparse_y
def _sparse_to_dense(tensor):
if tensor.dtype != torch.bool:
return tensor.to_dense(masked_grad=True)
# to_dense uses coalesce which isn't implemented for bool
return tensor.to(torch.int8).to_dense().to(torch.bool)
_sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported,
allowed_dtypes=all_types_and_complex())
class TestSparseUnaryUfuncs(TestCase):
exact_dtype = True
@_sparse_unary_ops
def test_sparse_consistency(self, device, dtype, op):
sample = first_sample(self, op.sample_inputs(device, dtype))
assert isinstance(sample.input, torch.Tensor)
expected = op(sample.input, *sample.args, **sample.kwargs)
assert torch.is_tensor(expected)
output = op(sample.input.to_sparse(), *sample.args, **sample.kwargs)
assert torch.is_tensor(output)
self.assertEqual(_sparse_to_dense(output), expected)
@_sparse_unary_ops
def test_out(self, device, dtype, op):
if not op.supports_out:
self.skipTest("Skipped! Out not supported")
sample = first_sample(self, op.sample_inputs(device, dtype))
sample.input = sample.input.to_sparse()
expect = op(sample.input, *sample.args, **sample.kwargs)
out = torch.sparse_coo_tensor(sample.input.shape, device=device,
dtype=expect.dtype)
op(sample.input, *sample.args, **sample.kwargs, out=out)
self.assertEqual(out, expect)
@_sparse_unary_ops
def test_inplace(self, device, dtype, op):
if op.inplace_variant is None:
self.skipTest("Skipped! Out not supported")
sample = first_sample(self, op.sample_inputs(device, dtype))
sample.input = sample.input.to_sparse().coalesce()
expect = op(sample.input, *sample.args, **sample.kwargs)
if not torch.can_cast(expect.dtype, dtype):
with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"):
op.inplace_variant(sample.input, *sample.args, **sample.kwargs)
return
actual = op.inplace_variant(sample.input, *sample.args, **sample.kwargs)
self.assertIs(actual, sample.input)
self.assertEqual(actual, expect)
@_sparse_unary_ops
def test_sparse_zero_dims(self, device, dtype, op):
# test 0x0 sparse_coo_tensor
indices = torch.empty(2, 0, dtype=torch.int64)
values = torch.empty(0, dtype=dtype)
sparse_0x0 = torch.sparse_coo_tensor(indices, values, (0, 0))
expected = torch.sparse_coo_tensor(indices, op(values), (0, 0))
actual = op(sparse_0x0)
self.assertEqual(expected, actual)
@_sparse_unary_ops
def test_sparse_zeros(self, device, dtype, op):
samples = op.sample_inputs(device, dtype)
zero_input = torch.zeros((), device=device, dtype=dtype)
sparse_input = torch.sparse_coo_tensor((), dtype=dtype, device=device)
expect = op(zero_input)
actual = op(sparse_input)
self.assertEqual(expect, _sparse_to_dense(actual))
@ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported,
allowed_dtypes=[torch.double, torch.cdouble])
def test_sparse_fn_grad(self, device, dtype, op):
if not op.supports_autograd:
self.skipTest("Skipped! Op doesn't support autograd")
for sample in op.sample_inputs(device, dtype):
sparse_input = sample.input.to_sparse().detach().requires_grad_(True)
def fn(x):
return _sparse_to_dense(
op(x, *sample.args, **sample.kwargs))
self.assertTrue(gradcheck(
fn,
(sparse_input,),
check_batched_grad=False,
check_grad_dtypes=True,
nondet_tol=op.gradcheck_nondet_tol,
fast_mode=op.gradcheck_fast_mode,
masked=True))
class TestSparseMaskedReductions(TestCase):
exact_dtype = True
fp16_low_precision_list = {
'masked.prod',
}
@ops(sparse_masked_reduction_ops)
def test_future_empty_dim(self, device, dtype, op):
"""Currently, `dim=()` in reductions operations means "reduce over
all dimensions" while in future, it will read "no reduce". See
https://github.com/pytorch/pytorch/issues/29137
For sparse masked reductions, we'll implement the current behavior.
For testing, we'll use samples with `dim=0` and map it to
`dim=()` until
torch.testing._internal.common_methods_invocations._generate_reduction_kwargs
is made to generate samples with `dim=()` for non-scalar
inputs. With this and after gh-29137 is resolved, this test
can be deleted. See also `torch.masked._canonical_dim`
implementation about changing the `dim=()` behavior.
"""
samples = op.sample_inputs_func(op, device, dtype, requires_grad=False)
op_name = op.name.replace('masked.', '')
for sample_input in samples:
if sample_input.kwargs.get('dim') != 0:
continue
sample_input_kwargs = dict(sample_input.kwargs)
sample_input_kwargs['dim'] = () # reduce over all dimensions
t = sample_input.input
mask = sample_input_kwargs.get('mask')
if mask is None and op_name in {'prod', 'amax', 'amin'}:
# FIXME: for now reductions with non-zero reduction identity and
# unspecified mask are not supported for sparse COO
# tensors, see torch.masked.prod implementation
# for details.
continue
sparse_op_kwargs = dict(sample_input_kwargs)
actual = op(t.to_sparse(), *sample_input.args, **sample_input_kwargs)
self.assertEqual(actual.layout, torch.sparse_coo)
expected = op(t, *sample_input.args, **sample_input_kwargs).to_sparse()
atol = None
rtol = None
if op.name in self.fp16_low_precision_list and dtype == torch.half:
atol = 1e-5
rtol = 2e-3
self.assertEqual(actual, expected, atol=atol, rtol=rtol)
class TestSparseMeta(TestCase):
exact_dtype = True
def _test_meta_sparse_coo(self, dtype):
r = torch.empty(4, 4, layout=torch.sparse_coo, device='meta', dtype=dtype)
self.assertTrue(r.is_meta)
self.assertEqual(r.device.type, "meta")
r2 = torch.empty_like(r)
self.assertTrue(r2.is_meta)
self.assertEqual(r, r2)
r3 = torch.sparse_coo_tensor(size=(4, 4), device='meta', dtype=dtype)
self.assertTrue(r3.is_meta)
self.assertEqual(r, r3)
r.sparse_resize_((4, 4), 1, 1)
r.sparse_resize_and_clear_((4, 4, 4), 2, 1)
self.assertEqual(r.sparse_dim(), 2)
self.assertEqual(r.dense_dim(), 1)
self.assertEqual(r._dimV(), 1)
self.assertEqual(r._nnz(), 0)
# nnz zero sparse tensors should always be coalesced at creation
self.assertEqual(r.is_coalesced(), True)
# but we can force them into the uncoalesed state
r._coalesced_(False)
self.assertEqual(r.is_coalesced(), False)
# return the coalesced state for indices/values access
r._coalesced_(True)
# TODO: this sort of aliasing will need to be handled by
# functionalization
self.assertEqual(r._indices(), torch.empty(2, 0, device='meta', dtype=torch.int64))
self.assertEqual(r._values(), torch.empty(0, 4, device='meta', dtype=dtype))
self.assertEqual(r.indices(), torch.empty(2, 0, device='meta', dtype=torch.int64))
self.assertEqual(r.values(), torch.empty(0, 4, device='meta', dtype=dtype))
def _test_meta_sparse_compressed(self, dtype, layout, batchsize, densesize):
index_dtype = torch.int64
blocksize = (2, 3) if layout in {torch.sparse_bsr, torch.sparse_bsc} else ()
sparsesize = (4, 6)
nnz = 0
shape = (*batchsize, *sparsesize, *densesize)
compressed_dim = 0 if layout in {torch.sparse_csr, torch.sparse_bsr} else 1
nof_compressed_indices = (sparsesize[compressed_dim] // blocksize[compressed_dim] + 1 if blocksize
else sparsesize[compressed_dim] + 1)
compressed_indices = torch.empty((*batchsize, nof_compressed_indices), device='meta', dtype=index_dtype)
plain_indices = torch.empty((*batchsize, nnz), device='meta', dtype=index_dtype)
values = torch.empty((*batchsize, nnz, *blocksize, *densesize), device='meta', dtype=dtype)
r = torch.sparse_compressed_tensor(
compressed_indices,
plain_indices,
values,
shape,
layout=layout
)
self.assertTrue(r.is_meta)
self.assertEqual(r.device.type, "meta")
self.assertEqual(r.sparse_dim(), 2)
self.assertEqual(r.dense_dim(), len(densesize))
self.assertEqual(r._nnz(), nnz)
batch_dims = r.ndim - r.sparse_dim() - r.dense_dim()
r_blocksize = r.values().shape[batch_dims + 1: batch_dims + 1 + len(blocksize)]
self.assertEqual(r_blocksize, blocksize)
r_compressed_indices = r.crow_indices() if layout in {torch.sparse_csr, torch.sparse_bsr} else r.ccol_indices()
r_plain_indices = r.col_indices() if layout in {torch.sparse_csr, torch.sparse_bsr} else r.row_indices()
self.assertEqual(r_compressed_indices,
torch.empty((*batchsize, nof_compressed_indices), device='meta', dtype=index_dtype))
self.assertEqual(r_plain_indices, torch.empty((*batchsize, nnz), device='meta', dtype=index_dtype))
self.assertEqual(r.values(), torch.empty((*batchsize, nnz, *blocksize, *densesize), device='meta', dtype=dtype))
r2 = torch.empty_like(r)
self.assertTrue(r2.is_meta)
self.assertEqual(r2, r)
if layout in {torch.sparse_csr, torch.sparse_csc}:
r3 = torch.empty((*batchsize, *sparsesize), dtype=dtype, layout=layout, device="meta")
self.assertTrue(r3.is_meta)
if not densesize:
# dense dimensions cannot be specified for torch.empty
self.assertEqual(r3, r)
@all_sparse_layouts('layout', include_strided=False)
@parametrize("dtype", [torch.float64])
def test_meta(self, dtype, layout):
if layout is torch.sparse_coo:
self._test_meta_sparse_coo(dtype)
else:
for batchsize, densesize in itertools.product([(), (2,)], [(), (3,)]):
self._test_meta_sparse_compressed(dtype, layout, batchsize, densesize)
def _test_print_meta_data(self, dtype, layout, batchsize, sparsesize, densesize):
index_dtype = torch.int64
nnz = 0
blocksize = (2, 3) if layout in {torch.sparse_bsr, torch.sparse_bsc} else ()
shape = (*batchsize, *sparsesize, *densesize)
values = torch.empty((*batchsize, nnz, *blocksize, *densesize), device='meta', dtype=dtype)
if layout is torch.sparse_coo:
indices = torch.empty((len(sparsesize), nnz), device='meta', dtype=index_dtype)
x = torch.sparse_coo_tensor(indices, values, shape)
else:
compressed_dim = 0 if layout in {torch.sparse_csr, torch.sparse_bsr} else 1
nof_compressed_indices = (sparsesize[compressed_dim] // blocksize[compressed_dim] + 1 if blocksize
else sparsesize[compressed_dim] + 1)
compressed_indices = torch.empty((*batchsize, nof_compressed_indices), device='meta', dtype=index_dtype)
plain_indices = torch.empty((*batchsize, nnz), device='meta', dtype=index_dtype)
x = torch.sparse_compressed_tensor(
compressed_indices,
plain_indices,
values,
shape,
layout=layout
)
printed = []
printed.append(f"########## {dtype}/{index_dtype}/size={batchsize}+{sparsesize}+{blocksize}+{densesize} ##########")
printed.append("# sparse meta tensor")
printed.append(str(x))
return printed
@all_sparse_layouts('layout', include_strided=False)
@parametrize("dtype", [torch.float64])
def test_print_meta(self, dtype, layout):
printed = []
for batchsize, sparsesize, densesize in itertools.product(
[(), (2,)], [(4, 6), (3, 5, 7)], [(), (3,)]
):
if layout is torch.sparse_coo and batchsize:
# COO tensors don't have batch dimensions
continue
if layout is not torch.sparse_coo and len(sparsesize) != 2:
# CSR/CSC/BSR/BSC tensors must have 2 sparse dimensions
continue
printed += self._test_print_meta_data(dtype, layout, batchsize, sparsesize, densesize)
orig_maxDiff = self.maxDiff
self.maxDiff = None
try:
self.assertExpected('\n'.join(printed))
self.maxDiff = orig_maxDiff
except Exception:
self.maxDiff = orig_maxDiff
raise
def assertEqualMeta(self, x, y, expected_nnz):
self.assertEqual(x.layout, y.layout)
self.assertEqual(x.shape, y.shape)
self.assertEqual(x.dtype, y.dtype)
self.assertEqual(x.sparse_dim(), y.sparse_dim())
self.assertEqual(x.dense_dim(), y.dense_dim())
def assertEqualAttrs(x, y, expected_shape):
self.assertEqual(x.shape, expected_shape)
self.assertEqual(x.dtype, y.dtype)
self.assertEqual(x.layout, y.layout)
if not x.is_meta:
self.assertEqual(x.device, y.device)
if x.layout is torch.sparse_coo:
assertEqualAttrs(x._indices(), y._indices(), (*y._indices().shape[:-1], expected_nnz))
assertEqualAttrs(x._values(), y._values(), (expected_nnz, *y._values().shape[1:]))
elif x.layout in {torch.sparse_csr, torch.sparse_bsr}:
assertEqualAttrs(x.crow_indices(), y.crow_indices(), y.crow_indices().shape)
assertEqualAttrs(x.col_indices(), y.col_indices(), (*y.col_indices().shape[:-1], expected_nnz))
batch_dim = x.col_indices().ndim - 1
values_shape = (*y.values().shape[:batch_dim], expected_nnz, *y.values().shape[batch_dim + 1:])
self.assertEqual(x.values().layout, y.values().layout)
self.assertEqual(x.values().dtype, y.values().dtype)
self.assertEqual(x.values().shape, values_shape)
elif x.layout in {torch.sparse_csc, torch.sparse_bsc}:
assertEqualAttrs(x.ccol_indices(), y.ccol_indices(), y.ccol_indices().shape)
assertEqualAttrs(x.row_indices(), y.row_indices(), (*y.row_indices().shape[:-1], expected_nnz))
batch_dim = x.row_indices().ndim - 1
values_shape = (*y.values().shape[:batch_dim], expected_nnz, *y.values().shape[batch_dim + 1:])
self.assertEqual(x.values().layout, y.values().layout)
self.assertEqual(x.values().dtype, y.values().dtype)
self.assertEqual(x.values().shape, values_shape)
@all_sparse_layouts('layout', include_strided=False)
@parametrize("dtype", [torch.float64])
def test_to_meta(self, dtype, layout):
index_dtype = torch.int64
device = 'cpu'
for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype):
m = t.to(device="meta")
self.assertEqual(m.device.type, "meta")
self.assertEqualMeta(m, t, 0)
@all_sparse_layouts('layout', include_strided=False)
@parametrize("dtype", [torch.float64])
def test_zeros_like_meta(self, dtype, layout):
index_dtype = torch.int64
device = 'cpu'
for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype):
m = torch.zeros_like(t, device="meta")
self.assertEqual(m.device.type, "meta")
self.assertEqualMeta(m, t, 0)
@all_sparse_layouts('layout', include_strided=False)
@parametrize("dtype", [torch.float64])
def test_fake(self, dtype, layout):
from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor
fake_mode = FakeTensorMode()
index_dtype = torch.int64
device = 'cpu'
for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype):
f = FakeTensor.from_tensor(t, fake_mode)
self.assertIsInstance(f, FakeTensor)
self.assertEqualMeta(f, t, 0)
d = f.detach()
self.assertIsInstance(d, FakeTensor)
self.assertEqualMeta(d, t, 0)
@all_sparse_layouts('layout', include_strided=False)
@parametrize("dtype", [torch.float64])
def test_zeros_like_fake(self, dtype, layout):
from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor
from torch.utils._mode_utils import no_dispatch
fake_mode = FakeTensorMode()
index_dtype = torch.int64
device = 'cpu'
for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype):
f = FakeTensor.from_tensor(t, fake_mode)
expected = torch.zeros_like(t)
with no_dispatch():
result = torch.zeros_like(f, device=f.fake_device)
self.assertEqual(result, expected)
self.assertEqualMeta(result, expected, 0)
@all_sparse_layouts('layout', include_strided=False)
@parametrize("dtype", [torch.float64])
def test_sum_meta(self, dtype, layout):
device = 'cpu'
index_dtype = torch.int64
for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype):
m = t.to(device='meta')
r = torch.sum(m)
expected = torch.sum(t).to(device="meta")
self.assertTrue(r.is_meta)
self.assertEqualMeta(r, expected, 0)
@all_sparse_layouts('layout', include_strided=False)
@parametrize("dtype", [torch.float64])
def test_add_meta(self, dtype, layout):
device = 'cpu'
index_dtype = torch.int64
for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype):
expected = torch.add(t, t).to(device='meta')
m = t.to(device='meta')
r = torch.add(m, m)
self.assertEqualMeta(r, expected, 0)
class _SparseDataset(torch.utils.data.Dataset):
# An utility class used in TestSparseAny.test_dataloader method.
def __init__(self, sparse_tensors):
self.sparse_tensors = sparse_tensors
def __len__(self):
return len(self.sparse_tensors)
def __getitem__(self, index):
return self.sparse_tensors[index]
class TestSparseAny(TestCase):
@onlyCPU
@all_sparse_layouts('layout', include_strided=False)
@torch.sparse.check_sparse_tensor_invariants(enable=False)
def test_check_sparse_tensor_invariants(self, layout):
if layout is torch.sparse_coo:
def create_invalid_tensor(check_invariants=None):
shape = (2, 2)
invalid_indices = torch.tensor([[0], [3]]) # column index is out of range
values = torch.tensor([1])
if check_invariants is None:
return torch.sparse_coo_tensor(invalid_indices, values, shape)
else:
return torch.sparse_coo_tensor(invalid_indices, values, shape, check_invariants=check_invariants)
expected_exception_message = 'size is inconsistent with indices: for dim 1, size is 2 but found index 3'
elif layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}:
def create_invalid_tensor(check_invariants=None):
shape = (2, 2)
compressed_indices = torch.tensor([0, 0, 1])
invalid_plain_indices = torch.tensor([3]) # index is out of range
if layout in {torch.sparse_bsr, torch.sparse_bsc}:
values = torch.tensor([[[1]]])
else:
values = torch.tensor([1])
if check_invariants is None:
return torch.sparse_compressed_tensor(compressed_indices, invalid_plain_indices, values, shape, layout=layout)
else:
return torch.sparse_compressed_tensor(compressed_indices, invalid_plain_indices, values, shape, layout=layout,
check_invariants=check_invariants)
if layout in {torch.sparse_csr, torch.sparse_bsr}:
expected_exception_message = r'`0 <= col_indices < ncols` is not satisfied.'
else:
expected_exception_message = r'`0 <= row_indices < nrows` is not satisfied.'
else:
raise NotImplementedError(layout)
# First, consider the case where invariant checks are disabled
# "globally" (read: within the context of this test method
# caller) as defined by check_sparse_tensor_invariants(False)
# decorator:
self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled())
# Enable the invariant checks in a local context:
with torch.sparse.check_sparse_tensor_invariants():
self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled())
# Leaving the local context must restore the "global" state of
# the invariant check feature:
self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled())
# Since invariant checks are disabled by default, we can
# create an invalid sparse tensor without raising an
# exception:
r = create_invalid_tensor()
self.assertEqual(r.layout, layout)
# Or, when disabling the invariants check explicitly:
r = create_invalid_tensor(check_invariants=False)
self.assertEqual(r.layout, layout)
# Enabling invariant check via constructor's optional argument
# will raise an exception when sparse tensor invariants are
# violated:
with self.assertRaisesRegex(RuntimeError, expected_exception_message):
create_invalid_tensor(check_invariants=True)
# Check that the global invariant check flag has been restored
# after raising the exception above:
self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled())
# Next, consider the case where invariant checks are enabled
# within a local context:
with torch.sparse.check_sparse_tensor_invariants():
self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled())
# Since invariant checks are now enabled by default, an
# attempt to create an invalid sparse tensor will lead to
# an exception:
with self.assertRaisesRegex(RuntimeError, expected_exception_message):
create_invalid_tensor()
# Similarly, when enabling the invariant checks
# explicitly, invalid sparse tensor construction will lead
# to an exception:
with self.assertRaisesRegex(RuntimeError, expected_exception_message):
create_invalid_tensor(check_invariants=True)
# However, invariants check can be disabled via
# constructor's optional argument so that the invalid
# tensor is succesfully constructed:
r = create_invalid_tensor(check_invariants=False)
self.assertEqual(r.layout, layout)
# Check that the invariant check flag has been restored
# when leaving the constructor:
self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled())
# Double-check restoring the global state when leaving the
# local context:
self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled())
# Test nesting of pre-defined context managers
check_ctx = torch.sparse.check_sparse_tensor_invariants(True)
no_check_ctx = torch.sparse.check_sparse_tensor_invariants(False)
with check_ctx:
self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled())
with no_check_ctx:
self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled())
self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled())
self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled())
# Test an attempt to re-use an activate context manager instance
check_ctx2 = torch.sparse.check_sparse_tensor_invariants(True)
with check_ctx:
self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled())
with no_check_ctx:
self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled())
with self.assertRaisesRegex(RuntimeError, "This context manager instance is already activated."
" Use a different context manager instance for context nesting"):
with check_ctx:
self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled())
self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled())
with check_ctx2:
self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled())
self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled())
self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled())
self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled())
def test_generate_simple_inputs(self):
layouts = [torch.strided, torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc]
tested_combinations = set()
for tensors in zip(*map(self.generate_simple_inputs, layouts)):
for i, t in enumerate(tensors):
self.assertEqual(t.layout, layouts[i])
# all layouts must produce semantically the same tensors
self.assertEqual(t, tensors[0])
if t.layout is torch.strided:
is_hybrid = None
else:
is_hybrid = t.dense_dim() > 0
if t.layout in {torch.sparse_csr, torch.sparse_bsr}:
is_batch = t.crow_indices().ndim > 1
elif t.layout in {torch.sparse_csc, torch.sparse_bsc}:
is_batch = t.ccol_indices().ndim > 1
else:
is_batch = None
if t.layout in {torch.sparse_bsr, torch.sparse_bsc}:
blocksize = t.values().shape[1:3]
nontrivial_blocksize = 1 not in blocksize
else:
nontrivial_blocksize = None
if t.layout in {torch.sparse_csr, torch.sparse_bsr}:
contiguous_indices = t.crow_indices().is_contiguous() and t.col_indices().is_contiguous()
contiguous_values = t.values().is_contiguous()
elif t.layout in {torch.sparse_csc, torch.sparse_bsc}:
contiguous_indices = t.ccol_indices().is_contiguous() and t.row_indices().is_contiguous()
contiguous_values = t.values().is_contiguous()
elif t.layout is torch.sparse_coo:
contiguous_indices = t._indices().is_contiguous()
contiguous_values = t._values().is_contiguous()
else:
contiguous_indices = None
contiguous_values = t.is_contiguous()
tested_combinations.add((t.layout, is_hybrid, is_batch, nontrivial_blocksize,
contiguous_indices, contiguous_values))
# Ensure that the inputs generation covers all layout,
# non-hybrid/hybrid, non-batch/batch, and contiguity
# combinations:
untested_combinations = set()
for layout in layouts:
for is_hybrid in [False, True]:
if layout is torch.strided:
is_hybrid = None
for is_batch in [False, True]:
if layout in {torch.sparse_coo, torch.strided}:
is_batch = None
for nontrivial_blocksize in [False, True]:
if layout not in {torch.sparse_bsr, torch.sparse_bsc}:
nontrivial_blocksize = None
for contiguous_indices in [False, True]:
if layout is torch.strided:
contiguous_indices = None
elif not is_batch:
# indices are contiguous per-patch
contiguous_indices = True
for contiguous_values in [False, True]:
key = (layout, is_hybrid, is_batch, nontrivial_blocksize,
contiguous_indices, contiguous_values)
if key not in tested_combinations:
untested_combinations.add(
f'layout={layout}, is_hybrid={is_hybrid}, is_batch={is_batch},'
f' nontrivial_blocksize={nontrivial_blocksize},'
f' contiguous_indices{contiguous_indices}, contiguous_values={contiguous_values}')
assert not untested_combinations, untested_combinations
@all_sparse_layouts('layout', include_strided=False)
def test_constructor_autograd(self, device, layout):
def specific_constructor(*args, **kwargs):
if layout is torch.sparse_csr:
return torch.sparse_csr_tensor(*args, **kwargs)
elif layout is torch.sparse_csc:
return torch.sparse_csc_tensor(*args, **kwargs)
elif layout is torch.sparse_bsc:
return torch.sparse_bsc_tensor(*args, **kwargs)
elif layout is torch.sparse_bsr:
return torch.sparse_bsr_tensor(*args, **kwargs)
elif layout is torch.sparse_coo:
return torch.sparse_coo_tensor(*args, **kwargs)
else:
raise NotImplementedError(layout)
def generic_constructor(*args, **kwargs):
if layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}:
kwargs.update(layout=layout)
return torch.sparse_compressed_tensor(*args, **kwargs)
elif layout is torch.sparse_coo:
return torch.sparse_coo_tensor(*args, **kwargs)
else:
raise NotImplementedError(layout)
if layout is torch.sparse_coo:
constructors = (specific_constructor,)
else:
constructors = (specific_constructor, generic_constructor)
for args, kwargs in self.generate_simple_inputs(
layout, device=device, dtype=torch.float64,
enable_batch=False, # TODO: remove after gh-104868 is resolved
output_tensor=False):
values_offset = 1 if layout is torch.sparse_coo else 2
for cnstr in constructors:
for requires_grad in (False, True):
values = args[values_offset].detach().requires_grad_(requires_grad)
args = (*args[:values_offset], values, *args[values_offset + 1:])
kwargs_ = dict(kwargs)
args_ = args + (kwargs_.pop('size'),)
sparse = cnstr(*args, **kwargs)
self.assertEqual(sparse.requires_grad, requires_grad)
if requires_grad:
for masked in (False, True):
if layout is torch.sparse_coo:
torch.autograd.gradcheck(
lambda i, v: cnstr(i, v, **kwargs).to_dense(masked_grad=masked),
args, masked=masked)
torch.autograd.gradcheck(
lambda i, v, sz: cnstr(i, v, sz, **kwargs_).to_dense(masked_grad=masked),
args_, masked=masked)
else:
if layout in {torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} and 0:
# TODO: remove this if-block after gh-107370 is resolved
continue
torch.autograd.gradcheck(
lambda ci, pi, v: cnstr(ci, pi, v, **kwargs).to_dense(masked_grad=masked),
args, masked=masked)
torch.autograd.gradcheck(
lambda ci, pi, v, sz: cnstr(ci, pi, v, sz, **kwargs_).to_dense(masked_grad=masked),
args_, masked=masked)
@all_sparse_layouts('from_layout', include_strided=False)
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
@parametrize("index_dtype", [torch.int32, torch.int64])
def test_to_dense(self, from_layout, device, dtype, index_dtype):
"""
This test tests conversion from any layout to strided layout.
"""
for t in self.generate_simple_inputs(
from_layout, device=device, dtype=dtype, index_dtype=index_dtype):
r = t.to_dense()
self.assertEqual(r.layout, torch.strided)
self.assertEqual(r, t)
@all_sparse_layouts('from_layout', include_strided=False)
@dtypes(torch.float64, torch.complex128)
@parametrize("index_dtype", [torch.int64])
@gradcheck_semantics()
def test_gradcheck_to_dense(self, from_layout, device, dtype, index_dtype, gradcheck):
for t in self.generate_simple_inputs(
from_layout, device=device, dtype=dtype, index_dtype=index_dtype):
batch_dim = t.dim() - t.dense_dim() - t.sparse_dim()
if batch_dim > 0:
# TODO: implement batch support in _convert_indices_from_csr_to_coo
continue
t = t.clone().detach().requires_grad_(True)
r = gradcheck(lambda x: torch.Tensor.to_dense(x, masked_grad=gradcheck.masked), t)
self.assertTrue(r)
@all_sparse_layouts('from_layout', include_strided=True)
@all_sparse_layouts('to_layout', include_strided=False)
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
@parametrize("index_dtype", [torch.int32, torch.int64])
def test_to_sparse(self, from_layout, to_layout, device, dtype, index_dtype):
"""
This test tests conversion from any layout to any sparse layout.
"""
for t in self.generate_simple_inputs(
from_layout, device=device, dtype=dtype, index_dtype=index_dtype,
enable_hybrid=(
# TODO: to support conversion strided->hybrid
# CSR/CSC/BSR/BSC, to_sparse() requires extra keyword
# argument, either nof_batch_dims or
# nof_dense_dims
not (from_layout is torch.strided and to_layout in
{torch.sparse_bsr, torch.sparse_bsc, torch.sparse_csr, torch.sparse_csc}))):
if to_layout in {torch.sparse_bsr, torch.sparse_bsc}:
if from_layout == torch.sparse_bsr:
batch_ndim = t.crow_indices().dim() - 1
blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3]
elif from_layout == torch.sparse_bsc:
batch_ndim = t.ccol_indices().dim() - 1
blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3]
else:
blocksize = (1, 1)
else:
blocksize = None
if from_layout is torch.strided:
is_batch = None
is_hybrid = None
else:
is_batch = t.dim() > (t.sparse_dim() + t.dense_dim())
is_hybrid = t.dense_dim() > 0
def explicit_to_sparse(x):
# Used to check that the explicit conversion methods
# are consistent with the `to_sparse(*, layout,
# blocksize)` method.
if to_layout is torch.sparse_coo:
return x.to_sparse_coo()
elif to_layout is torch.sparse_csr:
return x.to_sparse_csr()
elif to_layout is torch.sparse_csc:
return x.to_sparse_csc()
elif to_layout is torch.sparse_bsr:
return x.to_sparse_bsr(blocksize)
elif to_layout is torch.sparse_bsc:
return x.to_sparse_bsc(blocksize)
else:
assert 0 # unreachable
# TODO: The following exception cases all correspond to
# not implemented conversions
if from_layout in {
torch.sparse_csr, torch.sparse_csc} and to_layout in {torch.sparse_bsr, torch.sparse_bsc} and is_batch:
with self.assertRaisesRegex(
RuntimeError,
r"conversion from Sparse(Csr|Csc) to Sparse(Bsr|Bsc) for batched inputs is not supported"):
t.to_sparse(layout=to_layout, blocksize=blocksize)
with self.assertRaisesRegex(
RuntimeError,
r"conversion from Sparse(Csr|Csc) to Sparse(Bsr|Bsc) for batched inputs is not supported"):
explicit_to_sparse(t)
continue
elif from_layout is torch.sparse_coo and to_layout in {
torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} and t.sparse_dim() != 2:
with self.assertRaisesRegex(
RuntimeError,
r"conversion from Sparse to .* for input tensors with sparse_dim\(\)!=2 is not supported"):
t.to_sparse(layout=to_layout, blocksize=blocksize)
with self.assertRaisesRegex(
RuntimeError,
r"conversion from Sparse to .* for input tensors with sparse_dim\(\)!=2 is not supported"):
explicit_to_sparse(t)
continue
elif (from_layout, to_layout) in {(torch.sparse_bsc, torch.sparse_csr), (torch.sparse_bsc, torch.sparse_csc),
(torch.sparse_bsr, torch.sparse_csr), (torch.sparse_bsr, torch.sparse_csc)}:
with self.assertRaisesRegex(
RuntimeError,
r"sparse_compressed_to_sparse_(csr|csc|bsr|bsc): expected\s*(Sparse(Csc|Csr)[,]|)\s*Sparse(Csr|Bsr)"
" or Sparse(Csc|Bsc) layout but got Sparse(Csr|Csc|Bsr|Bsc)"):
t.to_sparse(layout=to_layout, blocksize=blocksize)
with self.assertRaisesRegex(
RuntimeError,
r"sparse_compressed_to_sparse_(csr|csc|bsr|bsc): expected\s*(Sparse(Csc|Csr)[,]|)\s*Sparse(Csr|Bsr)"
" or Sparse(Csc|Bsc) layout but got Sparse(Csr|Csc|Bsr|Bsc)"):
explicit_to_sparse(t)
self.skipTest('NOT IMPL')
else:
r = t.to_sparse(layout=to_layout, blocksize=blocksize)
self.assertEqual(r.layout, to_layout)
# to_sparse method uses unsafe construction of sparse
# tensors. Here we explicitly validate the results to
# make sure that the sparse tensors are consistent
# with the corresponding sparse tensor invariants.
if r.layout in {torch.sparse_csr, torch.sparse_bsr, torch.sparse_csc, torch.sparse_bsc}:
if r.layout in {torch.sparse_csr, torch.sparse_bsr}:
compressed_indices, plain_indices = r.crow_indices(), r.col_indices()
else:
compressed_indices, plain_indices = r.ccol_indices(), r.row_indices()
torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, r.values(),
r.shape, r.layout)
if from_layout in {torch.strided, torch.sparse_coo}:
self.assertEqual(compressed_indices.dtype, torch.int64)
self.assertEqual(plain_indices.dtype, torch.int64)
else:
self.assertEqual(compressed_indices.dtype, index_dtype)
self.assertEqual(plain_indices.dtype, index_dtype)
self.assertEqual(r.values().dtype, dtype)
elif r.layout is torch.sparse_coo:
if t.layout is torch.sparse_coo:
self.assertEqual(t.is_coalesced(), r.is_coalesced())
# Check r is truly coalesced when r.is_coalesced == True
if r.is_coalesced():
self.assertTrue(is_coalesced_indices(r))
torch._validate_sparse_coo_tensor_args(r._indices(), r._values(), r.shape)
self.assertEqual(r._indices().dtype, torch.int64)
self.assertEqual(r._values().dtype, dtype)
else:
assert 0 # unreachable
# Finally, we'll test tensor equality:
self.assertEqual(r, t)
# Also, check consistency with explicit conversion methods:
r2 = explicit_to_sparse(t)
self.assertEqual(r2, r)
# Check inverse conversion from sparse compressed block tensors
if from_layout == torch.sparse_bsr:
batch_ndim = t.crow_indices().dim() - 1
from_blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3]
elif from_layout == torch.sparse_bsc:
batch_ndim = t.ccol_indices().dim() - 1
from_blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3]
else:
continue
if r.ndim != 2:
continue
t2 = r.to_sparse(layout=from_layout, blocksize=from_blocksize)
self.assertEqual(t2, t)
# extra tests
if (from_layout, to_layout) == (torch.sparse_csr, torch.sparse_bsr):
# See gh-90910
t = torch.tensor([[0, 0, 1, 0], [0, 1, 0, 0]], dtype=dtype, device=device).to_sparse_csr()
r = t.to_sparse_bsr((2, 2))
torch._validate_sparse_compressed_tensor_args(r.crow_indices(), r.col_indices(), r.values(), r.shape, r.layout)
self.assertEqual(r, t)
if (from_layout, to_layout) in {(torch.sparse_csr, torch.sparse_csc),
(torch.sparse_csc, torch.sparse_csr)}:
# See gh-91007
compressed_indices = torch.tensor([0, 4, 8, 8, 12, 16, 20], dtype=index_dtype, device=device)
plain_indices = torch.tensor([0, 1, 2, 3] * 5, dtype=index_dtype, device=device)
t = torch.sparse_compressed_tensor(compressed_indices, plain_indices, range(20),
dtype=dtype, device=device, layout=from_layout)
r = t.to_sparse(layout=to_layout)
if r.layout in {torch.sparse_csr, torch.sparse_bsr}:
compressed_indices, plain_indices = r.crow_indices(), r.col_indices()
else:
compressed_indices, plain_indices = r.ccol_indices(), r.row_indices()
torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, r.values(), r.shape, r.layout)
self.assertEqual(r, t)
@onlyNativeDeviceTypes
@suppress_warnings
@ops(reduction_ops_with_sparse_support)
@precisionOverride({torch.bfloat16: 5e-4, torch.float16: 5e-3})
@all_sparse_layouts('layout', include_strided=False)
def test_reductions(self, layout, device, dtype, op):
count = 0
for sample in op.sample_inputs_sparse(layout, device, dtype):
count += 1
t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs
result = op.op(t_inp, *t_args, **t_kwargs)
# Checking invariant rop(inp, ...).to_dense() == rop(inp.to_dense(), ...)
dense = op.op(t_inp.to_dense(), *t_args, **t_kwargs)
self.assertEqual(result, dense)
if count == 0:
# we count samples to avoid false-positive test reports
self.skipTest('no sample inputs')
@onlyNativeDeviceTypes
@suppress_warnings
@ops(reduction_ops_with_sparse_support, allowed_dtypes=(torch.float32, torch.float64, torch.complex64, torch.complex128))
@all_sparse_layouts('layout', include_strided=False)
def test_reductions_backward(self, layout, device, dtype, op):
count = 0
for sample in op.sample_inputs_sparse(layout, device, dtype, requires_grad=True):
t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs
r = op.op(t_inp, *t_args, **t_kwargs)
if r.numel() != 0:
r = r.sum()
if op.name == 'sum':
count += 1
r.abs().backward()
self.assertEqual(t_inp.grad, torch.ones(t_inp.shape, dtype=dtype, device=device) * torch.sgn(r))
else:
self.skipTest('NOT IMPL')
if count == 0:
# we count samples to avoid false-positive test reports
self.skipTest('no sample inputs')
@onlyNativeDeviceTypes
@suppress_warnings
@parametrize("mth", [subtest(mth, name=mth.__name__)
for mth in [torch.Tensor.is_coalesced,
torch.Tensor.coalesce,
torch.Tensor.indices,
torch.Tensor.values,
torch.Tensor.crow_indices,
torch.Tensor.col_indices,
torch.Tensor.ccol_indices,
torch.Tensor.row_indices,
]])
@all_sparse_layouts('layout', include_strided=True)
def test_unsupported_backend_error_message(self, mth, layout, device):
inp = torch.tensor([[1, 2], [3, 4]], device=device).to_sparse(
layout=layout,
blocksize=(1, 1) if layout in {torch.sparse_bsr, torch.sparse_bsc} else None)
assert inp.layout is layout
expected_behaviour = dict(
# <mth name> = (<supported layouts>, <exception message on other layouts>)
is_coalesced=({torch.sparse_coo},
"is_coalesced expected sparse coordinate tensor layout but got (Sparse(Csr|Csc|Bsr|Bsc)|Strided)"),
coalesce=({torch.sparse_coo},
"coalesce expected sparse coordinate tensor layout but got (Sparse(Csr|Csc|Bsr|Bsc)|Strided)"),
indices=({torch.sparse_coo},
"indices expected sparse coordinate tensor layout but got (Sparse(Csr|Csc|Bsr|Bsc)|Strided)"),
values=({torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc},
"values expected sparse tensor layout but got Strided"),
crow_indices=({torch.sparse_csr, torch.sparse_bsr},
"crow_indices expected sparse row compressed tensor layout but got (Sparse(Csc|Bsc|)|Strided)"),
col_indices=({torch.sparse_csr, torch.sparse_bsr},
"col_indices expected sparse row compressed tensor layout but got (Sparse(Csc|Bsc|)|Strided)"),
ccol_indices=({torch.sparse_csc, torch.sparse_bsc},
"ccol_indices expected sparse column compressed tensor layout but got (Sparse(Csr|Bsr|)|Strided)"),
row_indices=({torch.sparse_csc, torch.sparse_bsc},
"row_indices expected sparse column compressed tensor layout but got (Sparse(Csr|Bsr|)|Strided)"),
)[mth.__name__]
if layout in expected_behaviour[0]:
mth(inp)
else:
with self.assertRaisesRegex(RuntimeError, expected_behaviour[1]):
mth(inp)
@onlyNativeDeviceTypes
@all_sparse_layouts('layout', include_strided=not True)
@dtypes(torch.float64, torch.cdouble)
@parametrize("masked", [subtest(False, name='sparse'), subtest(True, name='masked')])
@parametrize("fast_mode", [subtest(False, name='slow'), subtest(True, name='fast')])
def test_gradcheck_mm(self, layout, dtype, device, masked, fast_mode):
# This function does not check the following cases:
# - batch or hybrid tensors because addmm does not support
# such inputs yet
# - check_forward_ad=True because of the lack of sparse tensor
# support in aten::view_as_real, torch._VF._make_dual, etc.
ref_x = torch.tensor([[1, 2, 0, 0],
[0, 6, 0, 0],
[0, 0, 0, 0],
[13, 14, 0, 15]], dtype=dtype, device=device)
ref_y = torch.tensor([[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34],
[41, 42, 43, 44]],
dtype=dtype, device=device)
mm = torch.sparse.mm if masked else torch.mm
blocksize = (2, 2) if layout in {torch.sparse_bsr, torch.sparse_bsc} else None
x = ref_x.to_sparse(layout=layout, blocksize=blocksize).requires_grad_(True)
y = ref_y.requires_grad_(True)
if layout is torch.sparse_bsr and not masked or layout is torch.sparse_bsc:
with self.assertRaisesRegex(
RuntimeError,
r"addmm: computation on (CPU|CUDA) is not implemented for Strided \+ Sparse(Bsr|Bsc) @ Strided"):
torch.autograd.gradcheck(mm, (x, y), fast_mode=fast_mode, masked=masked)
self.skipTest('NOT IMPL')
elif layout in {torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} and masked:
with self.assertRaisesRegex(
RuntimeError,
r"(sparse_addmm_sparse_backward: unsupported combination of layouts,"
r" grad: Strided, mat1: Sparse(Csc|Bsr|Bsc), mat2: Strided"
r"|addmm: computation on (CPU|CUDA) is not implemented for "
r"Strided \+ Sparse(Csc|Bsr|Bsc) @ Strided without MKL)"):
torch.autograd.gradcheck(mm, (x, y), fast_mode=fast_mode, masked=masked)
self.skipTest('NOT IMPL')
else:
torch.autograd.gradcheck(mm, (x, y), fast_mode=fast_mode, masked=masked)
@onlyNativeDeviceTypes
@suppress_warnings
@ops(binary_ufuncs_with_sparse_support)
@all_sparse_layouts('layout', include_strided=False)
def test_binary_operation(self, layout, device, dtype, op):
if not op.supports_sparse_layout(layout):
self.skipTest(f'{layout} is not supported in `{op.name}` OpInfo definition. Skipping!')
for sample in op.sample_inputs_sparse(layout, device, dtype):
if validate_sample_input_sparse(op, sample, check_validate=False) is not sample:
# that is, the validation returns the sparse sample
# wrapped within ErrorInput instance
continue
t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs
batch_dim = t_inp.dim() - t_inp.dense_dim() - t_inp.sparse_dim()
result = op.op(t_inp, *t_args, **t_kwargs)
# Check rop(inp, ...).shape == inp.shape
self.assertEqual(result.shape, t_inp.shape)
# Check rop(inp, ...).sparse_dim() == inp.sparse_dim()
self.assertEqual(result.sparse_dim(), t_inp.sparse_dim())
# Check rop(inp, ...).dense_dim() == inp.dense_dim()
self.assertEqual(result.dense_dim(), t_inp.dense_dim())
# Check invariant rop(inp, ...).to_dense() == rop(inp.to_dense(), ...)
try:
dense = op.op(t_inp.to_dense(), *(t_args[0].to_dense(), *t_args[1:]), **t_kwargs)
except Exception as msg:
# this is strided op issue, so skipping the sample silently here
if "\"cpublas_axpy_impl\" not implemented for 'ComplexHalf'" in str(msg):
continue
raise
self.assertEqual(result, dense)
@onlyCPU
@all_sparse_layouts('layout', include_strided=True)
@dtypes(torch.double)
def test_to_sparse_identity(self, device, layout, dtype):
for dense_dim in range(4):
x_dense = torch.eye(dense_dim, dtype=dtype, device=device)
for sparse_dim_in in range(1, dense_dim):
x_sparse = x_dense.to_sparse(sparse_dim_in)
for sparse_dim_out in range(0, dense_dim):
if sparse_dim_out == sparse_dim_in:
self.assertTrue(x_sparse.to_sparse(sparse_dim_out).sparse_dim() == sparse_dim_out)
else:
with self.assertRaisesRegex(
RuntimeError,
r"to_sparse: conversion from Sparse to Sparse with sparse_dim argument !=self.sparse_dim\(\)"
" is not supported"):
x_sparse.to_sparse(sparse_dim_out)
@onlyNativeDeviceTypes
@suppress_warnings
@ops(like_fns_with_sparse_support)
@all_sparse_layouts('layout', include_strided=False)
def test_like_fns(self, layout, device, dtype, op):
for sample in op.sample_inputs_sparse(layout, device, dtype):
t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs
batch_dim = t_inp.dim() - t_inp.dense_dim() - t_inp.sparse_dim()
if t_inp.layout in {torch.sparse_bsr, torch.sparse_bsc}:
expected_blocksize = t_inp.values().shape[batch_dim + 1:batch_dim + 3]
else:
expected_blocksize = None
expected_dtype = t_kwargs.get('dtype', dtype)
expected_device = torch.device(t_kwargs.get('device', device))
expected_layout = t_kwargs.get('layout', layout)
result = op.op(t_inp, *t_args, **t_kwargs)
self.assertEqual(result.dtype, expected_dtype)
self.assertEqual(result.device.type, expected_device.type)
self.assertEqual(result.layout, expected_layout)
if result.layout in {torch.sparse_bsr, torch.sparse_bsc}:
result_batch_dim = result.dim() - result.dense_dim() - result.sparse_dim()
blocksize = result.values().shape[result_batch_dim + 1:result_batch_dim + 3]
self.assertEqual(blocksize, expected_blocksize)
# Check op(inp).shape == inp.shape
self.assertEqual(result.shape, t_inp.shape)
if expected_layout is torch.strided:
self.assertEqual(result.sparse_dim(), 0)
# Check op(inp, layout=torch.strided).dense_dim() == inp.dim()
self.assertEqual(result.dense_dim(), t_inp.dim())
elif expected_layout is torch.sparse_coo:
# Check op(inp, layout=torch.sparse_coo).sparse_dim() == batch_dim + inp.sparse_dim()
self.assertEqual(result.sparse_dim(), batch_dim + t_inp.sparse_dim())
# Check op(inp, layout=torch.sparse_coo).dense_dim() == inp.dense_dim()
self.assertEqual(result.dense_dim(), t_inp.dense_dim())
torch._validate_sparse_coo_tensor_args(result._indices(), result._values(), result.shape)
else:
# Check op(inp).sparse_dim() == inp.sparse_dim()
self.assertEqual(result.sparse_dim(), t_inp.sparse_dim())
# Check op(inp).dense_dim() == inp.dense_dim()
self.assertEqual(result.dense_dim(), t_inp.dense_dim())
if result.layout in {torch.sparse_csr, torch.sparse_bsr}:
compressed_indices, plain_indices = result.crow_indices(), result.col_indices()
else:
compressed_indices, plain_indices = result.ccol_indices(), result.row_indices()
torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, result.values(),
result.shape, result.layout)
@all_sparse_layouts('mask_layout', include_strided=False)
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_sparse_mask(self, mask_layout, device, dtype):
input_layout = torch.strided
mask_dtype = torch.bool
for mask in self.generate_simple_inputs(mask_layout, dtype=mask_dtype, device=device,
enable_hybrid=False, enable_batch=False):
x = make_tensor(mask.shape, dtype=dtype, device=device).to_sparse(layout=input_layout)
result = x.sparse_mask(mask)
# Check invariant `x.sparse_mask(mask).<indices> == mask.<indices>`
if mask_layout is torch.sparse_coo:
self.assertEqual(result._indices(), mask._indices())
ones = torch.sparse_coo_tensor(mask._indices(),
torch.ones_like(mask._values(), dtype=x.dtype),
mask.shape,
is_coalesced=mask.is_coalesced())
elif mask_layout in {torch.sparse_csr, torch.sparse_bsr}:
self.assertEqual(result.crow_indices(), mask.crow_indices())
self.assertEqual(result.col_indices(), mask.col_indices())
ones = torch.sparse_compressed_tensor(mask.crow_indices(), mask.col_indices(),
torch.ones_like(mask.values(), dtype=x.dtype),
mask.shape, layout=mask.layout)
else:
self.assertEqual(result.ccol_indices(), mask.ccol_indices())
self.assertEqual(result.row_indices(), mask.row_indices())
ones = torch.sparse_compressed_tensor(mask.ccol_indices(), mask.row_indices(),
torch.ones_like(mask.values(), dtype=x.dtype),
mask.shape, layout=mask.layout)
# Check invariant:
# x.sparse_mask(mask).to_dense() == x.mul(sparse_xyz_tensor(<mask indices>,
# ones_like(<mask values>)).to_dense())
expected = x.mul(ones.to_dense())
self.assertEqual(result.to_dense(), expected)
# Check invariant `mask.to_dense().sparse_mask(mask) == mask`
result = mask.to_dense().sparse_mask(mask)
self.assertEqual(result, mask)
@all_sparse_layouts('layout', include_strided=False)
@parametrize("masked", [subtest(False, name='nonmasked'), subtest(True, name='masked')])
@parametrize("fast_mode", [subtest(False, name='slow'), subtest(True, name='fast')])
def test_as_sparse_gradcheck(self, layout, device, masked, fast_mode):
gradcheck = torch.sparse.as_sparse_gradcheck(torch.autograd.gradcheck)
sparse_compressed_layouts = {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}
def identity(x):
return x
for func in (torch.Tensor.to_dense,
torch.Tensor.sum,
identity,
torch.Tensor.to_sparse,
torch.Tensor.values,
):
for x in self.generate_simple_inputs(
layout,
device=device,
dtype=torch.float64,
# TODO: fix gh-104868 to enable batched samples:
enable_batch=layout not in sparse_compressed_layouts,
enable_hybrid=not (
layout in sparse_compressed_layouts and (
# FIXME: RuntimeError: sparse_mask(): the
# number of sparse dimensions in `self`
# should match that of the `mask`. Got
# `self.sparse_dim() == 3` !=
# `mask.sparse_dim() == 2
func.__name__ == 'sum'
# FIXME: RuntimeError: expected
# col_indices to be a contiguous tensor
# per batch
or func.__name__ == 'to_sparse'
))):
if layout is torch.sparse_coo and func.__name__ == 'values':
x = x.coalesce()
gradcheck(func, x.requires_grad_(True), masked=masked, fast_mode=fast_mode)
@onlyCPU
@all_sparse_layouts('layout', include_strided=False)
@dtypes(torch.double)
def test_dataloader(self, device, layout, dtype):
data = list(self.generate_simple_inputs(layout, device=device, dtype=dtype))
dataset = _SparseDataset(data)
loader = torch.utils.data.DataLoader(dataset, batch_size=None, num_workers=2)
loaded_data = list(loader)
self.assertEqual(data, loaded_data)
@onlyCPU
def test_invalid_blocksize(self):
# Blocksize should be a tuple/list/torch.Size containing two values
with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 1"):
torch.randn(1).to_sparse(blocksize=(1,))
with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 1"):
torch.randn(1).to_sparse(blocksize=[1])
with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 1"):
torch.randn(1).to_sparse(blocksize=torch.Size((1,)))
with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 3"):
torch.randn(1).to_sparse(blocksize=(1, 1, 1))
with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 3"):
torch.randn(1).to_sparse(blocksize=[1, 1, 1])
with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 3"):
torch.randn(1).to_sparse(blocksize=torch.Size((1, 1, 1)))
@unittest.skipIf(not torch.cuda.is_available(), 'requires cuda')
@onlyCPU
@all_sparse_layouts('layout', include_strided=True)
def test_constructor_pin_memory(self, device, layout):
"""Tests sparse_xyz_tensor(indices, values, pin_memory=True)
"""
self.assertEqual(device, "cpu")
for t in self.generate_simple_inputs(
layout, device=device, dtype=torch.float64,
enable_zero_sized=False, # pinning zero-sized tensors is a no-op
pin_memory=True,
enable_batch=False, # TODO: remove after gh-104868 is resolved
):
if layout is torch.sparse_coo:
self.assertTrue(t._indices().is_pinned())
self.assertTrue(t._values().is_pinned())
elif layout in {torch.sparse_csr, torch.sparse_bsr}:
self.assertTrue(t.crow_indices().is_pinned())
self.assertTrue(t.col_indices().is_pinned())
self.assertTrue(t.values().is_pinned())
elif layout in {torch.sparse_csc, torch.sparse_bsc}:
self.assertTrue(t.ccol_indices().is_pinned())
self.assertTrue(t.row_indices().is_pinned())
self.assertTrue(t.values().is_pinned())
elif layout is torch.strided:
pass
else:
assert 0 # unreachable
self.assertTrue(t.is_pinned())
@unittest.skipIf(not torch.cuda.is_available(), 'requires cuda')
@onlyCPU
@all_sparse_layouts('layout', include_strided=True)
def test_method_pin_memory(self, device, layout):
"""Tests sparse_xyz_tensor(indices, values, pin_memory=False).pin_memory()
"""
for t_ in self.generate_simple_inputs(
layout, device=device, dtype=torch.float64,
enable_zero_sized=False, # pinning zero-sized tensors is a no-op
pin_memory=False, # no pinning
enable_batch=False, # TODO: remove after gh-104868 is resolved
):
t = t_.pin_memory()
self.assertTrue(t.is_pinned())
# registering a non-pinned tensor with CUDA memory is a
# clone operation
self.assertFalse(t_.is_pinned())
# registering already pinned tensor with CUDA memory is an
# identity operation:
t2 = t.pin_memory()
self.assertTrue(t2 is t)
if layout is torch.sparse_coo:
self.assertTrue(t._indices().is_pinned())
self.assertTrue(t._values().is_pinned())
self.assertFalse(t_._indices().is_pinned())
self.assertFalse(t_._values().is_pinned())
elif layout in {torch.sparse_csr, torch.sparse_bsr}:
self.assertTrue(t.crow_indices().is_pinned())
self.assertTrue(t.col_indices().is_pinned())
self.assertTrue(t.values().is_pinned())
self.assertFalse(t_.crow_indices().is_pinned())
self.assertFalse(t_.col_indices().is_pinned())
self.assertFalse(t_.values().is_pinned())
elif layout in {torch.sparse_csc, torch.sparse_bsc}:
self.assertTrue(t.ccol_indices().is_pinned())
self.assertTrue(t.row_indices().is_pinned())
self.assertTrue(t.values().is_pinned())
self.assertFalse(t_.ccol_indices().is_pinned())
self.assertFalse(t_.row_indices().is_pinned())
self.assertFalse(t_.values().is_pinned())
elif layout is torch.strided:
pass
else:
assert 0 # unreachable
@unittest.skipIf(not torch.cuda.is_available(), 'requires cuda')
@onlyCPU
@all_sparse_layouts('layout', include_strided=True)
def test_constructor_pinned_memory(self, device, layout):
"""Tests sparse_xyz_tensor(indices.pin_memory(device), values.pin_memory(device))
"""
pin_memory_device = "cuda"
for t in self.generate_simple_inputs(
layout, device=device, dtype=torch.float64,
enable_zero_sized=False, # pinning zero-sized tensors is a no-op
pin_memory=None, # constructor does not specify pin_memory=...
members_pin_memory=True, # indices and values are pinned
enable_batch=False, # TODO: remove after gh-104868 is resolved
):
if layout is torch.sparse_coo:
self.assertTrue(t._indices().is_pinned())
self.assertTrue(t._values().is_pinned())
elif layout in {torch.sparse_csr, torch.sparse_bsr}:
self.assertTrue(t.crow_indices().is_pinned())
self.assertTrue(t.col_indices().is_pinned())
self.assertTrue(t.values().is_pinned())
elif layout in {torch.sparse_csc, torch.sparse_bsc}:
self.assertTrue(t.ccol_indices().is_pinned())
self.assertTrue(t.row_indices().is_pinned())
self.assertTrue(t.values().is_pinned())
elif layout is torch.strided:
pass
else:
assert 0 # unreachable
self.assertTrue(t.is_pinned())
@unittest.skipIf(not torch.cuda.is_available(), 'requires cuda')
@onlyCPU
@all_sparse_layouts('layout', include_strided=False)
def test_constructor_mismatched_pinned_memory(self, device, layout):
"""Test the failure to construct sparse tensor from indices and values
that have different pinning states.
"""
def generic_constructor(*args, **kwargs):
if layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}:
kwargs.update(layout=layout)
return torch.sparse_compressed_tensor(*args, **kwargs)
elif layout is torch.sparse_coo:
return torch.sparse_coo_tensor(*args, **kwargs)
else:
raise NotImplementedError(layout)
for args, kwargs in self.generate_simple_inputs(
layout, device=device, dtype=torch.float64,
enable_zero_sized=False, # pinning zero-sized tensors is a no-op
enable_batch=False, # TODO: remove after gh-104868 is resolved
output_tensor=False):
# indices are pinned, values is a non-pinned tensor
args1 = (args[0].pin_memory(), *args[1:])
# indices are non-pinned, values is a pinned tensor
args2 = (*args[:-1], args[-1].pin_memory())
with self.assertRaisesRegex(
RuntimeError, r"memory pinning of \w*indices \(=1\) must match memory pinning of values \(=0\)"):
generic_constructor(*args1, **kwargs)
with self.assertRaisesRegex(
RuntimeError, r"memory pinning of \w*indices \(=0\) must match memory pinning of values \(=1\)"):
generic_constructor(*args2, **kwargs)
# e.g., TestSparseUnaryUfuncsCPU and TestSparseUnaryUfuncsCUDA
instantiate_device_type_tests(TestSparseUnaryUfuncs, globals(), except_for='meta')
instantiate_device_type_tests(TestSparseMaskedReductions, globals(), except_for='meta')
# e.g., TestSparseCPU and TestSparseCUDA
instantiate_device_type_tests(TestSparse, globals(), except_for='meta')
instantiate_device_type_tests(TestSparseAny, globals(), except_for='meta')
instantiate_parametrized_tests(TestSparseMeta)
instantiate_parametrized_tests(TestSparseLegacyAndDeprecation)
if __name__ == '__main__':
run_tests()