pytorch/torch/csrc/cuda/Module.cpp
Zachary DeVito 91b1bae1df Caching allocator tracing (#86241)
We currently can take snapshots of the state of the allocated cuda memory, but we do not have a way to correlate these snapshots with the actions the allocator that were taken between snapshots. This PR adds a simple fixed-sized buffer that records the major actions that the allocator takes (ALLOC, FREE, SEGMENT_ALLOC, SEGMENT_FREE, OOM, SNAPSHOT) and includes these with the snapshot information. Capturing period snapshots with a big enough trace buffer makes it possible to see how the allocator state changes over time.

We plan to use this functionality to guide how settings in the allocator can be adjusted and eventually have a more robust overall algorithm.

As a component of this functionality, we also add the ability to get a callback when the allocator will throw an OOM, primarily so that snapshots can be taken immediately to see why the program ran out of memory (most programs have some C++ state that would free tensors before the OutOfMemory exception can be caught).

This PR also updates the _memory_viz.py script to pretty-print the trace information and provide a better textual summary of snapshots distinguishing between internal and external fragmentation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86241
Approved by: https://github.com/ngimel
2022-10-07 23:19:54 +00:00

1126 lines
36 KiB
C++

#include <ATen/ATen.h>
#include <ATen/cuda/CUDAConfig.h>
#if AT_CUDNN_ENABLED()
#include <ATen/native/cudnn/Macros.h>
#endif
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAGeneratorImpl.h>
#include <ATen/cuda/CachingHostAllocator.h>
#include <ATen/cuda/Sleep.h>
#include <ATen/cuda/detail/CUDAHooks.h>
#include <ATen/cuda/jiterator.h>
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/cuda/CUDAFunctions.h>
#include <ATen/cuda/CUDAGraphsUtils.cuh>
#ifdef USE_NCCL
#include <torch/csrc/cuda/python_nccl.h>
#endif
#include <c10/util/CallOnce.h>
#include <c10/util/irange.h>
#include <torch/csrc/CudaIPCTypes.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/cuda/THCP.h>
#include <torch/csrc/cuda/python_comm.h>
#include <torch/csrc/python_headers.h>
#include <torch/csrc/utils/cuda_lazy_init.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
#include <array>
#include <chrono>
#include <iostream>
#include <sstream>
#include <thread>
#include <unordered_map>
#ifndef WIN32
#include <pthread.h>
#endif
using namespace torch;
static bool in_bad_fork = false; // True for children forked after cuda init
#ifndef WIN32
// Called in the forked child if cuda has already been initialized
static void forked_child() {
in_bad_fork = true;
torch::utils::set_requires_cuda_init(true);
}
#endif
// Should be called before the first cuda call.
// Note: This is distinct from initExtension because a stub cuda implementation
// has some working functions (e.g. device_count) but cannot fully initialize.
static void poison_fork() {
#ifndef WIN32
static c10::once_flag flag;
c10::call_once(flag, [] { pthread_atfork(nullptr, nullptr, forked_child); });
#endif
}
////////////////////////////////////////////////////////////////////////////////
// CUDA management methods
////////////////////////////////////////////////////////////////////////////////
void THCPModule_setDevice(int device) {
c10::cuda::set_device(static_cast<c10::DeviceIndex>(device));
}
PyObject* THCPModule_setDevice_wrap(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to setDevice");
int64_t device = THPUtils_unpackLong(arg);
torch::utils::cuda_lazy_init();
THCPModule_setDevice(device);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getDevice_wrap(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
torch::utils::cuda_lazy_init();
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
auto device = static_cast<int>(c10::cuda::current_device());
return THPUtils_packInt32(device);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_canDeviceAccessPeer_wrap(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject* arg1 = nullptr;
PyObject* arg2 = nullptr;
if (!PyArg_ParseTuple(args, "OO", &arg1, &arg2)) {
THPUtils_invalidArguments(
args,
nullptr,
"can_device_peer_access",
1,
"(int device, int peer_device);");
return nullptr;
}
THPUtils_assert(
THPUtils_checkLong(arg1), "invalid argument to canDeviceAccessPeer");
THPUtils_assert(
THPUtils_checkLong(arg2), "invalid argument to canDeviceAccessPeer");
int64_t device = THPUtils_unpackLong(arg1);
int64_t peer_device = THPUtils_unpackLong(arg2);
torch::utils::cuda_lazy_init();
auto can_access = at::cuda::canDeviceAccessPeer(device, peer_device);
return PyBool_FromLong(can_access);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getDeviceCount_wrap(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
poison_fork();
return THPUtils_packUInt64(at::cuda::device_count());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getArchFlags(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
poison_fork();
#ifdef CUDA_ARCH_FLAGS
static const char* flags = C10_STRINGIZE(CUDA_ARCH_FLAGS);
return THPUtils_packString(flags);
#else
Py_RETURN_NONE;
#endif
END_HANDLE_TH_ERRORS
}
static PyObject* THCPModule_isInBadFork(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
return PyBool_FromLong(in_bad_fork);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getCurrentStream_wrap(
PyObject* /* unused */,
PyObject* device_index) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(device_index), "invalid argument to getCurrentStream");
int64_t device = THPUtils_unpackLong(device_index);
return PyLong_FromUnsignedLongLong(
at::cuda::getCurrentCUDAStream(device).pack());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getCurrentStream_raw(
PyObject* /* unused */,
PyObject* device_index) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(device_index), "invalid argument to getCurrentStream");
int64_t device = THPUtils_unpackLong(device_index);
return PyLong_FromVoidPtr(at::cuda::getCurrentCUDAStream(device).stream());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getDefaultStream_wrap(
PyObject* /* unused */,
PyObject* device_index) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(device_index), "invalid argument to getDefaultStream");
int64_t device = THPUtils_unpackLong(device_index);
return PyLong_FromUnsignedLongLong(
at::cuda::getDefaultCUDAStream(device).pack());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_setStream_wrap(PyObject* self, PyObject* obj) {
HANDLE_TH_ERRORS
THPUtils_assert(PyLong_Check(obj), "invalid stream");
uint64_t bits = PyLong_AsUnsignedLongLong(obj);
if (bits == static_cast<uint64_t>(-1) && PyErr_Occurred()) {
throw python_error();
}
auto stream = at::cuda::CUDAStream::unpack(bits);
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
auto device = static_cast<int>(c10::cuda::current_device());
if (device != stream.device_index()) {
THCPModule_setDevice(stream.device_index());
}
at::cuda::setCurrentCUDAStream(stream);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getCompiledVersion(PyObject* self, PyObject* noargs) {
#if defined(USE_ROCM)
return THPUtils_packInt64((int64_t)ROCM_VERSION);
#else
return THPUtils_packInt64((int64_t)CUDA_VERSION);
#endif
}
PyObject* THCPModule_cudaHostAllocator(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
c10::Allocator* allocator = at::cuda::getCachingHostAllocator();
return PyLong_FromVoidPtr(allocator);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaCachingAllocator_raw_alloc(
PyObject* _unused,
PyObject* args) {
HANDLE_TH_ERRORS
PyObject* size_o = nullptr;
PyObject* stream_o = nullptr;
if (!PyArg_ParseTuple(args, "OO", &size_o, &stream_o)) {
THPUtils_invalidArguments(
args,
nullptr,
"caching_allocator_alloc",
1,
"(ssize_t size, intptr_t stream);");
return nullptr;
}
auto size = PyLong_AsSsize_t(size_o);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
cudaStream_t stream = static_cast<cudaStream_t>(PyLong_AsVoidPtr(stream_o));
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
void* mem =
c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(size, stream);
return PyLong_FromVoidPtr(mem);
END_HANDLE_TH_ERRORS
}
// Unpack a PyObject to at::Scalar, throw an exception if it fails
at::Scalar as_scalar(PyObject* arg) {
// Zero-dim tensors are converted to Scalars as-is. Note this doesn't
// currently handle most NumPy scalar types except np.float64.
if (THPVariable_Check(arg)) {
return THPVariable_Unpack(arg).item();
}
if (THPUtils_checkLong(arg)) {
return at::Scalar(static_cast<int64_t>(THPUtils_unpackLong(arg)));
}
if (PyBool_Check(arg)) {
return at::Scalar(THPUtils_unpackBool(arg));
}
if (PyComplex_Check(arg)) {
return at::Scalar(THPUtils_unpackComplexDouble(arg));
}
return at::Scalar(THPUtils_unpackDouble(arg));
}
// Entrypoint for the callable created by torch.cuda.jiterator
// See jiterator.py for more details
PyObject* THCPModule_cudaJiteratorCompileAndLaunchKernel(
PyObject* _unused,
PyObject* args) {
HANDLE_TH_ERRORS
PyObject* code_string_o = nullptr;
PyObject* kernel_name_o = nullptr;
PyObject* return_by_ref_o = nullptr;
PyObject* num_outputs_o = nullptr;
PyObject* tensors_o = nullptr;
PyObject* kwargs_o = nullptr;
if (!PyArg_ParseTuple(
args,
"OOOOO|O",
&code_string_o,
&kernel_name_o,
&return_by_ref_o,
&num_outputs_o,
&tensors_o,
&kwargs_o)) {
return nullptr;
}
const std::string code_string = THPUtils_unpackString(code_string_o);
const std::string kernel_name = THPUtils_unpackString(kernel_name_o);
const bool return_by_ref = THPUtils_unpackBool(return_by_ref_o);
const int num_outputs = static_cast<int>(THPUtils_unpackLong(num_outputs_o));
THPUtils_assert(
PyTuple_Check(tensors_o),
"tensors argument is expected to "
"be a tuple, but got %s",
THPUtils_typename(tensors_o));
Py_ssize_t num_tensors = PyTuple_GET_SIZE(tensors_o);
c10::SmallVector<at::Tensor> tensors;
for (const auto i : c10::irange(num_tensors)) {
PyObject* _tensor = PyTuple_GET_ITEM(tensors_o, i);
THPUtils_assert(
THPVariable_Check(_tensor),
"%d of input tensors tuple is not a Tensor",
i);
tensors.emplace_back(THPVariable_Unpack(_tensor));
}
c10::SmallVector<at::Scalar> extra_args;
PyObject* key = nullptr;
PyObject* value = nullptr;
Py_ssize_t pos = 0;
while (PyDict_Next(kwargs_o, &pos, &key, &value)) {
extra_args.emplace_back(as_scalar(value));
}
c10::SmallVector<at::Tensor> outputs = at::cuda::CompileAndLaunchKernel(
code_string,
kernel_name,
num_outputs,
tensors,
extra_args,
return_by_ref);
if (num_outputs == 1) {
return THPVariable_Wrap(outputs[0]);
} else {
PyObject* output_tuple = PyTuple_New(num_outputs);
for (int i = 0; i < num_outputs; ++i) {
PyTuple_SetItem(output_tuple, i, THPVariable_Wrap(outputs[i]));
}
return output_tuple;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaCachingAllocator_raw_delete(
PyObject* _unused,
PyObject* obj) {
HANDLE_TH_ERRORS
void* mem_ptr = PyLong_AsVoidPtr(obj);
c10::cuda::CUDACachingAllocator::raw_delete(mem_ptr);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaCachingAllocator_set_allocator_settings(
PyObject* _unused,
PyObject* env) {
HANDLE_TH_ERRORS
c10::cuda::CUDACachingAllocator::setAllocatorSettings(
THPUtils_unpackString(env));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaSynchronize(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
c10::cuda::device_synchronize();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaIPCCollect(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
torch::CudaIPCCollect();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaSleep(PyObject* _unused, PyObject* cycles) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(cycles), "torch.cuda._sleep(): expected 'int'");
at::cuda::sleep(THPUtils_unpackLong(cycles));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// We need to ensure that as long as a thread will NEVER loose the GIL as long
// as it holds the CUDA mutex. Otherwise another thread might be scheduled and
// try to e.g. allocate a new tensor which will cause a deadlock. It's enough to
// have a single global, because it can be only set once (cudaMutex is not
// recursive) by the thread that owns the mutex (obviously there can be only one
// such thread).
static PyGILState_STATE cudaMutexGILState;
PyObject* THCPModule_cudaLockMutex(PyObject* module, PyObject* noargs) {
auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex();
// This has to be a busy loop because we **absolutely need to** hold the GIL
// or it's a recipe for a deadlock otherwise (if we let other Python threads
// run while we have the cudaMutex, but not the GIL, they might try to e.g.
// free a CUDA tensor and acquire the cudaMutex without giving up the GIL,
// because it happens deep within THC).
while (true) {
if (mutex->try_lock())
break;
{
pybind11::gil_scoped_release no_gil;
std::this_thread::sleep_for(std::chrono::microseconds(10));
}
}
cudaMutexGILState = PyGILState_Ensure();
Py_RETURN_NONE;
}
PyObject* THCPModule_cudaUnlockMutex(PyObject* module, PyObject* noargs) {
auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex();
PyGILState_Release(cudaMutexGILState);
mutex->unlock();
Py_RETURN_NONE;
}
PyObject* THCPModule_hasPrimaryContext(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(arg), "invalid argument to has_primary_context");
int64_t device_index = static_cast<int64_t>(THPUtils_unpackLong(arg));
if (at::cuda::detail::hasPrimaryContext(device_index)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_setMemoryFraction(PyObject* _unused, PyObject* args) {
HANDLE_TH_ERRORS
PyObject* fraction_o = nullptr;
PyObject* device_o = nullptr;
if (!PyArg_ParseTuple(args, "OO", &fraction_o, &device_o)) {
THPUtils_invalidArguments(
args,
nullptr,
"set_memory_fraction",
1,
"(double fraction, int device);");
return nullptr;
}
double fraction = PyFloat_AsDouble(fraction_o);
int64_t device = PyLong_AsLongLong(device_o);
c10::cuda::CUDACachingAllocator::setMemoryFraction(fraction, device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THCPModule_emptyCache(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
c10::cuda::CUDACachingAllocator::emptyCache();
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THCPModule_memoryStats(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(arg), "invalid argument to memory_allocated");
const int device = (int)THPUtils_unpackLong(arg);
using c10::cuda::CUDACachingAllocator::DeviceStats;
using c10::cuda::CUDACachingAllocator::Stat;
using c10::cuda::CUDACachingAllocator::StatArray;
using c10::cuda::CUDACachingAllocator::StatType;
const auto statToDict = [](const Stat& stat) {
py::dict dict;
dict["current"] = stat.current;
dict["peak"] = stat.peak;
dict["allocated"] = stat.allocated;
dict["freed"] = stat.freed;
return dict;
};
const auto statArrayToDict = [=](const StatArray& statArray) {
const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)>
statTypeNames = {"all", "small_pool", "large_pool"};
py::dict dict;
for (const auto i : c10::irange(statTypeNames.size())) {
dict[statTypeNames[i]] = statToDict(statArray[i]);
}
return dict;
};
const DeviceStats stats =
c10::cuda::CUDACachingAllocator::getDeviceStats(device);
py::dict result;
result["num_alloc_retries"] = stats.num_alloc_retries;
result["num_ooms"] = stats.num_ooms;
result["max_split_size"] = stats.max_split_size;
result["allocation"] = statArrayToDict(stats.allocation);
result["segment"] = statArrayToDict(stats.segment);
result["active"] = statArrayToDict(stats.active);
result["inactive_split"] = statArrayToDict(stats.inactive_split);
result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes);
result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes);
result["active_bytes"] = statArrayToDict(stats.active_bytes);
result["inactive_split_bytes"] = statArrayToDict(stats.inactive_split_bytes);
result["oversize_allocations"] = statToDict(stats.oversize_allocations);
result["oversize_segments"] = statToDict(stats.oversize_segments);
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_resetAccumulatedMemoryStats(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(arg),
"invalid argument to reset_accumulated_memory_stats");
const int device = (int)THPUtils_unpackLong(arg);
c10::cuda::CUDACachingAllocator::resetAccumulatedStats(device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THCPModule_resetPeakMemoryStats(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats");
const int device = (int)THPUtils_unpackLong(arg);
c10::cuda::CUDACachingAllocator::resetPeakStats(device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
struct Frame {
PyCodeObject* code;
int lasti;
};
struct StackContext : public c10::cuda::CUDACachingAllocator::Context {
std::vector<Frame> frames;
// Empty if cpp traces weren't enabled
std::string cpp_frames;
~StackContext() {
py::gil_scoped_acquire acquire;
for (auto& f : frames) {
Py_XDECREF((PyObject*)f.code);
}
}
static std::shared_ptr<StackContext> _gather() {
py::gil_scoped_acquire acquire;
auto r = std::make_shared<StackContext>();
PyFrameObject* f = PyEval_GetFrame();
Py_XINCREF(f);
while (f) {
r->frames.emplace_back(Frame{PyFrame_GetCode(f), PyFrame_GetLasti(f)});
auto f_back = PyFrame_GetBack(f);
Py_XDECREF(f);
f = f_back;
}
return r;
}
static std::shared_ptr<c10::cuda::CUDACachingAllocator::Context> gather() {
return _gather();
}
static std::shared_ptr<c10::cuda::CUDACachingAllocator::Context>
gather_with_cpp() {
auto r = _gather();
r->cpp_frames = c10::get_backtrace();
return std::move(r);
}
};
PyObject* THCPModule_memorySnapshot(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
using c10::cuda::CUDACachingAllocator::BlockInfo;
using c10::cuda::CUDACachingAllocator::History;
using c10::cuda::CUDACachingAllocator::SegmentInfo;
py::str device_s = "device";
py::str address_s = "address";
py::str total_size_s = "total_size";
py::str allocated_size_s = "allocated_size";
py::str active_size_s = "active_size";
py::str stream_s = "stream";
py::str segment_type_s = "segment_type";
py::str large_s = "large";
py::str small_s = "small";
py::str size_s = "size";
py::str state_s = "state";
py::str active_allocated_s = "active_allocated";
py::str active_pending_free_s = "active_pending_free";
py::str inactive_s = "inactive";
py::str addr_s = "addr";
py::str real_size_s = "real_size";
py::str filename_s = "filename";
py::str name_s = "name";
py::str line_s = "line";
py::str frames_s = "frames";
py::str cpp_frames_s = "cpp_frames";
py::str history_s = "history";
py::str blocks_s = "blocks";
std::unordered_map<StackContext*, py::list> cached_frames;
const auto get_frames = [&](StackContext* sc) -> py::list {
auto it = cached_frames.find(sc);
if (it != cached_frames.end()) {
return it->second;
}
py::list frames;
for (auto& f : sc->frames) {
py::dict frame;
frame[filename_s] =
py::reinterpret_borrow<py::object>(f.code->co_filename);
frame[name_s] = py::reinterpret_borrow<py::object>(f.code->co_name);
frame[line_s] = PyCode_Addr2Line(f.code, f.lasti);
frames.append(std::move(frame));
}
cached_frames.insert({sc, frames});
return frames;
};
const auto segmentInfoToDict = [&](const SegmentInfo& segmentInfo) {
py::dict segmentDict;
segmentDict[device_s] = segmentInfo.device;
segmentDict[address_s] = segmentInfo.address;
segmentDict[total_size_s] = segmentInfo.total_size;
segmentDict[allocated_size_s] = segmentInfo.allocated_size;
segmentDict[active_size_s] = segmentInfo.active_size;
// we want the python objects to pickle easily so use an int to
// represent the stream rather than a torch.cuda.stream object
segmentDict[stream_s] = int64_t(segmentInfo.stream);
segmentDict[segment_type_s] = (segmentInfo.is_large ? large_s : small_s);
py::list blocks;
for (const auto& blockInfo : segmentInfo.blocks) {
py::dict blockDict;
blockDict[size_s] = blockInfo.size;
blockDict[state_s] =
(blockInfo.allocated
? active_allocated_s
: (blockInfo.active ? active_pending_free_s : inactive_s));
if (blockInfo.history.size()) {
py::list history;
for (const History& h : blockInfo.history) {
py::dict history_entry;
history_entry[addr_s] = (int64_t)h.addr;
history_entry[real_size_s] = h.real_size;
if (h.context) {
auto sc = (StackContext*)h.context.get();
history_entry[frames_s] = get_frames(sc);
if (!sc->cpp_frames.empty()) {
history_entry[cpp_frames_s] = py::cast(sc->cpp_frames);
}
}
history.append(std::move(history_entry));
}
blockDict[history_s] = std::move(history);
}
blocks.append(blockDict);
}
segmentDict[blocks_s] = blocks;
return segmentDict;
};
auto snapshot = c10::cuda::CUDACachingAllocator::snapshot();
py::list segments;
for (const auto& segmentInfo : snapshot.segments) {
segments.append(segmentInfoToDict(segmentInfo));
}
py::list traces;
py::str action_s = "action";
py::str alloc_s = "alloc";
py::str free_requested_s = "free_requested";
py::str free_completed_s = "free_completed";
py::str segment_alloc_s = "segment_alloc";
py::str segment_free_s = "segment_free";
py::str snapshot_s = "snapshot";
py::str oom_s = "oom";
py::str device_free_s = "device_free";
using namespace c10::cuda::CUDACachingAllocator;
auto action_to_str = [&](TraceEntry::Action action) {
switch (action) {
case TraceEntry::ALLOC:
return alloc_s;
case TraceEntry::FREE_REQUESTED:
return free_requested_s;
case TraceEntry::FREE_COMPLETED:
return free_completed_s;
case TraceEntry::SEGMENT_ALLOC:
return segment_alloc_s;
case TraceEntry::SEGMENT_FREE:
return segment_free_s;
case TraceEntry::OOM:
return oom_s;
case TraceEntry::SNAPSHOT:
return snapshot_s;
}
throw std::runtime_error("unreachable");
};
for (const auto& traceInfo : snapshot.device_traces) {
py::list trace;
for (const auto& te : traceInfo) {
py::dict trace_entry;
if (te.context_) {
// without further compression frames can get really large on dump
auto sc = (StackContext*)te.context_.get();
trace_entry[frames_s] = get_frames(sc);
if (!sc->cpp_frames.empty()) {
trace_entry[cpp_frames_s] = py::cast(sc->cpp_frames);
}
}
trace_entry[action_s] = action_to_str(te.action_);
trace_entry[TraceEntry::OOM == te.action_ ? device_free_s : addr_s] =
te.addr_;
trace_entry[size_s] = te.size_;
trace_entry[stream_s] = int64_t(te.stream_);
trace.append(trace_entry);
}
traces.append(trace);
}
py::dict result;
result["segments"] = segments;
result["device_traces"] = traces;
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_attachOutOfMemoryObserver(
PyObject* _unused,
PyObject* observer) {
HANDLE_TH_ERRORS
Py_XINCREF(observer);
auto obs = [observer](
int64_t device,
int64_t alloc,
int64_t device_allocated,
int64_t device_free) {
py::gil_scoped_acquire g;
PyObject* result = PyObject_CallFunction(
observer, "LLLL", device, alloc, device_allocated, device_free);
if (!result) {
throw py::error_already_set();
}
Py_XDECREF(result);
};
c10::cuda::CUDACachingAllocator::attachOutOfMemoryObserver(std::move(obs));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaSetSyncDebugMode(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_WARN_ONCE(
"Synchronization debug mode is a prototype feature and does not yet detect all "
"synchronizing operations");
THPUtils_assert(
THPUtils_checkLong(arg), "invalid argument to set_sync_debug_mode");
int64_t debug_mode = THPUtils_unpackLong(arg);
TORCH_CHECK(
debug_mode >= 0 && debug_mode <= 2,
"invalid value of debug_mode, expected one of 0,1,2");
c10::cuda::SyncDebugMode l;
switch (debug_mode) {
case 0:
l = c10::cuda::SyncDebugMode::L_DISABLED;
break;
case 1:
l = c10::cuda::SyncDebugMode::L_WARN;
break;
case 2:
l = c10::cuda::SyncDebugMode::L_ERROR;
break;
default:
l = c10::cuda::SyncDebugMode::L_DISABLED;
break; // can't happen
}
c10::cuda::warning_state().set_sync_debug_mode(l);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaGetSyncDebugMode(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto debug_mode = c10::cuda::warning_state().get_sync_debug_mode();
switch (debug_mode) {
case c10::cuda::SyncDebugMode::L_DISABLED:
return THPUtils_packInt32(0);
case c10::cuda::SyncDebugMode::L_WARN:
return THPUtils_packInt32(1);
case c10::cuda::SyncDebugMode::L_ERROR:
return THPUtils_packInt32(2);
default:
return THPUtils_packInt32(-1); // can't happen
}
END_HANDLE_TH_ERRORS
}
////////////////////////////////////////////////////////////////////////////////
// Cuda module initialization
////////////////////////////////////////////////////////////////////////////////
static void registerCudaDeviceProperties(PyObject* module) {
// Add _cudaDevicePropertires class to torch._C
auto m = py::handle(module).cast<py::module>();
py::class_<cudaDeviceProp>(m, "_CudaDeviceProperties")
.def_readonly("name", &cudaDeviceProp::name)
.def_readonly("major", &cudaDeviceProp::major)
.def_readonly("minor", &cudaDeviceProp::minor)
.def_readonly("is_multi_gpu_board", &cudaDeviceProp::isMultiGpuBoard)
.def_readonly("is_integrated", &cudaDeviceProp::integrated)
.def_readonly(
"multi_processor_count", &cudaDeviceProp::multiProcessorCount)
.def_readonly("total_memory", &cudaDeviceProp::totalGlobalMem)
.def("__repr__", [](const cudaDeviceProp& prop) {
std::ostringstream stream;
stream << "_CudaDeviceProperties(name='" << prop.name
<< "', major=" << prop.major << ", minor=" << prop.minor
<< ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
<< "MB, multi_processor_count=" << prop.multiProcessorCount
<< ")";
return stream.str();
});
m.def(
"_cuda_recordMemoryHistory",
[](bool enabled,
bool record_context,
bool record_context_cpp,
Py_ssize_t alloc_trace_max_entries,
bool alloc_trace_record_context) {
c10::cuda::CUDACachingAllocator::recordHistory(
enabled,
record_context ? (record_context_cpp ? StackContext::gather_with_cpp
: StackContext::gather)
: nullptr,
alloc_trace_max_entries,
alloc_trace_record_context);
});
}
static void bindGetDeviceProperties(PyObject* module) {
// Add method to torch.cuda
auto m = py::handle(module).cast<py::module>();
m.def(
"_get_device_properties",
[](int device) -> cudaDeviceProp* {
return at::cuda::getDeviceProperties(device);
},
py::return_value_policy::reference);
}
// Callback for python part. Used for additional initialization of python
// classes
static PyObject* THCPModule_initExtension(PyObject* self, PyObject* noargs) {
#if C10_ASAN_ENABLED
TORCH_WARN(
"torch.cuda: your pytorch binary has address sanitizer (asan) built in, "
"asan is currently not compatible with torch.cuda module, "
"you might get unexpected behavior (eg. out of memory, crash, etc.), "
"please rebuild pytorch without asan if you need to use this module");
#endif
HANDLE_TH_ERRORS
TORCH_INTERNAL_ASSERT(!in_bad_fork); // Handled at python level
poison_fork();
at::globalContext().lazyInitCUDA();
auto m = THPObjectPtr(PyImport_ImportModule("torch.cuda"));
if (!m)
throw python_error();
bool has_half = true;
auto set_module_attr = [&](const char* name, PyObject* v) {
// PyObject_SetAttrString doesn't steal reference. So no need to incref.
if (PyObject_SetAttrString(m, name, v) < 0) {
throw python_error();
}
};
set_module_attr("has_magma", at::hasMAGMA() ? Py_True : Py_False);
set_module_attr("has_half", has_half ? Py_True : Py_False);
auto num_gpus = c10::cuda::device_count();
auto default_cuda_generators = PyTuple_New(static_cast<Py_ssize_t>(num_gpus));
for (const auto i : c10::irange(num_gpus)) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto gen = at::cuda::detail::getDefaultCUDAGenerator(i);
auto cast_gen = (THPGenerator*)THPGenerator_initDefaultGenerator(gen);
// This reference is meant to be given away, so no need to incref here.
PyTuple_SetItem(default_cuda_generators, i, (PyObject*)cast_gen);
}
set_module_attr("default_generators", default_cuda_generators);
bindGetDeviceProperties(m);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getCurrentBlasHandle_wrap(
PyObject* self,
PyObject* noargs) {
HANDLE_TH_ERRORS
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
return PyLong_FromVoidPtr(handle);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_rocm_is_backward_pass(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
#if USE_ROCM
if (at::ROCmBackwardPassGuard::is_backward_pass()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
#else
Py_RETURN_FALSE;
#endif
END_HANDLE_TH_ERRORS
}
static PyObject* THCPModule_isCurrentStreamCapturing_wrap(
PyObject* self,
PyObject* noargs) {
HANDLE_TH_ERRORS
// If there's no cuda context, at::cuda::currentStreamCaptureStatus returns
// CaptureStatus::None without initializing a context.
if (at::cuda::currentStreamCaptureStatus() == at::cuda::CaptureStatus::None) {
Py_RETURN_FALSE;
} else {
Py_RETURN_TRUE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_setBenchmarkLimitCuDNN(PyObject* _unused, PyObject* arg) {
THPUtils_assert(
THPUtils_checkLong(arg),
"set_benchmark_limit_cudnn expects an int, "
"but got %s",
THPUtils_typename(arg));
auto benchmark_limit = static_cast<int>(THPUtils_unpackLong(arg));
#if defined(USE_ROCM)
TORCH_WARN_ONCE(
"cuDNN Benchmark limit is not supported in MIOpen and will have no effect.");
#endif
#if AT_CUDNN_ENABLED()
#if HAS_CUDNN_V8()
at::globalContext().setBenchmarkLimitCuDNN(benchmark_limit);
#else
TORCH_WARN_ONCE(
"cuDNN Benchmark limit is not supported with cuDNN v7 API and will have no effect.");
#endif
#endif
Py_RETURN_NONE;
}
PyObject* THCPModule_benchmarkLimitCuDNN(PyObject* _unused, PyObject* noargs) {
return THPUtils_packInt32(at::globalContext().benchmarkLimitCuDNN());
}
// NOLINTNEXTLINE(modernize-avoid-c-arrays,
// cppcoreguidelines-avoid-non-const-global-variables,
// cppcoreguidelines-avoid-c-arrays)
static struct PyMethodDef _THCPModule_methods[] = {
{"_cuda_init", THCPModule_initExtension, METH_NOARGS, nullptr},
{"_cuda_setDevice", THCPModule_setDevice_wrap, METH_O, nullptr},
{"_cuda_getDevice", THCPModule_getDevice_wrap, METH_NOARGS, nullptr},
{"_cuda_getDeviceCount",
THCPModule_getDeviceCount_wrap,
METH_NOARGS,
nullptr},
{"_cuda_canDeviceAccessPeer",
THCPModule_canDeviceAccessPeer_wrap,
METH_VARARGS,
nullptr},
{"_cuda_getArchFlags", THCPModule_getArchFlags, METH_NOARGS, nullptr},
{"_cuda_isInBadFork", THCPModule_isInBadFork, METH_NOARGS, nullptr},
{"_cuda_getCurrentStream",
THCPModule_getCurrentStream_wrap,
METH_O,
nullptr},
{"_cuda_getCurrentRawStream",
THCPModule_getCurrentStream_raw,
METH_O,
nullptr},
{"_cuda_getDefaultStream",
THCPModule_getDefaultStream_wrap,
METH_O,
nullptr},
{"_cuda_getCurrentBlasHandle",
THCPModule_getCurrentBlasHandle_wrap,
METH_NOARGS,
nullptr},
{"_cuda_isCurrentStreamCapturing",
THCPModule_isCurrentStreamCapturing_wrap,
METH_NOARGS,
nullptr},
{"_cuda_setStream", THCPModule_setStream_wrap, METH_O, nullptr},
{"_cuda_getCompiledVersion",
THCPModule_getCompiledVersion,
METH_NOARGS,
nullptr},
{"_cuda_hasPrimaryContext", THCPModule_hasPrimaryContext, METH_O, nullptr},
{"_cuda_setMemoryFraction",
THCPModule_setMemoryFraction,
METH_VARARGS,
nullptr},
{"_cuda_emptyCache", THCPModule_emptyCache, METH_NOARGS, nullptr},
{"_cuda_memoryStats", THCPModule_memoryStats, METH_O, nullptr},
{"_cuda_resetAccumulatedMemoryStats",
THCPModule_resetAccumulatedMemoryStats,
METH_O,
nullptr},
{"_cuda_resetPeakMemoryStats",
THCPModule_resetPeakMemoryStats,
METH_O,
nullptr},
{"_cuda_memorySnapshot", THCPModule_memorySnapshot, METH_NOARGS, nullptr},
{"_cuda_attach_out_of_memory_observer",
THCPModule_attachOutOfMemoryObserver,
METH_O,
nullptr},
{"_cuda_cudaHostAllocator",
THCPModule_cudaHostAllocator,
METH_NOARGS,
nullptr},
{"_cuda_cudaCachingAllocator_raw_alloc",
THCPModule_cudaCachingAllocator_raw_alloc,
METH_VARARGS,
nullptr},
{"_cuda_cudaCachingAllocator_raw_delete",
THCPModule_cudaCachingAllocator_raw_delete,
METH_O,
nullptr},
{"_cuda_cudaCachingAllocator_set_allocator_settings",
THCPModule_cudaCachingAllocator_set_allocator_settings,
METH_O,
nullptr},
{"_cuda_synchronize", THCPModule_cudaSynchronize, METH_NOARGS, nullptr},
{"_cuda_ipc_collect", THCPModule_cudaIPCCollect, METH_NOARGS, nullptr},
{"_cuda_sleep", THCPModule_cudaSleep, METH_O, nullptr},
{"_cuda_lock_mutex", THCPModule_cudaLockMutex, METH_NOARGS, nullptr},
{"_cuda_unlock_mutex", THCPModule_cudaUnlockMutex, METH_NOARGS, nullptr},
{"_cuda_set_sync_debug_mode",
THCPModule_cudaSetSyncDebugMode,
METH_O,
nullptr},
{"_cuda_get_sync_debug_mode",
THCPModule_cudaGetSyncDebugMode,
METH_NOARGS,
nullptr},
{"_cuda_jiterator_compile_and_launch_kernel",
THCPModule_cudaJiteratorCompileAndLaunchKernel,
METH_VARARGS,
nullptr},
{"_cuda_get_cudnn_benchmark_limit",
THCPModule_benchmarkLimitCuDNN,
METH_NOARGS,
nullptr},
{"_cuda_set_cudnn_benchmark_limit",
THCPModule_setBenchmarkLimitCuDNN,
METH_O,
nullptr},
#ifdef USE_NCCL
{"_nccl_version", THCPModule_nccl_version, METH_NOARGS, nullptr},
{"_nccl_unique_id", THCPModule_nccl_unique_id, METH_NOARGS, nullptr},
{"_nccl_init_rank", THCPModule_nccl_init_rank, METH_VARARGS, nullptr},
{"_nccl_reduce", THCPModule_nccl_reduce, METH_VARARGS, nullptr},
{"_nccl_all_reduce", THCPModule_nccl_all_reduce, METH_VARARGS, nullptr},
{"_nccl_broadcast", THCPModule_nccl_broadcast, METH_VARARGS, nullptr},
{"_nccl_all_gather", THCPModule_nccl_all_gather, METH_VARARGS, nullptr},
{"_nccl_reduce_scatter",
THCPModule_nccl_reduce_scatter,
METH_VARARGS,
nullptr},
#endif
{"_rocm_is_backward_pass",
THCPModule_rocm_is_backward_pass,
METH_NOARGS,
nullptr},
{nullptr}};
PyMethodDef* THCPModule_methods() {
return _THCPModule_methods;
}
namespace torch {
namespace cuda {
namespace shared {
void initCudartBindings(PyObject* module);
void initNvtxBindings(PyObject* module);
#if defined(USE_CUDNN) || defined(USE_ROCM)
void initCudnnBindings(PyObject* module);
#endif
} // namespace shared
void initModule(PyObject* module) {
python::initCommMethods(module);
// As weird as it seems, this file is also compiled for ROCm,
// so this condition might not always be true...
shared::initCudartBindings(module);
shared::initNvtxBindings(module);
#if defined(USE_CUDNN) || defined(USE_ROCM)
shared::initCudnnBindings(module);
#endif
registerCudaDeviceProperties(module);
}
} // namespace cuda
} // namespace torch