pytorch/torch/autograd/graph.py
IvanLauLinTiong 91c90f232a Fix docstring errors in reductions.py, spawn.py, pool.py, parameter.py, cpp.py, grad.py, __init__.py, profiler.py, queue.py, graph.py (#113052)
Fixes #112595
- `torch/autograd/profiler.py` </br>
**Before: 37**

```
torch/autograd/profiler.py:1 at module level:
        D100: Missing docstring in public module
torch/autograd/profiler.py:91 in public class `profile`:
        D205: 1 blank line required between summary line and description (found 0)
torch/autograd/profiler.py:175 in public method `__init__`:
        D107: Missing docstring in __init__
torch/autograd/profiler.py:261 in public method `config`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:272 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:290 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:308 in public method `__repr__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:313 in public method `__str__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:322 in public method `table`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:346 in public method `export_chrome_trace`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:355 in public method `export_stacks`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:361 in public method `key_averages`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:368 in public method `total_average`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:377 in public method `self_cpu_time_total`:
        D205: 1 blank line required between summary line and description (found 0)
torch/autograd/profiler.py:377 in public method `self_cpu_time_total`:
        D400: First line should end with a period (not 'f')
torch/autograd/profiler.py:555 in public class `record_function`:
        D205: 1 blank line required between summary line and description (found 0)
torch/autograd/profiler.py:555 in public class `record_function`:
        D400: First line should end with a period (not 'f')
torch/autograd/profiler.py:591 in public method `__init__`:
        D107: Missing docstring in __init__
torch/autograd/profiler.py:602 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:608 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:625 in private method `_call_end_callbacks_on_future`:
        D205: 1 blank line required between summary line and description (found 0)
torch/autograd/profiler.py:625 in private method `_call_end_callbacks_on_future`:
        D400: First line should end with a period (not 'c')
torch/autograd/profiler.py:707 in public method `__init__`:
        D107: Missing docstring in __init__
torch/autograd/profiler.py:712 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:733 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:826 in public method `__init__`:
        D107: Missing docstring in __init__
torch/autograd/profiler.py:831 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:853 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:863 in public function `load_nvprof`:
        D401: First line should be in imperative mood (perhaps 'Open', not 'Opens')
torch/autograd/profiler.py:874 in public method `__init__`:
        D107: Missing docstring in __init__
torch/autograd/profiler.py:877 in public method `see`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:883 in public function `parse_nvprof_trace`:
        D103: Missing docstring in public function
torch/autograd/profiler.py:951 in public class `KinetoStepTracker`:
        D205: 1 blank line required between summary line and description (found 0)
torch/autograd/profiler.py:991 in public method `init_step_count`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:995 in public method `erase_step_count`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:1000 in public method `increment_step`:
        D205: 1 blank line required between summary line and description (found 0)
torch/autograd/profiler.py:1023 in public method `current_step`:
        D102: Missing docstring in public method
37
```

**After: 27**

```
torch/autograd/profiler.py:1 at module level:
        D100: Missing docstring in public module
torch/autograd/profiler.py:176 in public method `__init__`:
        D107: Missing docstring in __init__
torch/autograd/profiler.py:262 in public method `config`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:273 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:291 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:309 in public method `__repr__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:314 in public method `__str__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:323 in public method `table`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:347 in public method `export_chrome_trace`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:356 in public method `export_stacks`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:362 in public method `key_averages`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:369 in public method `total_average`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:593 in public method `__init__`:
        D107: Missing docstring in __init__
torch/autograd/profiler.py:604 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:610 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:708 in public method `__init__`:
        D107: Missing docstring in __init__
torch/autograd/profiler.py:713 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:734 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:827 in public method `__init__`:
        D107: Missing docstring in __init__
torch/autograd/profiler.py:832 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:854 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/autograd/profiler.py:875 in public method `__init__`:
        D107: Missing docstring in __init__
torch/autograd/profiler.py:878 in public method `see`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:884 in public function `parse_nvprof_trace`:
        D103: Missing docstring in public function
torch/autograd/profiler.py:993 in public method `init_step_count`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:997 in public method `erase_step_count`:
        D102: Missing docstring in public method
torch/autograd/profiler.py:1025 in public method `current_step`:
        D102: Missing docstring in public method
27
```

- `torch/autograd/graph.py` </br>
**Before: 22**

```
torch/autograd/graph.py:1 at module level:
        D100: Missing docstring in public module
torch/autograd/graph.py:24 in public class `Node`:
        D101: Missing docstring in public class
torch/autograd/graph.py:27 in public method `name`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/autograd/graph.py:42 in public method `next_functions`:
        D102: Missing docstring in public method
torch/autograd/graph.py:47 in public method `metadata`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/autograd/graph.py:56 in public method `register_hook`:
        D401: First line should be in imperative mood (perhaps 'Register', not 'Registers')
torch/autograd/graph.py:94 in public method `register_prehook`:
        D401: First line should be in imperative mood (perhaps 'Register', not 'Registers')
torch/autograd/graph.py:129 in public method `__subclasshook__`:
        D105: Missing docstring in magic method
torch/autograd/graph.py:147 in public function `get_gradient_edge`:
        D205: 1 blank line required between summary line and description (found 0)
torch/autograd/graph.py:147 in public function `get_gradient_edge`:
        D400: First line should end with a period (not 'f')
torch/autograd/graph.py:147 in public function `get_gradient_edge`:
        D401: First line should be in imperative mood; try rephrasing (found 'This')
torch/autograd/graph.py:166 in public function `increment_version`:
        D205: 1 blank line required between summary line and description (found 0)
torch/autograd/graph.py:166 in public function `increment_version`:
        D400: First line should end with a period (not 'd')
torch/autograd/graph.py:166 in public function `increment_version`:
        D401: First line should be in imperative mood; try rephrasing (found 'This')
torch/autograd/graph.py:243 in public method `__init__`:
        D107: Missing docstring in __init__
torch/autograd/graph.py:251 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/autograd/graph.py:256 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/autograd/graph.py:261 in public class `save_on_cpu`:
        D205: 1 blank line required between summary line and description (found 0)
torch/autograd/graph.py:261 in public class `save_on_cpu`:
        D400: First line should end with a period (not 'e')
torch/autograd/graph.py:303 in public method `__init__`:
        D107: Missing docstring in __init__
torch/autograd/graph.py:365 in public function `register_multi_grad_hook`:
        D401: First line should be in imperative mood (perhaps 'Register', not 'Registers')
torch/autograd/graph.py:588 in public function `allow_mutation_on_saved_tensors`:
        D400: First line should end with a period (not 'd')
22
```

**After: 8**

```
torch/autograd/graph.py:1 at module level:
        D100: Missing docstring in public module
torch/autograd/graph.py:24 in public class `Node`:
        D101: Missing docstring in public class
torch/autograd/graph.py:42 in public method `next_functions`:
        D102: Missing docstring in public method
torch/autograd/graph.py:129 in public method `__subclasshook__`:
        D105: Missing docstring in magic method
torch/autograd/graph.py:244 in public method `__init__`:
        D107: Missing docstring in __init__
torch/autograd/graph.py:252 in public method `__enter__`:
        D105: Missing docstring in magic method
torch/autograd/graph.py:257 in public method `__exit__`:
        D105: Missing docstring in magic method
torch/autograd/graph.py:303 in public method `__init__`:
        D107: Missing docstring in __init__
8
```

- `torch/multiprocessing/pool.py` </br>
**Before: 6**

```
torch/multiprocessing/pool.py:1 at module level:
        D100: Missing docstring in public module
torch/multiprocessing/pool.py:7 in public function `clean_worker`:
        D103: Missing docstring in public function
torch/multiprocessing/pool.py:18 in public class `Pool`:
        D205: 1 blank line required between summary line and description (found 0)
torch/multiprocessing/pool.py:18 in public class `Pool`:
        D209: Multi-line docstring closing quotes should be on a separate line
torch/multiprocessing/pool.py:29 in private method `_repopulate_pool`:
        D205: 1 blank line required between summary line and description (found 0)
torch/multiprocessing/pool.py:29 in private method `_repopulate_pool`:
        D400: First line should end with a period (not ',')
6
```

**After: 2**

```
torch/multiprocessing/pool.py:1 at module level:
        D100: Missing docstring in public module
torch/multiprocessing/pool.py:7 in public function `clean_worker`:
        D103: Missing docstring in public function
2
```

- `torch/multiprocessing/queue.py` </br>
**Before: 11**

```
torch/multiprocessing/queue.py:1 at module level:
        D100: Missing docstring in public module
torch/multiprocessing/queue.py:8 in public class `ConnectionWrapper`:
        D205: 1 blank line required between summary line and description (found 0)
torch/multiprocessing/queue.py:8 in public class `ConnectionWrapper`:
        D209: Multi-line docstring closing quotes should be on a separate line
torch/multiprocessing/queue.py:8 in public class `ConnectionWrapper`:
        D400: First line should end with a period (not 'o')
torch/multiprocessing/queue.py:11 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/queue.py:14 in public method `send`:
        D102: Missing docstring in public method
torch/multiprocessing/queue.py:19 in public method `recv`:
        D102: Missing docstring in public method
torch/multiprocessing/queue.py:23 in public method `__getattr__`:
        D105: Missing docstring in magic method
torch/multiprocessing/queue.py:29 in public class `Queue`:
        D101: Missing docstring in public class
torch/multiprocessing/queue.py:30 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/queue.py:38 in public class `SimpleQueue`:
        D101: Missing docstring in public class
11
```

**After: 8**

```
torch/multiprocessing/queue.py:1 at module level:
        D100: Missing docstring in public module
torch/multiprocessing/queue.py:10 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/queue.py:13 in public method `send`:
        D102: Missing docstring in public method
torch/multiprocessing/queue.py:18 in public method `recv`:
        D102: Missing docstring in public method
torch/multiprocessing/queue.py:22 in public method `__getattr__`:
        D105: Missing docstring in magic method
torch/multiprocessing/queue.py:28 in public class `Queue`:
        D101: Missing docstring in public class
torch/multiprocessing/queue.py:29 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/queue.py:37 in public class `SimpleQueue`:
        D101: Missing docstring in public class
8
```

- `torch/multiprocessing/reductions.py` </br>
**Before: 31**

```
torch/multiprocessing/reductions.py:1 at module level:
        D100: Missing docstring in public module
torch/multiprocessing/reductions.py:24 in public class `StorageWeakRef`:
        D209: Multi-line docstring closing quotes should be on a separate line
torch/multiprocessing/reductions.py:31 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/reductions.py:38 in public method `from_weakref`:
        D102: Missing docstring in public method
torch/multiprocessing/reductions.py:44 in public method `expired`:
        D102: Missing docstring in public method
torch/multiprocessing/reductions.py:47 in public method `__del__`:
        D105: Missing docstring in magic method
torch/multiprocessing/reductions.py:50 in public method `__hash__`:
        D105: Missing docstring in magic method
torch/multiprocessing/reductions.py:53 in public method `__eq__`:
        D105: Missing docstring in magic method
torch/multiprocessing/reductions.py:60 in public class `SharedCache`:
        D400: First line should end with a period (not 'f')
torch/multiprocessing/reductions.py:62 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/reductions.py:75 in public method `get`:
        D102: Missing docstring in public method
torch/multiprocessing/reductions.py:79 in public method `__setitem__`:
        D105: Missing docstring in magic method
torch/multiprocessing/reductions.py:85 in public method `free_dead_references`:
        D102: Missing docstring in public method
torch/multiprocessing/reductions.py:99 in public function `rebuild_event`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:103 in public function `reduce_event`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:108 in public function `rebuild_tensor`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:121 in public function `rebuild_cuda_tensor`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:189 in public function `reduce_tensor`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:347 in public function `rebuild_nested_tensor`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:364 in public function `reduce_nested_tensor`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:389 in public function `fd_id`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:397 in public function `storage_from_cache`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:404 in public function `rebuild_storage_fd`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:417 in public function `rebuild_storage_filename`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:437 in public function `rebuild_storage_empty`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:441 in public function `rebuild_typed_storage`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:446 in public function `reduce_typed_storage`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:450 in public function `rebuild_typed_storage_child`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:455 in public function `reduce_typed_storage_child`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:459 in public function `reduce_storage`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:488 in public function `init_reductions`:
        D103: Missing docstring in public function
31
```

**After: 29**

```
torch/multiprocessing/reductions.py:1 at module level:
        D100: Missing docstring in public module
torch/multiprocessing/reductions.py:32 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/reductions.py:39 in public method `from_weakref`:
        D102: Missing docstring in public method
torch/multiprocessing/reductions.py:45 in public method `expired`:
        D102: Missing docstring in public method
torch/multiprocessing/reductions.py:48 in public method `__del__`:
        D105: Missing docstring in magic method
torch/multiprocessing/reductions.py:51 in public method `__hash__`:
        D105: Missing docstring in magic method
torch/multiprocessing/reductions.py:54 in public method `__eq__`:
        D105: Missing docstring in magic method
torch/multiprocessing/reductions.py:63 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/reductions.py:76 in public method `get`:
        D102: Missing docstring in public method
torch/multiprocessing/reductions.py:80 in public method `__setitem__`:
        D105: Missing docstring in magic method
torch/multiprocessing/reductions.py:86 in public method `free_dead_references`:
        D102: Missing docstring in public method
torch/multiprocessing/reductions.py:100 in public function `rebuild_event`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:104 in public function `reduce_event`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:109 in public function `rebuild_tensor`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:122 in public function `rebuild_cuda_tensor`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:190 in public function `reduce_tensor`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:348 in public function `rebuild_nested_tensor`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:365 in public function `reduce_nested_tensor`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:390 in public function `fd_id`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:398 in public function `storage_from_cache`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:405 in public function `rebuild_storage_fd`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:418 in public function `rebuild_storage_filename`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:438 in public function `rebuild_storage_empty`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:442 in public function `rebuild_typed_storage`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:447 in public function `reduce_typed_storage`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:451 in public function `rebuild_typed_storage_child`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:456 in public function `reduce_typed_storage_child`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:460 in public function `reduce_storage`:
        D103: Missing docstring in public function
torch/multiprocessing/reductions.py:489 in public function `init_reductions`:
        D103: Missing docstring in public function
29
```

- `torch/multiprocessing/spawn.py` </br>
**Before: 19**

```
torch/multiprocessing/spawn.py:1 at module level:
        D100: Missing docstring in public module
torch/multiprocessing/spawn.py:11 in public class `ProcessException`:
        D101: Missing docstring in public class
torch/multiprocessing/spawn.py:14 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/spawn.py:20 in public method `__reduce__`:
        D105: Missing docstring in magic method
torch/multiprocessing/spawn.py:25 in public class `ProcessRaisedException`:
        D205: 1 blank line required between summary line and description (found 0)
torch/multiprocessing/spawn.py:25 in public class `ProcessRaisedException`:
        D400: First line should end with a period (not 'n')
torch/multiprocessing/spawn.py:30 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/spawn.py:40 in public class `ProcessExitedException`:
        D205: 1 blank line required between summary line and description (found 0)
torch/multiprocessing/spawn.py:40 in public class `ProcessExitedException`:
        D400: First line should end with a period (not 'l')
torch/multiprocessing/spawn.py:47 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/spawn.py:59 in public method `__reduce__`:
        D105: Missing docstring in magic method
torch/multiprocessing/spawn.py:85 in public class `ProcessContext`:
        D101: Missing docstring in public class
torch/multiprocessing/spawn.py:86 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/spawn.py:93 in public method `pids`:
        D102: Missing docstring in public method
torch/multiprocessing/spawn.py:97 in public method `join`:
        D205: 1 blank line required between summary line and description (found 0)
torch/multiprocessing/spawn.py:97 in public method `join`:
        D401: First line should be in imperative mood (perhaps 'Try', not 'Tries')
torch/multiprocessing/spawn.py:166 in public class `SpawnContext`:
        D101: Missing docstring in public class
torch/multiprocessing/spawn.py:167 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/spawn.py:180 in public function `start_processes`:
        D103: Missing docstring in public function
19
```

**After: 13**

```
torch/multiprocessing/spawn.py:1 at module level:
        D100: Missing docstring in public module
torch/multiprocessing/spawn.py:11 in public class `ProcessException`:
        D101: Missing docstring in public class
torch/multiprocessing/spawn.py:14 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/spawn.py:20 in public method `__reduce__`:
        D105: Missing docstring in magic method
torch/multiprocessing/spawn.py:27 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/spawn.py:41 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/spawn.py:53 in public method `__reduce__`:
        D105: Missing docstring in magic method
torch/multiprocessing/spawn.py:79 in public class `ProcessContext`:
        D101: Missing docstring in public class
torch/multiprocessing/spawn.py:80 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/spawn.py:87 in public method `pids`:
        D102: Missing docstring in public method
torch/multiprocessing/spawn.py:161 in public class `SpawnContext`:
        D101: Missing docstring in public class
torch/multiprocessing/spawn.py:162 in public method `__init__`:
        D107: Missing docstring in __init__
torch/multiprocessing/spawn.py:175 in public function `start_processes`:
        D103: Missing docstring in public function
13
```

- `torch/multiprocessing/__init__.py` </br>
**Before: 0**

```
torch/multiprocessing/__init__.py:1 at module level:
        D205: 1 blank line required between summary line and description (found 0)
torch/multiprocessing/__init__.py:1 at module level:
        D400: First line should end with a period (not '`')
torch/multiprocessing/__init__.py:57 in public function `set_sharing_strategy`:
        D401: First line should be in imperative mood (perhaps 'Set', not 'Sets')
torch/multiprocessing/__init__.py:69 in public function `get_sharing_strategy`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
torch/multiprocessing/__init__.py:74 in public function `get_all_sharing_strategies`:
        D401: First line should be in imperative mood (perhaps 'Return', not 'Returns')
5
```

**After: 0**

- `torch/nn/__init__.py` </br>
**Before: 3**

```
torch/nn/__init__.py:1 at module level:
        D104: Missing docstring in public package
torch/nn/__init__.py:14 in public function `factory_kwargs`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/__init__.py:14 in public function `factory_kwargs`:
        D400: First line should end with a period (not 'd')
3
```

**After: 1**

```
torch/nn/__init__.py:1 at module level:
        D104: Missing docstring in public package
1
```

- `torch/nn/cpp.py` </br>
**Before: 16**

```
torch/nn/cpp.py:7 in public class `OrderedDictWrapper`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/cpp.py:7 in public class `OrderedDictWrapper`:
        D400: First line should end with a period (not 'e')
torch/nn/cpp.py:16 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/cpp.py:21 in public method `cpp_dict`:
        D102: Missing docstring in public method
torch/nn/cpp.py:27 in public method `items`:
        D102: Missing docstring in public method
torch/nn/cpp.py:30 in public method `keys`:
        D102: Missing docstring in public method
torch/nn/cpp.py:33 in public method `values`:
        D102: Missing docstring in public method
torch/nn/cpp.py:36 in public method `__iter__`:
        D105: Missing docstring in magic method
torch/nn/cpp.py:39 in public method `__len__`:
        D105: Missing docstring in magic method
torch/nn/cpp.py:42 in public method `__contains__`:
        D105: Missing docstring in magic method
torch/nn/cpp.py:45 in public method `__getitem__`:
        D105: Missing docstring in magic method
torch/nn/cpp.py:50 in public class `ModuleWrapper`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/cpp.py:50 in public class `ModuleWrapper`:
        D400: First line should end with a period (not 'd')
torch/nn/cpp.py:55 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/cpp.py:83 in public method `training`:
        D102: Missing docstring in public method
torch/nn/cpp.py:90 in public method `__repr__`:
        D105: Missing docstring in magic method
16
```

**After: 12**

```
torch/nn/cpp.py:16 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/cpp.py:21 in public method `cpp_dict`:
        D102: Missing docstring in public method
torch/nn/cpp.py:27 in public method `items`:
        D102: Missing docstring in public method
torch/nn/cpp.py:30 in public method `keys`:
        D102: Missing docstring in public method
torch/nn/cpp.py:33 in public method `values`:
        D102: Missing docstring in public method
torch/nn/cpp.py:36 in public method `__iter__`:
        D105: Missing docstring in magic method
torch/nn/cpp.py:39 in public method `__len__`:
        D105: Missing docstring in magic method
torch/nn/cpp.py:42 in public method `__contains__`:
        D105: Missing docstring in magic method
torch/nn/cpp.py:45 in public method `__getitem__`:
        D105: Missing docstring in magic method
torch/nn/cpp.py:52 in public method `__init__`:
        D107: Missing docstring in __init__
torch/nn/cpp.py:80 in public method `training`:
        D102: Missing docstring in public method
torch/nn/cpp.py:87 in public method `__repr__`:
        D105: Missing docstring in magic method
12
```

- `torch/nn/grad.py` </br>
**Before: 10**

```
torch/nn/grad.py:1 at module level:
        D400: First line should end with a period (not 'e')
torch/nn/grad.py:8 in public function `conv1d_input`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/grad.py:8 in public function `conv1d_input`:
        D401: First line should be in imperative mood (perhaps 'Compute', not 'Computes')
torch/nn/grad.py:40 in public function `conv1d_weight`:
        D401: First line should be in imperative mood (perhaps 'Compute', not 'Computes')
torch/nn/grad.py:71 in public function `conv2d_input`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/grad.py:71 in public function `conv2d_input`:
        D401: First line should be in imperative mood (perhaps 'Compute', not 'Computes')
torch/nn/grad.py:103 in public function `conv2d_weight`:
        D401: First line should be in imperative mood (perhaps 'Compute', not 'Computes')
torch/nn/grad.py:134 in public function `conv3d_input`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/grad.py:134 in public function `conv3d_input`:
        D401: First line should be in imperative mood (perhaps 'Compute', not 'Computes')
torch/nn/grad.py:166 in public function `conv3d_weight`:
        D401: First line should be in imperative mood (perhaps 'Compute', not 'Computes')
10
```

**After: 0**

- `torch/nn/parameter.py` </br>
**Before: 17**

```
torch/nn/parameter.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/parameter.py:14 in public class `Parameter`:
        D204: 1 blank line required after class docstring (found 0)
torch/nn/parameter.py:33 in public method `__new__`:
        D102: Missing docstring in public method
torch/nn/parameter.py:54 in public method `__deepcopy__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:62 in public method `__repr__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:65 in public method `__reduce_ex__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:84 in public class `UninitializedTensorMixin`:
        D101: Missing docstring in public class
torch/nn/parameter.py:105 in public method `materialize`:
        D205: 1 blank line required between summary line and description (found 0)
torch/nn/parameter.py:125 in public method `shape`:
        D102: Missing docstring in public method
torch/nn/parameter.py:132 in public method `share_memory_`:
        D102: Missing docstring in public method
torch/nn/parameter.py:138 in public method `__repr__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:141 in public method `__reduce_ex__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:149 in public method `__torch_function__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:164 in public function `is_lazy`:
        D103: Missing docstring in public function
torch/nn/parameter.py:186 in public method `__new__`:
        D102: Missing docstring in public method
torch/nn/parameter.py:191 in public method `__deepcopy__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:217 in public method `__new__`:
        D102: Missing docstring in public method
17
```

**After: 15**

```
torch/nn/parameter.py:1 at module level:
        D100: Missing docstring in public module
torch/nn/parameter.py:34 in public method `__new__`:
        D102: Missing docstring in public method
torch/nn/parameter.py:55 in public method `__deepcopy__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:63 in public method `__repr__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:66 in public method `__reduce_ex__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:85 in public class `UninitializedTensorMixin`:
        D101: Missing docstring in public class
torch/nn/parameter.py:127 in public method `shape`:
        D102: Missing docstring in public method
torch/nn/parameter.py:134 in public method `share_memory_`:
        D102: Missing docstring in public method
torch/nn/parameter.py:140 in public method `__repr__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:143 in public method `__reduce_ex__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:151 in public method `__torch_function__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:166 in public function `is_lazy`:
        D103: Missing docstring in public function
torch/nn/parameter.py:188 in public method `__new__`:
        D102: Missing docstring in public method
torch/nn/parameter.py:193 in public method `__deepcopy__`:
        D105: Missing docstring in magic method
torch/nn/parameter.py:219 in public method `__new__`:
        D102: Missing docstring in public method
15
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113052
Approved by: https://github.com/mikaylagawarecki, https://github.com/soulitzer
2023-11-10 21:19:17 +00:00

632 lines
23 KiB
Python

import abc
import contextlib
import weakref
from collections import defaultdict, namedtuple
from typing import Any, Callable, Dict, List, Optional, Sequence, Set, Tuple
import torch
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils.hooks import RemovableHandle
__all__ = [
"saved_tensors_hooks",
"save_on_cpu",
"disable_saved_tensors_hooks",
"register_multi_grad_hook",
"allow_mutation_on_saved_tensors",
"Node",
"GradientEdge",
"get_gradient_edge",
"increment_version",
]
class Node(abc.ABC):
@abc.abstractmethod
def name(self) -> str:
r"""Return the name.
Example::
>>> import torch
>>> a = torch.tensor([0., 0., 0.], requires_grad=True)
>>> b = a.clone()
>>> assert isinstance(b.grad_fn, torch.autograd.graph.Node)
>>> print(b.grad_fn.name())
CloneBackward0
"""
...
@property
@abc.abstractmethod
def next_functions(self) -> Tuple[Tuple[Optional["Node"], int], ...]:
...
@abc.abstractmethod
def metadata(self) -> dict:
r"""Return the metadata."""
...
@abc.abstractmethod
def _register_hook_dict(self, tensor: torch.Tensor) -> None:
...
@abc.abstractmethod
def register_hook(self, fn: Callable[..., Any]) -> RemovableHandle:
r"""Register a backward hook.
The hook will be called every time a gradient with respect to the
Node is computed. The hook should have the following signature::
hook(grad_inputs: Tuple[Tensor], grad_outputs: Tuple[Tensor]) -> Tuple[Tensor] or None
The hook should not modify its argument, but it can optionally return
a new gradient which will be used in place of :attr:`grad_inputs`.
This function returns a handle with a method ``handle.remove()``
that removes the hook from the module.
.. note::
See :ref:`backward-hooks-execution` for more information on how when this hook
is executed, and how its execution is ordered relative to other hooks.
Example::
>>> import torch
>>> a = torch.tensor([0., 0., 0.], requires_grad=True)
>>> b = a.clone()
>>> assert isinstance(b.grad_fn, torch.autograd.graph.Node)
>>> handle = b.grad_fn.register_hook(lambda gI, gO: (gO[0] * 2,))
>>> b.sum().backward(retain_graph=True)
>>> print(a.grad)
tensor([2., 2., 2.])
>>> handle.remove() # Removes the hook
>>> a.grad = None
>>> b.sum().backward(retain_graph=True)
>>> print(a.grad)
tensor([1., 1., 1.])
"""
...
@abc.abstractmethod
def register_prehook(self, fn: Callable[..., Any]) -> RemovableHandle:
r"""Register a backward pre-hook.
The hook will be called every time a gradient with respect to the
Node is computed. The hook should have the following signature::
hook(grad_outputs: Tuple[Tensor]) -> Tuple[Tensor] or None
The hook should not modify its argument, but it can optionally return
a new gradient which will be used in place of :attr:`grad_outputs`.
This function returns a handle with a method ``handle.remove()``
that removes the hook from the module.
.. note::
See :ref:`backward-hooks-execution` for more information on how when this hook
is executed, and how its execution is ordered relative to other hooks.
Example::
>>> a = torch.tensor([0., 0., 0.], requires_grad=True)
>>> b = a.clone()
>>> assert isinstance(b.grad_fn, torch.autograd.graph.Node)
>>> handle = b.grad_fn.register_prehook(lambda gI: (gI[0] * 2,))
>>> b.sum().backward(retain_graph=True)
>>> print(a.grad)
tensor([2., 2., 2.])
>>> handle.remove()
>>> a.grad = None
>>> b.sum().backward(retain_graph=True)
>>> print(a.grad)
tensor([1., 1., 1.])
"""
...
@classmethod
def __subclasshook__(cls, C):
if cls is Node:
if (
C is not None and C is getattr(torch._C._functions, C.__name__, None)
) or issubclass(C, torch.autograd.function.BackwardCFunction):
return True
return NotImplemented
GradientEdge = namedtuple("GradientEdge", ("node output_nr"))
GradientEdge.__doc__ = """\
Object representing a given gradient edge within the autograd graph.
To get the gradient edge where a given Tensor gradient will be computed,
you can do ``edge = autograd.graph.get_gradient_edge(tensor)``.
"""
def get_gradient_edge(tensor):
"""Get the gradient edge for computing the gradient of the given Tensor.
In particular, it is equivalent to call
``g = autograd.grad(loss, input)`` and ``g = autograd.grad(loss, get_gradient_edge(input))``.
"""
if not tensor.requires_grad:
raise RuntimeError(
"It is not possible to get the gradient edge for a Tensor that does not require gradients"
)
grad_fn = tensor.grad_fn
if grad_fn is None:
# Do an op to force AccumulateGrad lazy creation and get it
grad_fn = tensor.view_as(tensor).grad_fn.next_functions[0][0]
# Note that output_nr default to 0 which is the right value
# for the AccumulateGrad node.
return GradientEdge(grad_fn, tensor.output_nr)
def increment_version(tensor):
"""Update autograd metadata tracking whether the given Tensor was modified in place.
This is to enable more accurate error checking within the autograd engine.
It is already done automatically by PyTorch functions and within custom Function
when mark_dirty() is called appropriately so you only need to call this explicitly
if you are doing inplace operation on the Tensor data in a way that Pytorch doesn't
know about. For example a custom kernel that reads the Tensor data_ptr and modifies
the memory inplace based on this pointer.
Note that incrementing the version counter multiple times for a single inplace operation
is not problematic.
"""
torch._C._increment_version(tensor)
class saved_tensors_hooks:
"""Context-manager that sets a pair of pack / unpack hooks for saved tensors.
Use this context-manager to define how intermediary results of an operation
should be packed before saving, and unpacked on retrieval.
In that context, the ``pack_hook`` function will be called everytime an
operation saves a tensor for backward (this includes intermediary results
saved using
:func:`~torch.autograd.function._ContextMethodMixin.save_for_backward` but
also those recorded by a PyTorch-defined operation). The output of
``pack_hook`` is then stored in the computation graph instead of the
original tensor.
The ``unpack_hook`` is called when the saved tensor needs to be accessed,
namely when executing :func:`torch.Tensor.backward()` or
:func:`torch.autograd.grad()`. It takes as argument the *packed* object
returned by ``pack_hook`` and should return a tensor which has the same
content as the original tensor (passed as input to the corresponding
``pack_hook``).
The hooks should have the following signatures:
pack_hook(tensor: Tensor) -> Any
unpack_hook(Any) -> Tensor
where the return value of ``pack_hook`` is a valid input to ``unpack_hook``.
In general, you want ``unpack_hook(pack_hook(t))`` to be equal to ``t`` in terms
of value, size, dtype and device.
Example::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD)
>>> def pack_hook(x):
... print("Packing", x)
... return x
>>>
>>> def unpack_hook(x):
... print("Unpacking", x)
... return x
>>>
>>> a = torch.ones(5, requires_grad=True)
>>> b = torch.ones(5, requires_grad=True) * 2
>>> with torch.autograd.graph.saved_tensors_hooks(pack_hook, unpack_hook):
... y = a * b
Packing tensor([1., 1., 1., 1., 1.], requires_grad=True)
Packing tensor([2., 2., 2., 2., 2.], grad_fn=<MulBackward0>)
>>> y.sum().backward()
Unpacking tensor([1., 1., 1., 1., 1.], requires_grad=True)
Unpacking tensor([2., 2., 2., 2., 2.], grad_fn=<MulBackward0>)
.. warning ::
Performing an inplace operation on the input to either hooks may lead
to undefined behavior.
.. warning ::
Only one pair of hooks is allowed at a time. When recursively nesting this
context-manager, only the inner-most pair of hooks will be applied.
"""
def __init__(
self,
pack_hook: Callable[[torch.Tensor], Any],
unpack_hook: Callable[[Any], torch.Tensor],
):
self.pack_hook = pack_hook
self.unpack_hook = unpack_hook
def __enter__(self):
torch._C._autograd._push_saved_tensors_default_hooks(
self.pack_hook, self.unpack_hook
)
def __exit__(self, *args: object):
torch._C._autograd._pop_saved_tensors_default_hooks()
class save_on_cpu(saved_tensors_hooks):
"""Context manager under which tensors saved by the forward pass will be stored on cpu, then retrieved for backward.
When performing operations within this context manager, intermediary
results saved in the graph during the forward pass will be moved to CPU,
then copied back to the original device when needed for the backward pass.
If the graph was already on CPU, no tensor copy is performed.
Use this context-manager to trade compute for GPU memory usage (e.g.
when your model doesn't fit in GPU memory during training).
Args:
pin_memory (bool): If ``True`` tensors will be saved to CPU pinned memory
during packing and copied to GPU asynchronously during unpacking.
Defaults to ``False``.
Also see :ref:`cuda-memory-pinning`.
Example::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD)
>>> a = torch.randn(5, requires_grad=True, device="cuda")
>>> b = torch.randn(5, requires_grad=True, device="cuda")
>>> c = torch.randn(5, requires_grad=True, device="cuda")
>>>
>>> def f(a, b, c):
... prod_1 = a * b # a and b are saved on GPU
... with torch.autograd.graph.save_on_cpu():
... prod_2 = prod_1 * c # prod_1 and c are saved on CPU
... y = prod_2 * a # prod_2 and a are saved on GPU
... return y
>>>
>>> y = f(a, b, c)
>>> del a, b, c # for illustration only
>>> # the content of a, b, and prod_2 are still alive on GPU
>>> # the content of prod_1 and c only live on CPU
>>> y.sum().backward() # all CPU tensors are moved back to GPU, for backward
>>> # all intermediary tensors are released (deleted) after the call to backward
"""
def __init__(self, pin_memory=False, device_type="cuda"):
device_module = getattr(torch, device_type, torch.cuda)
def pack_to_cpu(tensor):
if not pin_memory:
return (tensor.device, tensor.cpu())
packed = torch.empty(
tensor.size(),
dtype=tensor.dtype,
layout=tensor.layout,
pin_memory=(device_module.is_available() and not tensor.is_sparse),
)
packed.copy_(tensor)
return (tensor.device, packed)
def unpack_from_cpu(packed):
device, tensor = packed
return tensor.to(device, non_blocking=pin_memory)
super().__init__(pack_to_cpu, unpack_from_cpu)
@contextlib.contextmanager
def disable_saved_tensors_hooks(error_message):
"""Context-manager that disables the saved tensors default hooks feature.
Useful for if you are creating a feature that does not work with saved
tensors default hooks.
Args:
error_message (str): When saved tensors default hooks are used when they
have been are disabled, a RuntimeError with this
error message gets raised.
Example::
>>> # xdoctest: +SKIP(failing)
>>> message = "saved tensors default hooks are disabled"
>>> with torch.autograd.graph.disable_saved_tensors_hooks(message):
... # Raises RuntimeError: saved tensors default hooks are disabled
... with torch.autograd.graph.save_on_cpu():
... pass
"""
try:
maybe_prev_message = (
torch._C._autograd._saved_tensors_hooks_get_disabled_error_message()
)
torch._C._autograd._saved_tensors_hooks_disable(error_message)
yield
finally:
# See NOTE: [disabled_error_message invariant]
if maybe_prev_message is None:
torch._C._autograd._saved_tensors_hooks_enable()
else:
torch._C._autograd._saved_tensors_hooks_disable(maybe_prev_message)
def register_multi_grad_hook(
tensors: Sequence[torch.Tensor],
fn: Callable[[Sequence[Optional[torch.Tensor]]], None],
):
r"""Register a multi-grad backward hook.
The hook will be called after gradients with respect to every tensor in
:attr:`tensors` have been computed. If a tensor is in :attr:`tensors` but
is not part of the graph, or if a tensor is not needed to compute the gradients
for any ``inputs`` specified for the current ``.backward()`` or ``.grad()`` call,
this tensor will be ignored and the hook will not wait for its gradient to be
computed.
After every non-ignored tensor's gradient has been computed, :attr:`fn` will be
called with those gradients. ``None`` will be passed for tensors that did not
have their gradients computed.
The hook should not modify its arguments.
This function returns a handle with a method ``handle.remove()`` that removes the hook.
.. note::
See :ref:`backward-hooks-execution` for more information on how when this hook
is executed, and how its execution is ordered relative to other hooks.
Example::
>>> import torch
>>>
>>> a = torch.rand(2, 3, requires_grad=True)
>>> b = torch.rand(2, 3, requires_grad=True)
>>> c = a * b
>>> d = a * b
>>>
>>> def fn(grads):
... print([g is not None for g in grads])
...
>>> torch.autograd.graph.register_multi_grad_hook((a, b, c, d), fn)
>>>
>>> c.sum().backward(retain_graph=True)
[True, True, True, False]
>>> c.sum().backward(inputs=(a,), retain_graph=True)
[True, False, True, False]
>>>
"""
count: Dict[int, int] = dict()
nb_calls = None
buffer: Dict[int, List[Optional[torch.Tensor]]] = dict()
def get_grad_fn(t):
# or grad accumulator
if t.requires_grad and t.grad_fn is None:
return t.expand_as(t).grad_fn.next_functions[0][0]
else:
return t.grad_fn
grad_fns = list(map(get_grad_fn, tensors))
len_tensors = len(tensors)
def get_inner_hook(idx):
def inner_hook(grad: torch.Tensor):
nonlocal count, nb_calls, buffer
id = torch._C._current_graph_task_id()
assert id != -1, "expected this hook to be called inside a backward call"
count[id] = count.get(id, 0)
buffer[id] = buffer.get(id, [None] * len_tensors)
if count[id] == 0:
# On the first call, compute the actual nb_calls and buffer
nb_calls = sum(torch._C._will_engine_execute_node(g) for g in grad_fns) # type: ignore[attr-defined]
buffer[id][idx] = grad
count[id] += 1
if count[id] == nb_calls:
fn(buffer[id])
del count[id]
del buffer[id]
return inner_hook
class Handle(RemovableHandle):
handles: Tuple[RemovableHandle, ...]
def __init__(self, handles: Tuple[RemovableHandle, ...]):
self.handles = handles
def remove(self):
for handle in self.handles:
handle.remove()
def __getstate__(self):
return self.handles
def __setstate__(self, state):
self.handles = state
handles: List[RemovableHandle] = []
for i, t in enumerate(tensors):
handles.append(t.register_hook(get_inner_hook(i)))
return Handle(tuple(handles))
# NOTE [Allow mutation on tensors saved for backward]
#
# 1. Tensor gets saved for backward
# - remember the python object id and the version of the tensor
# - remember aliasing information (data_ptr of base + version)
# - save the original so we control its lifetime
# 2. Any time a tensor gets in-placed
# - for each tensor aliased to it:
# - check using its object id and version to see if it has been saved
# - if it has been saved, clone it
# - delete the reference to the original
# 3. during backward
# - if the clone exists, the tensor must've been modified in-place
_allow_mutation_on_saved_tensors_enabled = False
def _get_tid(t) -> Tuple[int, int, int]:
return (id(t), t.data_ptr(), t._version)
def _get_sid(t) -> Tuple[int, int]:
return (t.data_ptr(), t._version)
class _Handle:
pass
class _swap_with_cloned(saved_tensors_hooks):
def __init__(self, ctx):
def pack_hook(t):
tid = _get_tid(t)
sid = _get_sid(t)
# Tensors saved for backward have an entry in _tid_to_weakhandle
handle: Optional[_Handle] = None
# Save aliasing information
ctx.sid_to_tid[sid].add(tid)
# NB: The same tensor (of the same version) can be saved multiple times
if tid not in ctx.tid_to_weakhandle:
handle = _Handle()
ctx.tid_to_weakhandle[tid] = handle
ctx.original[handle] = t
else:
# Store an additional strong reference to the handle
handle = ctx.tid_to_weakhandle[tid]
return handle
def unpack_hook(tup):
handle = tup
error_msg = (
"Trying to backward outside of the 'allow_mutation_on_saved_tensors' context"
"in which the graph was originally recorded."
)
assert _allow_mutation_on_saved_tensors_enabled, error_msg
if handle in ctx.cloned:
res = ctx.cloned[handle]
else:
assert handle in ctx.original, error_msg
res = ctx.original[handle]
return res
super().__init__(pack_hook, unpack_hook)
class _CloneArgBeforeMutateMode(TorchDispatchMode):
def __init__(self, ctx):
self.ctx = ctx
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
for idx, arg in enumerate(func._schema.arguments):
if arg.alias_info is not None and arg.alias_info.is_write:
t = kwargs["out"] if arg.is_out else args[idx]
tid = _get_tid(t)
sid = _get_sid(t)
ctx = self.ctx
if sid in ctx.sid_to_tid:
for tid in ctx.sid_to_tid[sid]:
if tid not in ctx.tid_to_weakhandle:
# We know that if tid is in sid_to_tid, then it must also be in
# tid_to_weakhandle. However, it is possible for the tensor to be
# saved at one point, but cleared by backward before it is modified
# in-place. Consider the following example:
#
# >>> a = torch.randn(2, 3, requires_grad=True).clone()
# >>> out = (a**2).sum()
# >>> out.backward()
# >>> a.sin_()
continue
handle = ctx.tid_to_weakhandle[tid]
if handle in ctx.cloned:
# The same exact tensor has been cloned already
continue
ctx.cloned[handle] = ctx.original[handle].clone()
del ctx.original[handle]
rs = func(*args, **kwargs)
return rs
class _AllowMutationOnSavedContext:
def __init__(self):
self.cloned: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary()
self.original: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary()
self.tid_to_weakhandle: weakref.WeakValueDictionary = (
weakref.WeakValueDictionary()
)
self.sid_to_tid: Dict[Tuple[int, int], Set[Tuple[int, int, int]]] = defaultdict(
set
)
def clear(self):
self.cloned.clear()
self.original.clear()
self.tid_to_weakhandle.clear()
self.sid_to_tid.clear()
@contextlib.contextmanager
def allow_mutation_on_saved_tensors():
"""Context manager under which mutating tensors saved for backward is allowed.
Under this context manager, tensors saved for backward are cloned on mutation,
so the original version can still be used during backward. Normally, mutating a tensor
saved for backward will result in an error raised when it's used during backward.
To ensure the correct behavior, both the forward and backward should be run under
the same context manager.
returns:
An _AllowMutationOnSavedContext object storing the state managed by this
context manager. This object can be useful for debugging purposes. The state
managed by the context manager is automatically cleared upon exiting.
Example::
>>> import torch
>>> with torch.autograd.graph.allow_mutation_on_saved_tensors():
... # forward
... a = torch.ones(2, 3, requires_grad=True)
... b = a.clone()
... out = (b**2).sum()
... b.sin_()
... # backward
... out.sum().backward()
...
tensor([[0.8415, 0.8415, 0.8415],
[0.8415, 0.8415, 0.8415]], grad_fn=<SinBackward0>)
"""
global _allow_mutation_on_saved_tensors_enabled
ctx = _AllowMutationOnSavedContext()
with _swap_with_cloned(ctx), _CloneArgBeforeMutateMode(ctx):
try:
if _allow_mutation_on_saved_tensors_enabled:
raise RuntimeError(
"allow_mutation_on_saved_tensors contexts cannot be nested"
)
_allow_mutation_on_saved_tensors_enabled = True
yield ctx
finally:
ctx.clear()
_allow_mutation_on_saved_tensors_enabled = False