mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: https://github.com/pytorch/pytorch/issues/40980 I have a few questions during implementing Polygamma function... so, I made PR prior to complete it. 1. some code blocks brought from cephes library(and I did too) ``` /* * The following function comes with the following copyright notice. * It has been released under the BSD license. * * Cephes Math Library Release 2.8: June, 2000 * Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier */ ``` is it okay for me to use cephes code with this same copyright notice(already in the Pytorch codebases) 2. There is no linting in internal Aten library. (as far as I know, I read https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md) How do I'm sure my code will follow appropriate guidelines of this library..? 3. Actually, there's a digamma, trigamma function already digamma is needed, however, trigamma function becomes redundant if polygamma function is added. it is okay for trigamma to be there or should be removed? btw, CPU version works fine with 3-rd order polygamma(it's what we need to play with variational inference with beta/gamma distribution) now and I'm going to finish GPU version soon. Pull Request resolved: https://github.com/pytorch/pytorch/pull/42499 Reviewed By: gchanan Differential Revision: D23110016 Pulled By: albanD fbshipit-source-id: 246f4c2b755a99d9e18a15fcd1a24e3df5e0b53e
8779 lines
271 KiB
Python
8779 lines
271 KiB
Python
"""Adds docstrings to functions defined in the torch._C"""
|
|
|
|
import re
|
|
|
|
import torch._C
|
|
from torch._C import _add_docstr as add_docstr
|
|
|
|
|
|
def parse_kwargs(desc):
|
|
"""Maps a description of args to a dictionary of {argname: description}.
|
|
Input:
|
|
(' weight (Tensor): a weight tensor\n' +
|
|
' Some optional description')
|
|
Output: {
|
|
'weight': \
|
|
'weight (Tensor): a weight tensor\n Some optional description'
|
|
}
|
|
"""
|
|
# Split on exactly 4 spaces after a newline
|
|
regx = re.compile(r"\n\s{4}(?!\s)")
|
|
kwargs = [section.strip() for section in regx.split(desc)]
|
|
kwargs = [section for section in kwargs if len(section) > 0]
|
|
return {desc.split(' ')[0]: desc for desc in kwargs}
|
|
|
|
|
|
def merge_dicts(*dicts):
|
|
return {x: d[x] for d in dicts for x in d}
|
|
|
|
|
|
common_args = parse_kwargs("""
|
|
input (Tensor): the input tensor.
|
|
generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling
|
|
out (Tensor, optional): the output tensor.
|
|
""")
|
|
|
|
reduceops_common_args = merge_dicts(common_args, parse_kwargs("""
|
|
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
|
|
If specified, the input tensor is casted to :attr:`dtype` before the operation
|
|
is performed. This is useful for preventing data type overflows. Default: None.
|
|
keepdim (bool): whether the output tensor has :attr:`dim` retained or not.
|
|
"""))
|
|
|
|
multi_dim_common = merge_dicts(reduceops_common_args, parse_kwargs("""
|
|
dim (int or tuple of ints): the dimension or dimensions to reduce.
|
|
"""), {'keepdim_details': """
|
|
If :attr:`keepdim` is ``True``, the output tensor is of the same size
|
|
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1.
|
|
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the
|
|
output tensor having 1 (or ``len(dim)``) fewer dimension(s).
|
|
"""})
|
|
|
|
single_dim_common = merge_dicts(reduceops_common_args, parse_kwargs("""
|
|
dim (int): the dimension to reduce.
|
|
"""), {'keepdim_details': """If :attr:`keepdim` is ``True``, the output tensor is of the same size
|
|
as :attr:`input` except in the dimension :attr:`dim` where it is of size 1.
|
|
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in
|
|
the output tensor having 1 fewer dimension than :attr:`input`."""})
|
|
|
|
factory_common_args = merge_dicts(common_args, parse_kwargs("""
|
|
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
|
|
Default: if ``None``, uses a global default (see :func:`torch.set_default_tensor_type`).
|
|
layout (:class:`torch.layout`, optional): the desired layout of returned Tensor.
|
|
Default: ``torch.strided``.
|
|
device (:class:`torch.device`, optional): the desired device of returned tensor.
|
|
Default: if ``None``, uses the current device for the default tensor type
|
|
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
|
|
for CPU tensor types and the current CUDA device for CUDA tensor types.
|
|
requires_grad (bool, optional): If autograd should record operations on the
|
|
returned tensor. Default: ``False``.
|
|
pin_memory (bool, optional): If set, returned tensor would be allocated in
|
|
the pinned memory. Works only for CPU tensors. Default: ``False``.
|
|
memory_format (:class:`torch.memory_format`, optional): the desired memory format of
|
|
returned Tensor. Default: ``torch.contiguous_format``.
|
|
"""))
|
|
|
|
factory_like_common_args = parse_kwargs("""
|
|
input (Tensor): the size of :attr:`input` will determine size of the output tensor.
|
|
layout (:class:`torch.layout`, optional): the desired layout of returned tensor.
|
|
Default: if ``None``, defaults to the layout of :attr:`input`.
|
|
dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor.
|
|
Default: if ``None``, defaults to the dtype of :attr:`input`.
|
|
device (:class:`torch.device`, optional): the desired device of returned tensor.
|
|
Default: if ``None``, defaults to the device of :attr:`input`.
|
|
requires_grad (bool, optional): If autograd should record operations on the
|
|
returned tensor. Default: ``False``.
|
|
pin_memory (bool, optional): If set, returned tensor would be allocated in
|
|
the pinned memory. Works only for CPU tensors. Default: ``False``.
|
|
memory_format (:class:`torch.memory_format`, optional): the desired memory format of
|
|
returned Tensor. Default: ``torch.preserve_format``.
|
|
""")
|
|
|
|
factory_data_common_args = parse_kwargs("""
|
|
data (array_like): Initial data for the tensor. Can be a list, tuple,
|
|
NumPy ``ndarray``, scalar, and other types.
|
|
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
|
|
Default: if ``None``, infers data type from :attr:`data`.
|
|
device (:class:`torch.device`, optional): the desired device of returned tensor.
|
|
Default: if ``None``, uses the current device for the default tensor type
|
|
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
|
|
for CPU tensor types and the current CUDA device for CUDA tensor types.
|
|
requires_grad (bool, optional): If autograd should record operations on the
|
|
returned tensor. Default: ``False``.
|
|
pin_memory (bool, optional): If set, returned tensor would be allocated in
|
|
the pinned memory. Works only for CPU tensors. Default: ``False``.
|
|
""")
|
|
|
|
add_docstr(torch.abs, r"""
|
|
abs(input, *, out=None) -> Tensor
|
|
|
|
Computes the absolute value of each element in :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = |\text{input}_{i}|
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.abs(torch.tensor([-1, -2, 3]))
|
|
tensor([ 1, 2, 3])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.absolute,
|
|
r"""
|
|
absolute(input, out=None) -> Tensor
|
|
|
|
Alias for :func:`torch.abs`
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.acos, r"""
|
|
acos(input, *, out=None) -> Tensor
|
|
|
|
Computes the inverse cosine of each element in :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \cos^{-1}(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.3348, -0.5889, 0.2005, -0.1584])
|
|
>>> torch.acos(a)
|
|
tensor([ 1.2294, 2.2004, 1.3690, 1.7298])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.acosh,
|
|
r"""
|
|
acosh(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the inverse hyperbolic cosine of the elements of :attr:`input`.
|
|
|
|
Note:
|
|
The domain of the inverse hyperbolic cosine is `[1, inf)` and values outside this range
|
|
will be mapped to ``NaN``, except for `+ INF` for which the output is mapped to `+ INF`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \cosh^{-1}(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
|
|
Keyword arguments:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4).uniform_(1, 2)
|
|
>>> a
|
|
tensor([ 1.3192, 1.9915, 1.9674, 1.7151 ])
|
|
>>> torch.acosh(a)
|
|
tensor([ 0.7791, 1.3120, 1.2979, 1.1341 ])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.add,
|
|
r"""
|
|
add(input, other, out=None)
|
|
|
|
Adds the scalar :attr:`other` to each element of the input :attr:`input`
|
|
and returns a new resulting tensor.
|
|
|
|
.. math::
|
|
\text{{out}} = \text{{input}} + \text{{other}}
|
|
|
|
If :attr:`input` is of type FloatTensor or DoubleTensor, :attr:`other` must be
|
|
a real number, otherwise it should be an integer.
|
|
|
|
Args:
|
|
{input}
|
|
value (Number): the number to be added to each element of :attr:`input`
|
|
|
|
Keyword arguments:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.0202, 1.0985, 1.3506, -0.6056])
|
|
>>> torch.add(a, 20)
|
|
tensor([ 20.0202, 21.0985, 21.3506, 19.3944])
|
|
|
|
.. function:: add(input, other, *, alpha=1, out=None)
|
|
|
|
Each element of the tensor :attr:`other` is multiplied by the scalar
|
|
:attr:`alpha` and added to each element of the tensor :attr:`input`.
|
|
The resulting tensor is returned.
|
|
|
|
The shapes of :attr:`input` and :attr:`other` must be
|
|
:ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
.. math::
|
|
\text{{out}} = \text{{input}} + \text{{alpha}} \times \text{{other}}
|
|
|
|
If :attr:`other` is of type FloatTensor or DoubleTensor, :attr:`alpha` must be
|
|
a real number, otherwise it should be an integer.
|
|
|
|
Args:
|
|
input (Tensor): the first input tensor
|
|
other (Tensor): the second input tensor
|
|
alpha (Number): the scalar multiplier for :attr:`other`
|
|
|
|
Keyword arguments:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([-0.9732, -0.3497, 0.6245, 0.4022])
|
|
>>> b = torch.randn(4, 1)
|
|
>>> b
|
|
tensor([[ 0.3743],
|
|
[-1.7724],
|
|
[-0.5811],
|
|
[-0.8017]])
|
|
>>> torch.add(a, b, alpha=10)
|
|
tensor([[ 2.7695, 3.3930, 4.3672, 4.1450],
|
|
[-18.6971, -18.0736, -17.0994, -17.3216],
|
|
[ -6.7845, -6.1610, -5.1868, -5.4090],
|
|
[ -8.9902, -8.3667, -7.3925, -7.6147]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.addbmm,
|
|
r"""
|
|
addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor
|
|
|
|
Performs a batch matrix-matrix product of matrices stored
|
|
in :attr:`batch1` and :attr:`batch2`,
|
|
with a reduced add step (all matrix multiplications get accumulated
|
|
along the first dimension).
|
|
:attr:`input` is added to the final result.
|
|
|
|
:attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the
|
|
same number of matrices.
|
|
|
|
If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a
|
|
:math:`(b \times m \times p)` tensor, :attr:`input` must be
|
|
:ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor
|
|
and :attr:`out` will be a :math:`(n \times p)` tensor.
|
|
|
|
.. math::
|
|
out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i)
|
|
""" + r"""
|
|
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha`
|
|
must be real numbers, otherwise they should be integers.
|
|
|
|
Args:
|
|
batch1 (Tensor): the first batch of matrices to be multiplied
|
|
batch2 (Tensor): the second batch of matrices to be multiplied
|
|
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
|
|
input (Tensor): matrix to be added
|
|
alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`)
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> M = torch.randn(3, 5)
|
|
>>> batch1 = torch.randn(10, 3, 4)
|
|
>>> batch2 = torch.randn(10, 4, 5)
|
|
>>> torch.addbmm(M, batch1, batch2)
|
|
tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653],
|
|
[ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743],
|
|
[ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.addcdiv,
|
|
r"""
|
|
addcdiv(input, tensor1, tensor2, *, value=1, out=None) -> Tensor
|
|
|
|
Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`,
|
|
multiply the result by the scalar :attr:`value` and add it to :attr:`input`.
|
|
|
|
.. warning::
|
|
Integer division with addcdiv is no longer supported, and in a future release
|
|
addcdiv will perform a true division of :attr:`tensor1` and :attr:`tensor2`.
|
|
The historic addcdiv behavior can be implemented using :func:`floor_divide`
|
|
for integral inputs
|
|
(:attr:`input` + :attr:`value` * :attr:`tensor1` // :attr:`tensor2`)
|
|
and :func:`div` for float inputs
|
|
(:attr:`input` + :attr:`value` * :attr:`tensor1` / :attr:`tensor2`).
|
|
The future addcdiv behavior can be implemented with :func:`true_divide`
|
|
(:attr:`input` + :attr:`value` * torch.true_divide(:attr:`tensor1`,
|
|
:attr:`tensor2`).
|
|
|
|
.. math::
|
|
\text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i}
|
|
""" + r"""
|
|
|
|
The shapes of :attr:`input`, :attr:`tensor1`, and :attr:`tensor2` must be
|
|
:ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be
|
|
a real number, otherwise an integer.
|
|
|
|
Args:
|
|
input (Tensor): the tensor to be added
|
|
tensor1 (Tensor): the numerator tensor
|
|
tensor2 (Tensor): the denominator tensor
|
|
value (Number, optional): multiplier for :math:`\text{{tensor1}} / \text{{tensor2}}`
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> t = torch.randn(1, 3)
|
|
>>> t1 = torch.randn(3, 1)
|
|
>>> t2 = torch.randn(1, 3)
|
|
>>> torch.addcdiv(t, t1, t2, value=0.1)
|
|
tensor([[-0.2312, -3.6496, 0.1312],
|
|
[-1.0428, 3.4292, -0.1030],
|
|
[-0.5369, -0.9829, 0.0430]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.addcmul,
|
|
r"""
|
|
addcmul(input, tensor1, tensor2, *, value=1, out=None) -> Tensor
|
|
|
|
Performs the element-wise multiplication of :attr:`tensor1`
|
|
by :attr:`tensor2`, multiply the result by the scalar :attr:`value`
|
|
and add it to :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i
|
|
""" + r"""
|
|
The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be
|
|
:ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be
|
|
a real number, otherwise an integer.
|
|
|
|
Args:
|
|
input (Tensor): the tensor to be added
|
|
tensor1 (Tensor): the tensor to be multiplied
|
|
tensor2 (Tensor): the tensor to be multiplied
|
|
value (Number, optional): multiplier for :math:`tensor1 .* tensor2`
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> t = torch.randn(1, 3)
|
|
>>> t1 = torch.randn(3, 1)
|
|
>>> t2 = torch.randn(1, 3)
|
|
>>> torch.addcmul(t, t1, t2, value=0.1)
|
|
tensor([[-0.8635, -0.6391, 1.6174],
|
|
[-0.7617, -0.5879, 1.7388],
|
|
[-0.8353, -0.6249, 1.6511]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.addmm,
|
|
r"""
|
|
addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor
|
|
|
|
Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`.
|
|
The matrix :attr:`input` is added to the final result.
|
|
|
|
If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a
|
|
:math:`(m \times p)` tensor, then :attr:`input` must be
|
|
:ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor
|
|
and :attr:`out` will be a :math:`(n \times p)` tensor.
|
|
|
|
:attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between
|
|
:attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively.
|
|
|
|
.. math::
|
|
\text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i)
|
|
""" + r"""
|
|
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
|
|
:attr:`alpha` must be real numbers, otherwise they should be integers.
|
|
|
|
Args:
|
|
input (Tensor): matrix to be added
|
|
mat1 (Tensor): the first matrix to be multiplied
|
|
mat2 (Tensor): the second matrix to be multiplied
|
|
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
|
|
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> M = torch.randn(2, 3)
|
|
>>> mat1 = torch.randn(2, 3)
|
|
>>> mat2 = torch.randn(3, 3)
|
|
>>> torch.addmm(M, mat1, mat2)
|
|
tensor([[-4.8716, 1.4671, -1.3746],
|
|
[ 0.7573, -3.9555, -2.8681]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.addmv,
|
|
r"""
|
|
addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor
|
|
|
|
Performs a matrix-vector product of the matrix :attr:`mat` and
|
|
the vector :attr:`vec`.
|
|
The vector :attr:`input` is added to the final result.
|
|
|
|
If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of
|
|
size `m`, then :attr:`input` must be
|
|
:ref:`broadcastable <broadcasting-semantics>` with a 1-D tensor of size `n` and
|
|
:attr:`out` will be 1-D tensor of size `n`.
|
|
|
|
:attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between
|
|
:attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively.
|
|
|
|
.. math::
|
|
\text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec})
|
|
""" + r"""
|
|
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
|
|
:attr:`alpha` must be real numbers, otherwise they should be integers
|
|
|
|
Args:
|
|
input (Tensor): vector to be added
|
|
mat (Tensor): matrix to be multiplied
|
|
vec (Tensor): vector to be multiplied
|
|
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
|
|
alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`)
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> M = torch.randn(2)
|
|
>>> mat = torch.randn(2, 3)
|
|
>>> vec = torch.randn(3)
|
|
>>> torch.addmv(M, mat, vec)
|
|
tensor([-0.3768, -5.5565])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.addr,
|
|
r"""
|
|
addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor
|
|
|
|
Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2`
|
|
and adds it to the matrix :attr:`input`.
|
|
|
|
Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the
|
|
outer product between :attr:`vec1` and :attr:`vec2` and the added matrix
|
|
:attr:`input` respectively.
|
|
|
|
.. math::
|
|
\text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2})
|
|
""" + r"""
|
|
If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector
|
|
of size `m`, then :attr:`input` must be
|
|
:ref:`broadcastable <broadcasting-semantics>` with a matrix of size
|
|
:math:`(n \times m)` and :attr:`out` will be a matrix of size
|
|
:math:`(n \times m)`.
|
|
|
|
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
|
|
:attr:`alpha` must be real numbers, otherwise they should be integers
|
|
|
|
Args:
|
|
input (Tensor): matrix to be added
|
|
vec1 (Tensor): the first vector of the outer product
|
|
vec2 (Tensor): the second vector of the outer product
|
|
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
|
|
alpha (Number, optional): multiplier for :math:`\text{{vec1}} \otimes \text{{vec2}}` (:math:`\alpha`)
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> vec1 = torch.arange(1., 4.)
|
|
>>> vec2 = torch.arange(1., 3.)
|
|
>>> M = torch.zeros(3, 2)
|
|
>>> torch.addr(M, vec1, vec2)
|
|
tensor([[ 1., 2.],
|
|
[ 2., 4.],
|
|
[ 3., 6.]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.allclose,
|
|
r"""
|
|
allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> bool
|
|
|
|
This function checks if all :attr:`input` and :attr:`other` satisfy the condition:
|
|
|
|
.. math::
|
|
\lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert
|
|
""" + r"""
|
|
elementwise, for all elements of :attr:`input` and :attr:`other`. The behaviour of this function is analogous to
|
|
`numpy.allclose <https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html>`_
|
|
|
|
Args:
|
|
input (Tensor): first tensor to compare
|
|
other (Tensor): second tensor to compare
|
|
atol (float, optional): absolute tolerance. Default: 1e-08
|
|
rtol (float, optional): relative tolerance. Default: 1e-05
|
|
equal_nan (bool, optional): if ``True``, then two ``NaN`` s will be considered equal. Default: ``False``
|
|
|
|
Example::
|
|
|
|
>>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08]))
|
|
False
|
|
>>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09]))
|
|
True
|
|
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]))
|
|
False
|
|
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True)
|
|
True
|
|
""")
|
|
|
|
add_docstr(torch.angle,
|
|
r"""
|
|
angle(input, out=None) -> Tensor
|
|
|
|
Computes the element-wise angle (in radians) of the given :attr:`input` tensor.
|
|
|
|
.. math::
|
|
\text{out}_{i} = angle(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.angle(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]))*180/3.14159
|
|
tensor([ 135., 135, -45])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.as_strided,
|
|
r"""
|
|
as_strided(input, size, stride, storage_offset=0) -> Tensor
|
|
|
|
Create a view of an existing `torch.Tensor` :attr:`input` with specified
|
|
:attr:`size`, :attr:`stride` and :attr:`storage_offset`.
|
|
|
|
.. warning::
|
|
More than one element of a created tensor may refer to a single memory
|
|
location. As a result, in-place operations (especially ones that are
|
|
vectorized) may result in incorrect behavior. If you need to write to
|
|
the tensors, please clone them first.
|
|
|
|
Many PyTorch functions, which return a view of a tensor, are internally
|
|
implemented with this function. Those functions, like
|
|
:meth:`torch.Tensor.expand`, are easier to read and are therefore more
|
|
advisable to use.
|
|
|
|
|
|
Args:
|
|
{input}
|
|
size (tuple or ints): the shape of the output tensor
|
|
stride (tuple or ints): the stride of the output tensor
|
|
storage_offset (int, optional): the offset in the underlying storage of the output tensor
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(3, 3)
|
|
>>> x
|
|
tensor([[ 0.9039, 0.6291, 1.0795],
|
|
[ 0.1586, 2.1939, -0.4900],
|
|
[-0.1909, -0.7503, 1.9355]])
|
|
>>> t = torch.as_strided(x, (2, 2), (1, 2))
|
|
>>> t
|
|
tensor([[0.9039, 1.0795],
|
|
[0.6291, 0.1586]])
|
|
>>> t = torch.as_strided(x, (2, 2), (1, 2), 1)
|
|
tensor([[0.6291, 0.1586],
|
|
[1.0795, 2.1939]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.as_tensor,
|
|
r"""
|
|
as_tensor(data, dtype=None, device=None) -> Tensor
|
|
|
|
Convert the data into a `torch.Tensor`. If the data is already a `Tensor` with the same `dtype` and `device`,
|
|
no copy will be performed, otherwise a new `Tensor` will be returned with computational graph retained if data
|
|
`Tensor` has ``requires_grad=True``. Similarly, if the data is an ``ndarray`` of the corresponding `dtype` and
|
|
the `device` is the cpu, no copy will be performed.
|
|
|
|
Args:
|
|
{data}
|
|
{dtype}
|
|
{device}
|
|
|
|
Example::
|
|
|
|
>>> a = numpy.array([1, 2, 3])
|
|
>>> t = torch.as_tensor(a)
|
|
>>> t
|
|
tensor([ 1, 2, 3])
|
|
>>> t[0] = -1
|
|
>>> a
|
|
array([-1, 2, 3])
|
|
|
|
>>> a = numpy.array([1, 2, 3])
|
|
>>> t = torch.as_tensor(a, device=torch.device('cuda'))
|
|
>>> t
|
|
tensor([ 1, 2, 3])
|
|
>>> t[0] = -1
|
|
>>> a
|
|
array([1, 2, 3])
|
|
""".format(**factory_data_common_args))
|
|
|
|
add_docstr(torch.asin,
|
|
r"""
|
|
asin(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the arcsine of the elements of :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \sin^{-1}(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([-0.5962, 1.4985, -0.4396, 1.4525])
|
|
>>> torch.asin(a)
|
|
tensor([-0.6387, nan, -0.4552, nan])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.asinh,
|
|
r"""
|
|
asinh(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the inverse hyperbolic sine of the elements of :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \sinh^{-1}(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
|
|
Keyword arguments:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.1606, -1.4267, -1.0899, -1.0250 ])
|
|
>>> torch.asinh(a)
|
|
tensor([ 0.1599, -1.1534, -0.9435, -0.8990 ])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.atan,
|
|
r"""
|
|
atan(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the arctangent of the elements of :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \tan^{-1}(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.2341, 0.2539, -0.6256, -0.6448])
|
|
>>> torch.atan(a)
|
|
tensor([ 0.2299, 0.2487, -0.5591, -0.5727])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.atan2,
|
|
r"""
|
|
atan2(input, other, out=None) -> Tensor
|
|
|
|
Element-wise arctangent of :math:`\text{{input}}_{{i}} / \text{{other}}_{{i}}`
|
|
with consideration of the quadrant. Returns a new tensor with the signed angles
|
|
in radians between vector :math:`(\text{{other}}_{{i}}, \text{{input}}_{{i}})`
|
|
and vector :math:`(1, 0)`. (Note that :math:`\text{{other}}_{{i}}`, the second
|
|
parameter, is the x-coordinate, while :math:`\text{{input}}_{{i}}`, the first
|
|
parameter, is the y-coordinate.)
|
|
|
|
The shapes of ``input`` and ``other`` must be
|
|
:ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
Args:
|
|
input (Tensor): the first input tensor
|
|
other (Tensor): the second input tensor
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.9041, 0.0196, -0.3108, -2.4423])
|
|
>>> torch.atan2(a, torch.randn(4))
|
|
tensor([ 0.9833, 0.0811, -1.9743, -1.4151])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.atanh,
|
|
r"""
|
|
atanh(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the inverse hyperbolic tangent of the elements of :attr:`input`.
|
|
|
|
Note:
|
|
The domain of the inverse hyperbolic tangent is `(-1, 1)` and values outside this range
|
|
will be mapped to ``NaN``, except for the values `1` and `-1` for which the output is
|
|
mapped to `+/-INF` respectively.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \tanh^{-1}(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
|
|
Keyword arguments:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4).uniform_(-1, 1)
|
|
>>> a
|
|
tensor([ -0.9385, 0.2968, -0.8591, -0.1871 ])
|
|
>>> torch.atanh(a)
|
|
tensor([ -1.7253, 0.3060, -1.2899, -0.1893 ])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.baddbmm,
|
|
r"""
|
|
baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor
|
|
|
|
Performs a batch matrix-matrix product of matrices in :attr:`batch1`
|
|
and :attr:`batch2`.
|
|
:attr:`input` is added to the final result.
|
|
|
|
:attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same
|
|
number of matrices.
|
|
|
|
If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a
|
|
:math:`(b \times m \times p)` tensor, then :attr:`input` must be
|
|
:ref:`broadcastable <broadcasting-semantics>` with a
|
|
:math:`(b \times n \times p)` tensor and :attr:`out` will be a
|
|
:math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the
|
|
same as the scaling factors used in :meth:`torch.addbmm`.
|
|
|
|
.. math::
|
|
\text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i)
|
|
""" + r"""
|
|
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
|
|
:attr:`alpha` must be real numbers, otherwise they should be integers.
|
|
|
|
Args:
|
|
input (Tensor): the tensor to be added
|
|
batch1 (Tensor): the first batch of matrices to be multiplied
|
|
batch2 (Tensor): the second batch of matrices to be multiplied
|
|
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
|
|
alpha (Number, optional): multiplier for :math:`\text{{batch1}} \mathbin{{@}} \text{{batch2}}` (:math:`\alpha`)
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> M = torch.randn(10, 3, 5)
|
|
>>> batch1 = torch.randn(10, 3, 4)
|
|
>>> batch2 = torch.randn(10, 4, 5)
|
|
>>> torch.baddbmm(M, batch1, batch2).size()
|
|
torch.Size([10, 3, 5])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.bernoulli,
|
|
r"""
|
|
bernoulli(input, *, generator=None, out=None) -> Tensor
|
|
|
|
Draws binary random numbers (0 or 1) from a Bernoulli distribution.
|
|
|
|
The :attr:`input` tensor should be a tensor containing probabilities
|
|
to be used for drawing the binary random number.
|
|
Hence, all values in :attr:`input` have to be in the range:
|
|
:math:`0 \leq \text{input}_i \leq 1`.
|
|
|
|
The :math:`\text{i}^{th}` element of the output tensor will draw a
|
|
value :math:`1` according to the :math:`\text{i}^{th}` probability value given
|
|
in :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i})
|
|
""" + r"""
|
|
The returned :attr:`out` tensor only has values 0 or 1 and is of the same
|
|
shape as :attr:`input`.
|
|
|
|
:attr:`out` can have integral ``dtype``, but :attr:`input` must have floating
|
|
point ``dtype``.
|
|
|
|
Args:
|
|
input (Tensor): the input tensor of probability values for the Bernoulli distribution
|
|
{generator}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1]
|
|
>>> a
|
|
tensor([[ 0.1737, 0.0950, 0.3609],
|
|
[ 0.7148, 0.0289, 0.2676],
|
|
[ 0.9456, 0.8937, 0.7202]])
|
|
>>> torch.bernoulli(a)
|
|
tensor([[ 1., 0., 0.],
|
|
[ 0., 0., 0.],
|
|
[ 1., 1., 1.]])
|
|
|
|
>>> a = torch.ones(3, 3) # probability of drawing "1" is 1
|
|
>>> torch.bernoulli(a)
|
|
tensor([[ 1., 1., 1.],
|
|
[ 1., 1., 1.],
|
|
[ 1., 1., 1.]])
|
|
>>> a = torch.zeros(3, 3) # probability of drawing "1" is 0
|
|
>>> torch.bernoulli(a)
|
|
tensor([[ 0., 0., 0.],
|
|
[ 0., 0., 0.],
|
|
[ 0., 0., 0.]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.bincount,
|
|
r"""
|
|
bincount(input, weights=None, minlength=0) -> Tensor
|
|
|
|
Count the frequency of each value in an array of non-negative ints.
|
|
|
|
The number of bins (size 1) is one larger than the largest value in
|
|
:attr:`input` unless :attr:`input` is empty, in which case the result is a
|
|
tensor of size 0. If :attr:`minlength` is specified, the number of bins is at least
|
|
:attr:`minlength` and if :attr:`input` is empty, then the result is tensor of size
|
|
:attr:`minlength` filled with zeros. If ``n`` is the value at position ``i``,
|
|
``out[n] += weights[i]`` if :attr:`weights` is specified else
|
|
``out[n] += 1``.
|
|
|
|
Note:
|
|
In some circumstances when using the CUDA backend with CuDNN, this operator
|
|
may select a nondeterministic algorithm to increase performance. If this is
|
|
undesirable, you can try to make the operation deterministic (potentially at
|
|
a performance cost) by setting ``torch.backends.cudnn.deterministic =
|
|
True``.
|
|
Please see the notes on :doc:`/notes/randomness` for background.
|
|
|
|
Arguments:
|
|
input (Tensor): 1-d int tensor
|
|
weights (Tensor): optional, weight for each value in the input tensor.
|
|
Should be of same size as input tensor.
|
|
minlength (int): optional, minimum number of bins. Should be non-negative.
|
|
|
|
Returns:
|
|
output (Tensor): a tensor of shape ``Size([max(input) + 1])`` if
|
|
:attr:`input` is non-empty, else ``Size(0)``
|
|
|
|
Example::
|
|
|
|
>>> input = torch.randint(0, 8, (5,), dtype=torch.int64)
|
|
>>> weights = torch.linspace(0, 1, steps=5)
|
|
>>> input, weights
|
|
(tensor([4, 3, 6, 3, 4]),
|
|
tensor([ 0.0000, 0.2500, 0.5000, 0.7500, 1.0000])
|
|
|
|
>>> torch.bincount(input)
|
|
tensor([0, 0, 0, 2, 2, 0, 1])
|
|
|
|
>>> input.bincount(weights)
|
|
tensor([0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.5000])
|
|
""")
|
|
|
|
add_docstr(torch.bitwise_not,
|
|
r"""
|
|
bitwise_not(input, out=None) -> Tensor
|
|
|
|
Computes the bitwise NOT of the given input tensor. The input tensor must be of
|
|
integral or Boolean types. For bool tensors, it computes the logical NOT.
|
|
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example:
|
|
|
|
>>> torch.bitwise_not(torch.tensor([-1, -2, 3], dtype=torch.int8))
|
|
tensor([ 0, 1, -4], dtype=torch.int8)
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.bmm,
|
|
r"""
|
|
bmm(input, mat2, deterministic=False, out=None) -> Tensor
|
|
|
|
Performs a batch matrix-matrix product of matrices stored in :attr:`input`
|
|
and :attr:`mat2`.
|
|
|
|
:attr:`input` and :attr:`mat2` must be 3-D tensors each containing
|
|
the same number of matrices.
|
|
|
|
If :attr:`input` is a :math:`(b \times n \times m)` tensor, :attr:`mat2` is a
|
|
:math:`(b \times m \times p)` tensor, :attr:`out` will be a
|
|
:math:`(b \times n \times p)` tensor.
|
|
|
|
.. math::
|
|
\text{out}_i = \text{input}_i \mathbin{@} \text{mat2}_i
|
|
""" + r"""
|
|
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
|
|
For broadcasting matrix products, see :func:`torch.matmul`.
|
|
|
|
Args:
|
|
input (Tensor): the first batch of matrices to be multiplied
|
|
mat2 (Tensor): the second batch of matrices to be multiplied
|
|
deterministic (bool, optional): flag to choose between a faster non-deterministic
|
|
calculation, or a slower deterministic calculation.
|
|
This argument is only available for sparse-dense CUDA bmm.
|
|
Default: ``False``
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> input = torch.randn(10, 3, 4)
|
|
>>> mat2 = torch.randn(10, 4, 5)
|
|
>>> res = torch.bmm(input, mat2)
|
|
>>> res.size()
|
|
torch.Size([10, 3, 5])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.bitwise_and,
|
|
r"""
|
|
bitwise_and(input, other, out=None) -> Tensor
|
|
|
|
Computes the bitwise AND of :attr:`input` and :attr:`other`. The input tensor must be of
|
|
integral or Boolean types. For bool tensors, it computes the logical AND.
|
|
|
|
Args:
|
|
input: the first input tensor
|
|
other: the second input tensor
|
|
{out}
|
|
|
|
Example:
|
|
|
|
>>> torch.bitwise_and(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8))
|
|
tensor([1, 0, 3], dtype=torch.int8)
|
|
>>> torch.bitwise_and(torch.tensor([True, True, False]), torch.tensor([False, True, False]))
|
|
tensor([ False, True, False])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.bitwise_or,
|
|
r"""
|
|
bitwise_or(input, other, out=None) -> Tensor
|
|
|
|
Computes the bitwise OR of :attr:`input` and :attr:`other`. The input tensor must be of
|
|
integral or Boolean types. For bool tensors, it computes the logical OR.
|
|
|
|
Args:
|
|
input: the first input tensor
|
|
other: the second input tensor
|
|
{out}
|
|
|
|
Example:
|
|
|
|
>>> torch.bitwise_or(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8))
|
|
tensor([-1, -2, 3], dtype=torch.int8)
|
|
>>> torch.bitwise_or(torch.tensor([True, True, False]), torch.tensor([False, True, False]))
|
|
tensor([ True, True, False])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.bitwise_xor,
|
|
r"""
|
|
bitwise_xor(input, other, out=None) -> Tensor
|
|
|
|
Computes the bitwise XOR of :attr:`input` and :attr:`other`. The input tensor must be of
|
|
integral or Boolean types. For bool tensors, it computes the logical XOR.
|
|
|
|
Args:
|
|
input: the first input tensor
|
|
other: the second input tensor
|
|
{out}
|
|
|
|
Example:
|
|
|
|
>>> torch.bitwise_xor(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8))
|
|
tensor([-2, -2, 0], dtype=torch.int8)
|
|
>>> torch.bitwise_xor(torch.tensor([True, True, False]), torch.tensor([False, True, False]))
|
|
tensor([ True, False, False])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.stack,
|
|
r"""
|
|
stack(tensors, dim=0, out=None) -> Tensor
|
|
|
|
Concatenates sequence of tensors along a new dimension.
|
|
|
|
All tensors need to be of the same size.
|
|
|
|
Arguments:
|
|
tensors (sequence of Tensors): sequence of tensors to concatenate
|
|
dim (int): dimension to insert. Has to be between 0 and the number
|
|
of dimensions of concatenated tensors (inclusive)
|
|
{out}
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.chunk,
|
|
r"""
|
|
chunk(input, chunks, dim=0) -> List of Tensors
|
|
|
|
Splits a tensor into a specific number of chunks. Each chunk is a view of
|
|
the input tensor.
|
|
|
|
Last chunk will be smaller if the tensor size along the given dimension
|
|
:attr:`dim` is not divisible by :attr:`chunks`.
|
|
|
|
Arguments:
|
|
input (Tensor): the tensor to split
|
|
chunks (int): number of chunks to return
|
|
dim (int): dimension along which to split the tensor
|
|
""")
|
|
|
|
add_docstr(torch.unsafe_chunk,
|
|
r"""
|
|
unsafe_chunk(input, chunks, dim=0) -> List of Tensors
|
|
|
|
Works like :func:`torch.chunk` but without enforcing the autograd restrictions
|
|
on inplace modification of the outputs.
|
|
|
|
.. warning::
|
|
This function is safe to use as long as only the input, or only the outputs
|
|
are modified inplace after calling this function. It is user's
|
|
responsibility to ensure that is the case. If both the input and one or more
|
|
of the outputs are modified inplace, gradients computed by autograd will be
|
|
silently incorrect.
|
|
""")
|
|
|
|
add_docstr(torch.unsafe_split,
|
|
r"""
|
|
unsafe_split(tensor, split_size_or_sections, dim=0) -> List of Tensors
|
|
|
|
Works like :func:`torch.split` but without enforcing the autograd restrictions
|
|
on inplace modification of the outputs.
|
|
|
|
.. warning::
|
|
This function is safe to use as long as only the input, or only the outputs
|
|
are modified inplace after calling this function. It is user's
|
|
responsibility to ensure that is the case. If both the input and one or more
|
|
of the outputs are modified inplace, gradients computed by autograd will be
|
|
silently incorrect.
|
|
""")
|
|
|
|
add_docstr(torch.can_cast,
|
|
r"""
|
|
can_cast(from, to) -> bool
|
|
|
|
Determines if a type conversion is allowed under PyTorch casting rules
|
|
described in the type promotion :ref:`documentation <type-promotion-doc>`.
|
|
|
|
Args:
|
|
from (dtype): The original :class:`torch.dtype`.
|
|
to (dtype): The target :class:`torch.dtype`.
|
|
|
|
Example::
|
|
|
|
>>> torch.can_cast(torch.double, torch.float)
|
|
True
|
|
>>> torch.can_cast(torch.float, torch.int)
|
|
False
|
|
""")
|
|
|
|
add_docstr(torch.cat,
|
|
r"""
|
|
cat(tensors, dim=0, out=None) -> Tensor
|
|
|
|
Concatenates the given sequence of :attr:`seq` tensors in the given dimension.
|
|
All tensors must either have the same shape (except in the concatenating
|
|
dimension) or be empty.
|
|
|
|
:func:`torch.cat` can be seen as an inverse operation for :func:`torch.split`
|
|
and :func:`torch.chunk`.
|
|
|
|
:func:`torch.cat` can be best understood via examples.
|
|
|
|
Args:
|
|
tensors (sequence of Tensors): any python sequence of tensors of the same type.
|
|
Non-empty tensors provided must have the same shape, except in the
|
|
cat dimension.
|
|
dim (int, optional): the dimension over which the tensors are concatenated
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(2, 3)
|
|
>>> x
|
|
tensor([[ 0.6580, -1.0969, -0.4614],
|
|
[-0.1034, -0.5790, 0.1497]])
|
|
>>> torch.cat((x, x, x), 0)
|
|
tensor([[ 0.6580, -1.0969, -0.4614],
|
|
[-0.1034, -0.5790, 0.1497],
|
|
[ 0.6580, -1.0969, -0.4614],
|
|
[-0.1034, -0.5790, 0.1497],
|
|
[ 0.6580, -1.0969, -0.4614],
|
|
[-0.1034, -0.5790, 0.1497]])
|
|
>>> torch.cat((x, x, x), 1)
|
|
tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580,
|
|
-1.0969, -0.4614],
|
|
[-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034,
|
|
-0.5790, 0.1497]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.ceil,
|
|
r"""
|
|
ceil(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the ceil of the elements of :attr:`input`,
|
|
the smallest integer greater than or equal to each element.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \left\lceil \text{input}_{i} \right\rceil = \left\lfloor \text{input}_{i} \right\rfloor + 1
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([-0.6341, -1.4208, -1.0900, 0.5826])
|
|
>>> torch.ceil(a)
|
|
tensor([-0., -1., -1., 1.])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.real,
|
|
r"""
|
|
real(input) -> Tensor
|
|
|
|
Returns a new tensor containing real values of the :attr:`self` tensor.
|
|
The returned tensor and :attr:`self` share the same underlying storage.
|
|
|
|
.. warning::
|
|
:func:`real` is only supported for tensors with complex dtypes.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Example::
|
|
>>> x=torch.randn(4, dtype=torch.cfloat)
|
|
>>> x
|
|
tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)])
|
|
>>> x.real
|
|
tensor([ 0.3100, -0.5445, -1.6492, -0.0638])
|
|
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.imag,
|
|
r"""
|
|
imag(input) -> Tensor
|
|
|
|
Returns a new tensor containing imaginary values of the :attr:`self` tensor.
|
|
The returned tensor and :attr:`self` share the same underlying storage.
|
|
|
|
.. warning::
|
|
:func:`imag` is only supported for tensors with complex dtypes.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Example::
|
|
>>> x=torch.randn(4, dtype=torch.cfloat)
|
|
>>> x
|
|
tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)])
|
|
>>> x.imag
|
|
tensor([ 0.3553, -0.7896, -0.0633, -0.8119])
|
|
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.view_as_real,
|
|
r"""
|
|
view_as_real(input) -> Tensor
|
|
|
|
Returns a view of :attr:`input` as a real tensor. For an input complex tensor of
|
|
:attr:`size` :math:`m1, m2, \dots, mi`, this function returns a new
|
|
real tensor of size :math:`m1, m2, \dots, mi, 2`, where the last dimension of size 2
|
|
represents the real and imaginary components of complex numbers.
|
|
|
|
.. warning::
|
|
:func:`view_as_real` is only supported for tensors with ``complex dtypes``.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Example::
|
|
>>> x=torch.randn(4, dtype=torch.cfloat)
|
|
>>> x
|
|
tensor([(0.4737-0.3839j), (-0.2098-0.6699j), (0.3470-0.9451j), (-0.5174-1.3136j)])
|
|
>>> torch.view_as_real(x)
|
|
tensor([[ 0.4737, -0.3839],
|
|
[-0.2098, -0.6699],
|
|
[ 0.3470, -0.9451],
|
|
[-0.5174, -1.3136]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.view_as_complex,
|
|
r"""
|
|
view_as_complex(input) -> Tensor
|
|
|
|
Returns a view of :attr:`input` as a complex tensor. For an input complex
|
|
tensor of :attr:`size` :math:`m1, m2, \dots, mi, 2`, this function returns a
|
|
new complex tensor of :attr:`size` :math:`m1, m2, \dots, mi` where the last
|
|
dimension of the input tensor is expected to represent the real and imaginary
|
|
components of complex numbers.
|
|
|
|
.. warning::
|
|
:func:`view_as_complex` is only supported for tensors with
|
|
:class:`torch.dtype` ``torch.float64`` and ``torch.float32``. The input is
|
|
expected to have the last dimension of :attr:`size` 2. In addition, the
|
|
tensor must have a `stride` of 1 for its last dimension. The strides of all
|
|
other dimensions must be even numbers.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Example::
|
|
>>> x=torch.randn(4, 2)
|
|
>>> x
|
|
tensor([[ 1.6116, -0.5772],
|
|
[-1.4606, -0.9120],
|
|
[ 0.0786, -1.7497],
|
|
[-0.6561, -1.6623]])
|
|
>>> torch.view_as_complex(x)
|
|
tensor([(1.6116-0.5772j), (-1.4606-0.9120j), (0.0786-1.7497j), (-0.6561-1.6623j)])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.reciprocal,
|
|
r"""
|
|
reciprocal(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the reciprocal of the elements of :attr:`input`
|
|
|
|
.. math::
|
|
\text{out}_{i} = \frac{1}{\text{input}_{i}}
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([-0.4595, -2.1219, -1.4314, 0.7298])
|
|
>>> torch.reciprocal(a)
|
|
tensor([-2.1763, -0.4713, -0.6986, 1.3702])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.cholesky, r"""
|
|
cholesky(input, upper=False, out=None) -> Tensor
|
|
|
|
Computes the Cholesky decomposition of a symmetric positive-definite
|
|
matrix :math:`A` or for batches of symmetric positive-definite matrices.
|
|
|
|
If :attr:`upper` is ``True``, the returned matrix ``U`` is upper-triangular, and
|
|
the decomposition has the form:
|
|
|
|
.. math::
|
|
|
|
A = U^TU
|
|
|
|
If :attr:`upper` is ``False``, the returned matrix ``L`` is lower-triangular, and
|
|
the decomposition has the form:
|
|
|
|
.. math::
|
|
|
|
A = LL^T
|
|
|
|
If :attr:`upper` is ``True``, and :math:`A` is a batch of symmetric positive-definite
|
|
matrices, then the returned tensor will be composed of upper-triangular Cholesky factors
|
|
of each of the individual matrices. Similarly, when :attr:`upper` is ``False``, the returned
|
|
tensor will be composed of lower-triangular Cholesky factors of each of the individual
|
|
matrices.
|
|
|
|
Args:
|
|
input (Tensor): the input tensor :math:`A` of size :math:`(*, n, n)` where `*` is zero or more
|
|
batch dimensions consisting of symmetric positive-definite matrices.
|
|
upper (bool, optional): flag that indicates whether to return a
|
|
upper or lower triangular matrix. Default: ``False``
|
|
out (Tensor, optional): the output matrix
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(3, 3)
|
|
>>> a = torch.mm(a, a.t()) # make symmetric positive-definite
|
|
>>> l = torch.cholesky(a)
|
|
>>> a
|
|
tensor([[ 2.4112, -0.7486, 1.4551],
|
|
[-0.7486, 1.3544, 0.1294],
|
|
[ 1.4551, 0.1294, 1.6724]])
|
|
>>> l
|
|
tensor([[ 1.5528, 0.0000, 0.0000],
|
|
[-0.4821, 1.0592, 0.0000],
|
|
[ 0.9371, 0.5487, 0.7023]])
|
|
>>> torch.mm(l, l.t())
|
|
tensor([[ 2.4112, -0.7486, 1.4551],
|
|
[-0.7486, 1.3544, 0.1294],
|
|
[ 1.4551, 0.1294, 1.6724]])
|
|
>>> a = torch.randn(3, 2, 2)
|
|
>>> a = torch.matmul(a, a.transpose(-1, -2)) + 1e-03 # make symmetric positive-definite
|
|
>>> l = torch.cholesky(a)
|
|
>>> z = torch.matmul(l, l.transpose(-1, -2))
|
|
>>> torch.max(torch.abs(z - a)) # Max non-zero
|
|
tensor(2.3842e-07)
|
|
""")
|
|
|
|
add_docstr(torch.cholesky_solve, r"""
|
|
cholesky_solve(input, input2, upper=False, out=None) -> Tensor
|
|
|
|
Solves a linear system of equations with a positive semidefinite
|
|
matrix to be inverted given its Cholesky factor matrix :math:`u`.
|
|
|
|
If :attr:`upper` is ``False``, :math:`u` is and lower triangular and `c` is
|
|
returned such that:
|
|
|
|
.. math::
|
|
c = (u u^T)^{{-1}} b
|
|
|
|
If :attr:`upper` is ``True`` or not provided, :math:`u` is upper triangular
|
|
and `c` is returned such that:
|
|
|
|
.. math::
|
|
c = (u^T u)^{{-1}} b
|
|
|
|
`torch.cholesky_solve(b, u)` can take in 2D inputs `b, u` or inputs that are
|
|
batches of 2D matrices. If the inputs are batches, then returns
|
|
batched outputs `c`
|
|
|
|
Args:
|
|
input (Tensor): input matrix :math:`b` of size :math:`(*, m, k)`,
|
|
where :math:`*` is zero or more batch dimensions
|
|
input2 (Tensor): input matrix :math:`u` of size :math:`(*, m, m)`,
|
|
where :math:`*` is zero of more batch dimensions composed of
|
|
upper or lower triangular Cholesky factor
|
|
upper (bool, optional): whether to consider the Cholesky factor as a
|
|
lower or upper triangular matrix. Default: ``False``.
|
|
out (Tensor, optional): the output tensor for `c`
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(3, 3)
|
|
>>> a = torch.mm(a, a.t()) # make symmetric positive definite
|
|
>>> u = torch.cholesky(a)
|
|
>>> a
|
|
tensor([[ 0.7747, -1.9549, 1.3086],
|
|
[-1.9549, 6.7546, -5.4114],
|
|
[ 1.3086, -5.4114, 4.8733]])
|
|
>>> b = torch.randn(3, 2)
|
|
>>> b
|
|
tensor([[-0.6355, 0.9891],
|
|
[ 0.1974, 1.4706],
|
|
[-0.4115, -0.6225]])
|
|
>>> torch.cholesky_solve(b, u)
|
|
tensor([[ -8.1625, 19.6097],
|
|
[ -5.8398, 14.2387],
|
|
[ -4.3771, 10.4173]])
|
|
>>> torch.mm(a.inverse(), b)
|
|
tensor([[ -8.1626, 19.6097],
|
|
[ -5.8398, 14.2387],
|
|
[ -4.3771, 10.4173]])
|
|
""")
|
|
|
|
add_docstr(torch.cholesky_inverse, r"""
|
|
cholesky_inverse(input, upper=False, out=None) -> Tensor
|
|
|
|
Computes the inverse of a symmetric positive-definite matrix :math:`A` using its
|
|
Cholesky factor :math:`u`: returns matrix ``inv``. The inverse is computed using
|
|
LAPACK routines ``dpotri`` and ``spotri`` (and the corresponding MAGMA routines).
|
|
|
|
If :attr:`upper` is ``False``, :math:`u` is lower triangular
|
|
such that the returned tensor is
|
|
|
|
.. math::
|
|
inv = (uu^{{T}})^{{-1}}
|
|
|
|
If :attr:`upper` is ``True`` or not provided, :math:`u` is upper
|
|
triangular such that the returned tensor is
|
|
|
|
.. math::
|
|
inv = (u^T u)^{{-1}}
|
|
|
|
Args:
|
|
input (Tensor): the input 2-D tensor :math:`u`, a upper or lower triangular
|
|
Cholesky factor
|
|
upper (bool, optional): whether to return a lower (default) or upper triangular matrix
|
|
out (Tensor, optional): the output tensor for `inv`
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(3, 3)
|
|
>>> a = torch.mm(a, a.t()) + 1e-05 * torch.eye(3) # make symmetric positive definite
|
|
>>> u = torch.cholesky(a)
|
|
>>> a
|
|
tensor([[ 0.9935, -0.6353, 1.5806],
|
|
[ -0.6353, 0.8769, -1.7183],
|
|
[ 1.5806, -1.7183, 10.6618]])
|
|
>>> torch.cholesky_inverse(u)
|
|
tensor([[ 1.9314, 1.2251, -0.0889],
|
|
[ 1.2251, 2.4439, 0.2122],
|
|
[-0.0889, 0.2122, 0.1412]])
|
|
>>> a.inverse()
|
|
tensor([[ 1.9314, 1.2251, -0.0889],
|
|
[ 1.2251, 2.4439, 0.2122],
|
|
[-0.0889, 0.2122, 0.1412]])
|
|
""")
|
|
|
|
add_docstr(torch.clamp, r"""
|
|
clamp(input, min, max, out=None) -> Tensor
|
|
|
|
Clamp all elements in :attr:`input` into the range `[` :attr:`min`, :attr:`max` `]` and return
|
|
a resulting tensor:
|
|
|
|
.. math::
|
|
y_i = \begin{cases}
|
|
\text{min} & \text{if } x_i < \text{min} \\
|
|
x_i & \text{if } \text{min} \leq x_i \leq \text{max} \\
|
|
\text{max} & \text{if } x_i > \text{max}
|
|
\end{cases}
|
|
""" + r"""
|
|
If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, args :attr:`min`
|
|
and :attr:`max` must be real numbers, otherwise they should be integers.
|
|
|
|
Args:
|
|
{input}
|
|
min (Number): lower-bound of the range to be clamped to
|
|
max (Number): upper-bound of the range to be clamped to
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([-1.7120, 0.1734, -0.0478, -0.0922])
|
|
>>> torch.clamp(a, min=-0.5, max=0.5)
|
|
tensor([-0.5000, 0.1734, -0.0478, -0.0922])
|
|
|
|
.. function:: clamp(input, *, min, out=None) -> Tensor
|
|
|
|
Clamps all elements in :attr:`input` to be larger or equal :attr:`min`.
|
|
|
|
If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value`
|
|
should be a real number, otherwise it should be an integer.
|
|
|
|
Args:
|
|
{input}
|
|
value (Number): minimal value of each element in the output
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([-0.0299, -2.3184, 2.1593, -0.8883])
|
|
>>> torch.clamp(a, min=0.5)
|
|
tensor([ 0.5000, 0.5000, 2.1593, 0.5000])
|
|
|
|
.. function:: clamp(input, *, max, out=None) -> Tensor
|
|
|
|
Clamps all elements in :attr:`input` to be smaller or equal :attr:`max`.
|
|
|
|
If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value`
|
|
should be a real number, otherwise it should be an integer.
|
|
|
|
Args:
|
|
{input}
|
|
value (Number): maximal value of each element in the output
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.7753, -0.4702, -0.4599, 1.1899])
|
|
>>> torch.clamp(a, max=0.5)
|
|
tensor([ 0.5000, -0.4702, -0.4599, 0.5000])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.clip, r"""
|
|
clip(input, min, max, *, out=None) -> Tensor
|
|
|
|
Alias for :func:`torch.clamp`.
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.complex,
|
|
r"""
|
|
complex(real, imag, *, out=None) -> Tensor
|
|
|
|
Constructs a complex tensor with its real part equal to :attr:`real` and its
|
|
imaginary part equal to :attr:`imag`.
|
|
|
|
Args:
|
|
real (Tensor): The real part of the complex tensor. Must be float or double.
|
|
imag (Tensor): The imaginary part of the complex tensor. Must be same dtype
|
|
as :attr:`real`.
|
|
|
|
Keyword args:
|
|
out (Tensor): If the inputs are ``torch.float32``, must be
|
|
``torch.complex64``. If the inputs are ``torch.float64``, must be
|
|
``torch.complex128``.
|
|
|
|
Example::
|
|
>>> real = torch.tensor([1, 2], dtype=torch.float32)
|
|
>>> imag = torch.tensor([3, 4], dtype=torch.float32)
|
|
>>> z = torch.complex(real, imag)
|
|
>>> z
|
|
tensor([(1.+3.j), (2.+4.j)])
|
|
>>> z.dtype
|
|
torch.complex64
|
|
|
|
""")
|
|
|
|
add_docstr(torch.polar,
|
|
r"""
|
|
polar(abs, angle, *, out=None) -> Tensor
|
|
|
|
Constructs a complex tensor whose elements are Cartesian coordinates
|
|
corresponding to the polar coordinates with absolute value :attr:`abs` and angle
|
|
:attr:`angle`.
|
|
|
|
.. math::
|
|
\text{out} = \text{abs} \cdot \cos(\text{angle}) + \text{abs} \cdot \sin(\text{angle}) \cdot j
|
|
""" + r"""
|
|
Args:
|
|
abs (Tensor): The absolute value the complex tensor. Must be float or
|
|
double.
|
|
angle (Tensor): The angle of the complex tensor. Must be same dtype as
|
|
:attr:`abs`.
|
|
|
|
Keyword args:
|
|
out (Tensor): If the inputs are ``torch.float32``, must be
|
|
``torch.complex64``. If the inputs are ``torch.float64``, must be
|
|
``torch.complex128``.
|
|
|
|
Example::
|
|
>>> import numpy as np
|
|
>>> abs = torch.tensor([1, 2], dtype=torch.float64)
|
|
>>> angle = torch.tensor([np.pi / 2, 5 * np.pi / 4], dtype=torch.float64)
|
|
>>> z = torch.polar(abs, angle)
|
|
>>> z
|
|
tensor([(0.0000+1.0000j), (-1.4142-1.4142j)], dtype=torch.complex128)
|
|
""")
|
|
|
|
add_docstr(torch.conj,
|
|
r"""
|
|
conj(input, out=None) -> Tensor
|
|
|
|
Computes the element-wise conjugate of the given :attr:`input` tensor.
|
|
|
|
.. math::
|
|
\text{out}_{i} = conj(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.conj(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]))
|
|
tensor([-1 - 1j, -2 - 2j, 3 + 3j])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.cos,
|
|
r"""
|
|
cos(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the cosine of the elements of :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \cos(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 1.4309, 1.2706, -0.8562, 0.9796])
|
|
>>> torch.cos(a)
|
|
tensor([ 0.1395, 0.2957, 0.6553, 0.5574])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.cosh,
|
|
r"""
|
|
cosh(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the hyperbolic cosine of the elements of
|
|
:attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \cosh(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.1632, 1.1835, -0.6979, -0.7325])
|
|
>>> torch.cosh(a)
|
|
tensor([ 1.0133, 1.7860, 1.2536, 1.2805])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.cross,
|
|
r"""
|
|
cross(input, other, dim=None, out=None) -> Tensor
|
|
|
|
|
|
Returns the cross product of vectors in dimension :attr:`dim` of :attr:`input`
|
|
and :attr:`other`.
|
|
|
|
:attr:`input` and :attr:`other` must have the same size, and the size of their
|
|
:attr:`dim` dimension should be 3.
|
|
|
|
If :attr:`dim` is not given, it defaults to the first dimension found with the
|
|
size 3. Note that this might be unexpected.
|
|
|
|
Args:
|
|
{input}
|
|
other (Tensor): the second input tensor
|
|
dim (int, optional): the dimension to take the cross-product in.
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 3)
|
|
>>> a
|
|
tensor([[-0.3956, 1.1455, 1.6895],
|
|
[-0.5849, 1.3672, 0.3599],
|
|
[-1.1626, 0.7180, -0.0521],
|
|
[-0.1339, 0.9902, -2.0225]])
|
|
>>> b = torch.randn(4, 3)
|
|
>>> b
|
|
tensor([[-0.0257, -1.4725, -1.2251],
|
|
[-1.1479, -0.7005, -1.9757],
|
|
[-1.3904, 0.3726, -1.1836],
|
|
[-0.9688, -0.7153, 0.2159]])
|
|
>>> torch.cross(a, b, dim=1)
|
|
tensor([[ 1.0844, -0.5281, 0.6120],
|
|
[-2.4490, -1.5687, 1.9792],
|
|
[-0.8304, -1.3037, 0.5650],
|
|
[-1.2329, 1.9883, 1.0551]])
|
|
>>> torch.cross(a, b)
|
|
tensor([[ 1.0844, -0.5281, 0.6120],
|
|
[-2.4490, -1.5687, 1.9792],
|
|
[-0.8304, -1.3037, 0.5650],
|
|
[-1.2329, 1.9883, 1.0551]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.logcumsumexp,
|
|
r"""
|
|
logcumsumexp(input, dim, out=None) -> Tensor
|
|
Returns the logarithm of the cumulative summation of the exponentiation of
|
|
elements of :attr:`input` in the dimension :attr:`dim`.
|
|
|
|
For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is
|
|
|
|
.. math::
|
|
\text{{logcumsumexp}}(x)_{{ij}} = \log \sum\limits_{{j=0}}^{{i}} \exp(x_{{ij}})
|
|
|
|
Args:
|
|
{input}
|
|
dim (int): the dimension to do the operation over
|
|
{out}
|
|
Example::
|
|
>>> a = torch.randn(10)
|
|
>>> torch.logcumsumexp(a, dim=0)
|
|
tensor([-0.42296738, -0.04462666, 0.86278635, 0.94622083, 1.05277811,
|
|
1.39202815, 1.83525007, 1.84492621, 2.06084887, 2.06844475]))
|
|
""".format(**reduceops_common_args))
|
|
|
|
add_docstr(torch.cummax,
|
|
r"""
|
|
cummax(input, dim, out=None) -> (Tensor, LongTensor)
|
|
Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative maximum of
|
|
elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index
|
|
location of each maximum value found in the dimension :attr:`dim`.
|
|
|
|
.. math::
|
|
y_i = max(x_1, x_2, x_3, \dots, x_i)
|
|
|
|
Args:
|
|
{input}
|
|
dim (int): the dimension to do the operation over
|
|
out (tuple, optional): the result tuple of two output tensors (values, indices)
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(10)
|
|
>>> a
|
|
tensor([-0.3449, -1.5447, 0.0685, -1.5104, -1.1706, 0.2259, 1.4696, -1.3284,
|
|
1.9946, -0.8209])
|
|
>>> torch.cummax(a, dim=0)
|
|
torch.return_types.cummax(
|
|
values=tensor([-0.3449, -0.3449, 0.0685, 0.0685, 0.0685, 0.2259, 1.4696, 1.4696,
|
|
1.9946, 1.9946]),
|
|
indices=tensor([0, 0, 2, 2, 2, 5, 6, 6, 8, 8]))
|
|
""".format(**reduceops_common_args))
|
|
|
|
add_docstr(torch.cummin,
|
|
r"""
|
|
cummin(input, dim, out=None) -> (Tensor, LongTensor)
|
|
Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative minimum of
|
|
elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index
|
|
location of each maximum value found in the dimension :attr:`dim`.
|
|
|
|
.. math::
|
|
y_i = min(x_1, x_2, x_3, \dots, x_i)
|
|
|
|
Args:
|
|
{input}
|
|
dim (int): the dimension to do the operation over
|
|
out (tuple, optional): the result tuple of two output tensors (values, indices)
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(10)
|
|
>>> a
|
|
tensor([-0.2284, -0.6628, 0.0975, 0.2680, -1.3298, -0.4220, -0.3885, 1.1762,
|
|
0.9165, 1.6684])
|
|
>>> torch.cummin(a, dim=0)
|
|
torch.return_types.cummin(
|
|
values=tensor([-0.2284, -0.6628, -0.6628, -0.6628, -1.3298, -1.3298, -1.3298, -1.3298,
|
|
-1.3298, -1.3298]),
|
|
indices=tensor([0, 1, 1, 1, 4, 4, 4, 4, 4, 4]))
|
|
""".format(**reduceops_common_args))
|
|
|
|
add_docstr(torch.cumprod,
|
|
r"""
|
|
cumprod(input, dim, out=None, dtype=None) -> Tensor
|
|
|
|
Returns the cumulative product of elements of :attr:`input` in the dimension
|
|
:attr:`dim`.
|
|
|
|
For example, if :attr:`input` is a vector of size N, the result will also be
|
|
a vector of size N, with elements.
|
|
|
|
.. math::
|
|
y_i = x_1 \times x_2\times x_3\times \dots \times x_i
|
|
|
|
Args:
|
|
{input}
|
|
dim (int): the dimension to do the operation over
|
|
{dtype}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(10)
|
|
>>> a
|
|
tensor([ 0.6001, 0.2069, -0.1919, 0.9792, 0.6727, 1.0062, 0.4126,
|
|
-0.2129, -0.4206, 0.1968])
|
|
>>> torch.cumprod(a, dim=0)
|
|
tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0158, -0.0065,
|
|
0.0014, -0.0006, -0.0001])
|
|
|
|
>>> a[5] = 0.0
|
|
>>> torch.cumprod(a, dim=0)
|
|
tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0000, -0.0000,
|
|
0.0000, -0.0000, -0.0000])
|
|
""".format(**reduceops_common_args))
|
|
|
|
add_docstr(torch.cumsum,
|
|
r"""
|
|
cumsum(input, dim, out=None, dtype=None) -> Tensor
|
|
|
|
Returns the cumulative sum of elements of :attr:`input` in the dimension
|
|
:attr:`dim`.
|
|
|
|
For example, if :attr:`input` is a vector of size N, the result will also be
|
|
a vector of size N, with elements.
|
|
|
|
.. math::
|
|
y_i = x_1 + x_2 + x_3 + \dots + x_i
|
|
|
|
Args:
|
|
{input}
|
|
dim (int): the dimension to do the operation over
|
|
{dtype}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(10)
|
|
>>> a
|
|
tensor([-0.8286, -0.4890, 0.5155, 0.8443, 0.1865, -0.1752, -2.0595,
|
|
0.1850, -1.1571, -0.4243])
|
|
>>> torch.cumsum(a, dim=0)
|
|
tensor([-0.8286, -1.3175, -0.8020, 0.0423, 0.2289, 0.0537, -2.0058,
|
|
-1.8209, -2.9780, -3.4022])
|
|
""".format(**reduceops_common_args))
|
|
|
|
add_docstr(torch.count_nonzero,
|
|
r"""
|
|
count_nonzero(input, dim=None) -> Tensor
|
|
|
|
Counts the number of non-zero values in the tensor :attr:`input` along the given :attr:`dim`.
|
|
If no dim is specified then all non-zeros in the tensor are counted.
|
|
|
|
Args:
|
|
{input}
|
|
dim (int or tuple of ints, optional): Dim or tuple of dims along which to count non-zeros.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.zeros(3,3)
|
|
>>> x[torch.randn(3,3) > 0.5] = 1
|
|
>>> x
|
|
tensor([[0., 1., 1.],
|
|
[0., 0., 0.],
|
|
[0., 0., 1.]])
|
|
>>> torch.count_nonzero(x)
|
|
tensor(3)
|
|
>>> torch.count_nonzero(x, dim=0)
|
|
tensor([0, 1, 2])
|
|
""".format(**reduceops_common_args))
|
|
|
|
add_docstr(torch.dequantize,
|
|
r"""
|
|
dequantize(tensor) -> Tensor
|
|
|
|
Given a quantized Tensor, dequantize it and return an fp32 Tensor
|
|
|
|
Args:
|
|
tensor (Tensor): A quantized Tensor
|
|
|
|
.. function:: dequantize(tensors) -> sequence of Tensors
|
|
|
|
Given a list of quantized Tensors, dequantize them and return a list of fp32 Tensors
|
|
|
|
Args:
|
|
tensors (sequence of Tensors): A list of quantized Tensors
|
|
""")
|
|
|
|
add_docstr(torch.diag,
|
|
r"""
|
|
diag(input, diagonal=0, out=None) -> Tensor
|
|
|
|
- If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor
|
|
with the elements of :attr:`input` as the diagonal.
|
|
- If :attr:`input` is a matrix (2-D tensor), then returns a 1-D tensor with
|
|
the diagonal elements of :attr:`input`.
|
|
|
|
The argument :attr:`diagonal` controls which diagonal to consider:
|
|
|
|
- If :attr:`diagonal` = 0, it is the main diagonal.
|
|
- If :attr:`diagonal` > 0, it is above the main diagonal.
|
|
- If :attr:`diagonal` < 0, it is below the main diagonal.
|
|
|
|
Args:
|
|
{input}
|
|
diagonal (int, optional): the diagonal to consider
|
|
{out}
|
|
|
|
.. seealso::
|
|
|
|
:func:`torch.diagonal` always returns the diagonal of its input.
|
|
|
|
:func:`torch.diagflat` always constructs a tensor with diagonal elements
|
|
specified by the input.
|
|
|
|
Examples:
|
|
|
|
Get the square matrix where the input vector is the diagonal::
|
|
|
|
>>> a = torch.randn(3)
|
|
>>> a
|
|
tensor([ 0.5950,-0.0872, 2.3298])
|
|
>>> torch.diag(a)
|
|
tensor([[ 0.5950, 0.0000, 0.0000],
|
|
[ 0.0000,-0.0872, 0.0000],
|
|
[ 0.0000, 0.0000, 2.3298]])
|
|
>>> torch.diag(a, 1)
|
|
tensor([[ 0.0000, 0.5950, 0.0000, 0.0000],
|
|
[ 0.0000, 0.0000,-0.0872, 0.0000],
|
|
[ 0.0000, 0.0000, 0.0000, 2.3298],
|
|
[ 0.0000, 0.0000, 0.0000, 0.0000]])
|
|
|
|
Get the k-th diagonal of a given matrix::
|
|
|
|
>>> a = torch.randn(3, 3)
|
|
>>> a
|
|
tensor([[-0.4264, 0.0255,-0.1064],
|
|
[ 0.8795,-0.2429, 0.1374],
|
|
[ 0.1029,-0.6482,-1.6300]])
|
|
>>> torch.diag(a, 0)
|
|
tensor([-0.4264,-0.2429,-1.6300])
|
|
>>> torch.diag(a, 1)
|
|
tensor([ 0.0255, 0.1374])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.diag_embed,
|
|
r"""
|
|
diag_embed(input, offset=0, dim1=-2, dim2=-1) -> Tensor
|
|
|
|
Creates a tensor whose diagonals of certain 2D planes (specified by
|
|
:attr:`dim1` and :attr:`dim2`) are filled by :attr:`input`.
|
|
To facilitate creating batched diagonal matrices, the 2D planes formed by
|
|
the last two dimensions of the returned tensor are chosen by default.
|
|
|
|
The argument :attr:`offset` controls which diagonal to consider:
|
|
|
|
- If :attr:`offset` = 0, it is the main diagonal.
|
|
- If :attr:`offset` > 0, it is above the main diagonal.
|
|
- If :attr:`offset` < 0, it is below the main diagonal.
|
|
|
|
The size of the new matrix will be calculated to make the specified diagonal
|
|
of the size of the last input dimension.
|
|
Note that for :attr:`offset` other than :math:`0`, the order of :attr:`dim1`
|
|
and :attr:`dim2` matters. Exchanging them is equivalent to changing the
|
|
sign of :attr:`offset`.
|
|
|
|
Applying :meth:`torch.diagonal` to the output of this function with
|
|
the same arguments yields a matrix identical to input. However,
|
|
:meth:`torch.diagonal` has different default dimensions, so those
|
|
need to be explicitly specified.
|
|
|
|
Args:
|
|
{input} Must be at least 1-dimensional.
|
|
offset (int, optional): which diagonal to consider. Default: 0
|
|
(main diagonal).
|
|
dim1 (int, optional): first dimension with respect to which to
|
|
take diagonal. Default: -2.
|
|
dim2 (int, optional): second dimension with respect to which to
|
|
take diagonal. Default: -1.
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(2, 3)
|
|
>>> torch.diag_embed(a)
|
|
tensor([[[ 1.5410, 0.0000, 0.0000],
|
|
[ 0.0000, -0.2934, 0.0000],
|
|
[ 0.0000, 0.0000, -2.1788]],
|
|
|
|
[[ 0.5684, 0.0000, 0.0000],
|
|
[ 0.0000, -1.0845, 0.0000],
|
|
[ 0.0000, 0.0000, -1.3986]]])
|
|
|
|
>>> torch.diag_embed(a, offset=1, dim1=0, dim2=2)
|
|
tensor([[[ 0.0000, 1.5410, 0.0000, 0.0000],
|
|
[ 0.0000, 0.5684, 0.0000, 0.0000]],
|
|
|
|
[[ 0.0000, 0.0000, -0.2934, 0.0000],
|
|
[ 0.0000, 0.0000, -1.0845, 0.0000]],
|
|
|
|
[[ 0.0000, 0.0000, 0.0000, -2.1788],
|
|
[ 0.0000, 0.0000, 0.0000, -1.3986]],
|
|
|
|
[[ 0.0000, 0.0000, 0.0000, 0.0000],
|
|
[ 0.0000, 0.0000, 0.0000, 0.0000]]])
|
|
""".format(**common_args))
|
|
|
|
|
|
add_docstr(torch.diagflat,
|
|
r"""
|
|
diagflat(input, offset=0) -> Tensor
|
|
|
|
- If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor
|
|
with the elements of :attr:`input` as the diagonal.
|
|
- If :attr:`input` is a tensor with more than one dimension, then returns a
|
|
2-D tensor with diagonal elements equal to a flattened :attr:`input`.
|
|
|
|
The argument :attr:`offset` controls which diagonal to consider:
|
|
|
|
- If :attr:`offset` = 0, it is the main diagonal.
|
|
- If :attr:`offset` > 0, it is above the main diagonal.
|
|
- If :attr:`offset` < 0, it is below the main diagonal.
|
|
|
|
Args:
|
|
{input}
|
|
offset (int, optional): the diagonal to consider. Default: 0 (main
|
|
diagonal).
|
|
|
|
Examples::
|
|
|
|
>>> a = torch.randn(3)
|
|
>>> a
|
|
tensor([-0.2956, -0.9068, 0.1695])
|
|
>>> torch.diagflat(a)
|
|
tensor([[-0.2956, 0.0000, 0.0000],
|
|
[ 0.0000, -0.9068, 0.0000],
|
|
[ 0.0000, 0.0000, 0.1695]])
|
|
>>> torch.diagflat(a, 1)
|
|
tensor([[ 0.0000, -0.2956, 0.0000, 0.0000],
|
|
[ 0.0000, 0.0000, -0.9068, 0.0000],
|
|
[ 0.0000, 0.0000, 0.0000, 0.1695],
|
|
[ 0.0000, 0.0000, 0.0000, 0.0000]])
|
|
|
|
>>> a = torch.randn(2, 2)
|
|
>>> a
|
|
tensor([[ 0.2094, -0.3018],
|
|
[-0.1516, 1.9342]])
|
|
>>> torch.diagflat(a)
|
|
tensor([[ 0.2094, 0.0000, 0.0000, 0.0000],
|
|
[ 0.0000, -0.3018, 0.0000, 0.0000],
|
|
[ 0.0000, 0.0000, -0.1516, 0.0000],
|
|
[ 0.0000, 0.0000, 0.0000, 1.9342]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.diagonal,
|
|
r"""
|
|
diagonal(input, offset=0, dim1=0, dim2=1) -> Tensor
|
|
|
|
Returns a partial view of :attr:`input` with the its diagonal elements
|
|
with respect to :attr:`dim1` and :attr:`dim2` appended as a dimension
|
|
at the end of the shape.
|
|
|
|
The argument :attr:`offset` controls which diagonal to consider:
|
|
|
|
- If :attr:`offset` = 0, it is the main diagonal.
|
|
- If :attr:`offset` > 0, it is above the main diagonal.
|
|
- If :attr:`offset` < 0, it is below the main diagonal.
|
|
|
|
Applying :meth:`torch.diag_embed` to the output of this function with
|
|
the same arguments yields a diagonal matrix with the diagonal entries
|
|
of the input. However, :meth:`torch.diag_embed` has different default
|
|
dimensions, so those need to be explicitly specified.
|
|
|
|
Args:
|
|
{input} Must be at least 2-dimensional.
|
|
offset (int, optional): which diagonal to consider. Default: 0
|
|
(main diagonal).
|
|
dim1 (int, optional): first dimension with respect to which to
|
|
take diagonal. Default: 0.
|
|
dim2 (int, optional): second dimension with respect to which to
|
|
take diagonal. Default: 1.
|
|
|
|
.. note:: To take a batch diagonal, pass in dim1=-2, dim2=-1.
|
|
|
|
Examples::
|
|
|
|
>>> a = torch.randn(3, 3)
|
|
>>> a
|
|
tensor([[-1.0854, 1.1431, -0.1752],
|
|
[ 0.8536, -0.0905, 0.0360],
|
|
[ 0.6927, -0.3735, -0.4945]])
|
|
|
|
|
|
>>> torch.diagonal(a, 0)
|
|
tensor([-1.0854, -0.0905, -0.4945])
|
|
|
|
|
|
>>> torch.diagonal(a, 1)
|
|
tensor([ 1.1431, 0.0360])
|
|
|
|
|
|
>>> x = torch.randn(2, 5, 4, 2)
|
|
>>> torch.diagonal(x, offset=-1, dim1=1, dim2=2)
|
|
tensor([[[-1.2631, 0.3755, -1.5977, -1.8172],
|
|
[-1.1065, 1.0401, -0.2235, -0.7938]],
|
|
|
|
[[-1.7325, -0.3081, 0.6166, 0.2335],
|
|
[ 1.0500, 0.7336, -0.3836, -1.1015]]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.digamma,
|
|
r"""
|
|
digamma(input, out=None) -> Tensor
|
|
|
|
Computes the logarithmic derivative of the gamma function on `input`.
|
|
|
|
.. math::
|
|
\psi(x) = \frac{d}{dx} \ln\left(\Gamma\left(x\right)\right) = \frac{\Gamma'(x)}{\Gamma(x)}
|
|
|
|
Args:
|
|
input (Tensor): the tensor to compute the digamma function on
|
|
|
|
Example::
|
|
|
|
>>> a = torch.tensor([1, 0.5])
|
|
>>> torch.digamma(a)
|
|
tensor([-0.5772, -1.9635])
|
|
""")
|
|
|
|
|
|
add_docstr(torch.dist,
|
|
r"""
|
|
dist(input, other, p=2) -> Tensor
|
|
|
|
Returns the p-norm of (:attr:`input` - :attr:`other`)
|
|
|
|
The shapes of :attr:`input` and :attr:`other` must be
|
|
:ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
Args:
|
|
{input}
|
|
other (Tensor): the Right-hand-side input tensor
|
|
p (float, optional): the norm to be computed
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(4)
|
|
>>> x
|
|
tensor([-1.5393, -0.8675, 0.5916, 1.6321])
|
|
>>> y = torch.randn(4)
|
|
>>> y
|
|
tensor([ 0.0967, -1.0511, 0.6295, 0.8360])
|
|
>>> torch.dist(x, y, 3.5)
|
|
tensor(1.6727)
|
|
>>> torch.dist(x, y, 3)
|
|
tensor(1.6973)
|
|
>>> torch.dist(x, y, 0)
|
|
tensor(inf)
|
|
>>> torch.dist(x, y, 1)
|
|
tensor(2.6537)
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.div,
|
|
r"""
|
|
div(input, other, out=None) -> Tensor
|
|
|
|
Divides each element of the input ``input`` with the scalar ``other`` and
|
|
returns a new resulting tensor.
|
|
|
|
.. warning::
|
|
Integer division using div is no longer supported, and in a future release
|
|
div will perform true division as in Python 3. Use :func:`torch.true_divide`
|
|
or :func:`torch.floor_divide` (// in Python), instead.
|
|
|
|
.. math::
|
|
\text{{out}}_i = \frac{{\text{{input}}_i}}{{\text{{other}}}}
|
|
|
|
If the :class:`torch.dtype` of ``input`` and ``other`` differ, the
|
|
:class:`torch.dtype` of the result tensor is determined following rules
|
|
described in the type promotion :ref:`documentation <type-promotion-doc>`. If
|
|
``out`` is specified, the result must be :ref:`castable <type-promotion-doc>`
|
|
to the :class:`torch.dtype` of the specified output tensor. Integral division
|
|
by zero leads to undefined behavior.
|
|
|
|
Args:
|
|
{input}
|
|
other (Number): the number to be divided to each element of ``input``
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(5)
|
|
>>> a
|
|
tensor([ 0.3810, 1.2774, -0.2972, -0.3719, 0.4637])
|
|
>>> torch.div(a, 0.5)
|
|
tensor([ 0.7620, 2.5548, -0.5944, -0.7439, 0.9275])
|
|
|
|
.. function:: div(input, other, out=None) -> Tensor
|
|
|
|
Each element of the tensor ``input`` is divided by each element of the tensor
|
|
``other``. The resulting tensor is returned.
|
|
|
|
.. math::
|
|
\text{{out}}_i = \frac{{\text{{input}}_i}}{{\text{{other}}_i}}
|
|
|
|
The shapes of ``input`` and ``other`` must be :ref:`broadcastable
|
|
<broadcasting-semantics>`. If the :class:`torch.dtype` of ``input`` and
|
|
``other`` differ, the :class:`torch.dtype` of the result tensor is determined
|
|
following rules described in the type promotion :ref:`documentation
|
|
<type-promotion-doc>`. If ``out`` is specified, the result must be
|
|
:ref:`castable <type-promotion-doc>` to the :class:`torch.dtype` of the
|
|
specified output tensor. Integral division by zero leads to undefined behavior.
|
|
|
|
Args:
|
|
input (Tensor): the numerator tensor
|
|
other (Tensor): the denominator tensor
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[-0.3711, -1.9353, -0.4605, -0.2917],
|
|
[ 0.1815, -1.0111, 0.9805, -1.5923],
|
|
[ 0.1062, 1.4581, 0.7759, -1.2344],
|
|
[-0.1830, -0.0313, 1.1908, -1.4757]])
|
|
>>> b = torch.randn(4)
|
|
>>> b
|
|
tensor([ 0.8032, 0.2930, -0.8113, -0.2308])
|
|
>>> torch.div(a, b)
|
|
tensor([[-0.4620, -6.6051, 0.5676, 1.2637],
|
|
[ 0.2260, -3.4507, -1.2086, 6.8988],
|
|
[ 0.1322, 4.9764, -0.9564, 5.3480],
|
|
[-0.2278, -0.1068, -1.4678, 6.3936]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.dot,
|
|
r"""
|
|
dot(input, tensor) -> Tensor
|
|
|
|
Computes the dot product (inner product) of two tensors.
|
|
|
|
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
|
|
|
|
Example::
|
|
|
|
>>> torch.dot(torch.tensor([2, 3]), torch.tensor([2, 1]))
|
|
tensor(7)
|
|
""")
|
|
|
|
add_docstr(torch.eig,
|
|
r"""
|
|
eig(input, eigenvectors=False, out=None) -> (Tensor, Tensor)
|
|
|
|
Computes the eigenvalues and eigenvectors of a real square matrix.
|
|
|
|
.. note::
|
|
Since eigenvalues and eigenvectors might be complex, backward pass is supported only
|
|
for :func:`torch.symeig`
|
|
|
|
Args:
|
|
input (Tensor): the square matrix of shape :math:`(n \times n)` for which the eigenvalues and eigenvectors
|
|
will be computed
|
|
eigenvectors (bool): ``True`` to compute both eigenvalues and eigenvectors;
|
|
otherwise, only eigenvalues will be computed
|
|
out (tuple, optional): the output tensors
|
|
|
|
Returns:
|
|
(Tensor, Tensor): A namedtuple (eigenvalues, eigenvectors) containing
|
|
|
|
- **eigenvalues** (*Tensor*): Shape :math:`(n \times 2)`. Each row is an eigenvalue of ``input``,
|
|
where the first element is the real part and the second element is the imaginary part.
|
|
The eigenvalues are not necessarily ordered.
|
|
- **eigenvectors** (*Tensor*): If ``eigenvectors=False``, it's an empty tensor.
|
|
Otherwise, this tensor of shape :math:`(n \times n)` can be used to compute normalized (unit length)
|
|
eigenvectors of corresponding eigenvalues as follows.
|
|
If the corresponding `eigenvalues[j]` is a real number, column `eigenvectors[:, j]` is the eigenvector
|
|
corresponding to `eigenvalues[j]`.
|
|
If the corresponding `eigenvalues[j]` and `eigenvalues[j + 1]` form a complex conjugate pair, then the
|
|
true eigenvectors can be computed as
|
|
:math:`\text{true eigenvector}[j] = eigenvectors[:, j] + i \times eigenvectors[:, j + 1]`,
|
|
:math:`\text{true eigenvector}[j + 1] = eigenvectors[:, j] - i \times eigenvectors[:, j + 1]`.
|
|
""")
|
|
|
|
add_docstr(torch.eq, r"""
|
|
eq(input, other, *, out=None) -> Tensor
|
|
|
|
Computes element-wise equality
|
|
|
|
The second argument can be a number or a tensor whose shape is
|
|
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
|
|
|
|
Args:
|
|
input (Tensor): the tensor to compare
|
|
other (Tensor or float): the tensor or value to compare
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Returns:
|
|
A boolean tensor that is True where :attr:`input` is equal to :attr:`other` and False elsewhere
|
|
|
|
Example::
|
|
|
|
>>> torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
|
|
tensor([[ True, False],
|
|
[False, True]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.equal,
|
|
r"""
|
|
equal(input, other) -> bool
|
|
|
|
``True`` if two tensors have the same size and elements, ``False`` otherwise.
|
|
|
|
Example::
|
|
|
|
>>> torch.equal(torch.tensor([1, 2]), torch.tensor([1, 2]))
|
|
True
|
|
""")
|
|
|
|
add_docstr(torch.erf,
|
|
r"""
|
|
erf(input, out=None) -> Tensor
|
|
|
|
Computes the error function of each element. The error function is defined as follows:
|
|
|
|
.. math::
|
|
\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.erf(torch.tensor([0, -1., 10.]))
|
|
tensor([ 0.0000, -0.8427, 1.0000])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.erfc,
|
|
r"""
|
|
erfc(input, out=None) -> Tensor
|
|
|
|
Computes the complementary error function of each element of :attr:`input`.
|
|
The complementary error function is defined as follows:
|
|
|
|
.. math::
|
|
\mathrm{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.erfc(torch.tensor([0, -1., 10.]))
|
|
tensor([ 1.0000, 1.8427, 0.0000])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.erfinv,
|
|
r"""
|
|
erfinv(input, out=None) -> Tensor
|
|
|
|
Computes the inverse error function of each element of :attr:`input`.
|
|
The inverse error function is defined in the range :math:`(-1, 1)` as:
|
|
|
|
.. math::
|
|
\mathrm{erfinv}(\mathrm{erf}(x)) = x
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.erfinv(torch.tensor([0, 0.5, -1.]))
|
|
tensor([ 0.0000, 0.4769, -inf])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.exp,
|
|
r"""
|
|
exp(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the exponential of the elements
|
|
of the input tensor :attr:`input`.
|
|
|
|
.. math::
|
|
y_{i} = e^{x_{i}}
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.exp(torch.tensor([0, math.log(2.)]))
|
|
tensor([ 1., 2.])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.expm1,
|
|
r"""
|
|
expm1(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the exponential of the elements minus 1
|
|
of :attr:`input`.
|
|
|
|
.. math::
|
|
y_{i} = e^{x_{i}} - 1
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.expm1(torch.tensor([0, math.log(2.)]))
|
|
tensor([ 0., 1.])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.eye,
|
|
r"""
|
|
eye(n, m=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a 2-D tensor with ones on the diagonal and zeros elsewhere.
|
|
|
|
Args:
|
|
n (int): the number of rows
|
|
m (int, optional): the number of columns with default being :attr:`n`
|
|
{out}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Returns:
|
|
Tensor: A 2-D tensor with ones on the diagonal and zeros elsewhere
|
|
|
|
Example::
|
|
|
|
>>> torch.eye(3)
|
|
tensor([[ 1., 0., 0.],
|
|
[ 0., 1., 0.],
|
|
[ 0., 0., 1.]])
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.floor,
|
|
r"""
|
|
floor(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the floor of the elements of :attr:`input`,
|
|
the largest integer less than or equal to each element.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \left\lfloor \text{input}_{i} \right\rfloor
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([-0.8166, 1.5308, -0.2530, -0.2091])
|
|
>>> torch.floor(a)
|
|
tensor([-1., 1., -1., -1.])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.floor_divide,
|
|
r"""
|
|
floor_divide(input, other, out=None) -> Tensor
|
|
|
|
Return the division of the inputs rounded down to the nearest integer. See :func:`torch.div`
|
|
for type promotion and broadcasting rules.
|
|
|
|
.. math::
|
|
\text{{out}}_i = \left\lfloor \frac{{\text{{input}}_i}}{{\text{{other}}_i}} \right\rfloor
|
|
|
|
""" + r"""
|
|
Args:
|
|
input (Tensor): the numerator tensor
|
|
other (Tensor or Scalar): the denominator
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.tensor([4.0, 3.0])
|
|
>>> b = torch.tensor([2.0, 2.0])
|
|
>>> torch.floor_divide(a, b)
|
|
tensor([2.0, 1.0])
|
|
>>> torch.floor_divide(a, 1.4)
|
|
tensor([2.0, 2.0])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.fmod,
|
|
r"""
|
|
fmod(input, other, out=None) -> Tensor
|
|
|
|
Computes the element-wise remainder of division.
|
|
|
|
The dividend and divisor may contain both for integer and floating point
|
|
numbers. The remainder has the same sign as the dividend :attr:`input`.
|
|
|
|
When :attr:`other` is a tensor, the shapes of :attr:`input` and
|
|
:attr:`other` must be :ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
Args:
|
|
input (Tensor): the dividend
|
|
other (Tensor or float): the divisor, which may be either a number or a tensor of the same shape as the dividend
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.fmod(torch.tensor([-3., -2, -1, 1, 2, 3]), 2)
|
|
tensor([-1., -0., -1., 1., 0., 1.])
|
|
>>> torch.fmod(torch.tensor([1., 2, 3, 4, 5]), 1.5)
|
|
tensor([ 1.0000, 0.5000, 0.0000, 1.0000, 0.5000])
|
|
|
|
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.frac,
|
|
r"""
|
|
frac(input, out=None) -> Tensor
|
|
|
|
Computes the fractional portion of each element in :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \text{input}_{i} - \left\lfloor |\text{input}_{i}| \right\rfloor * \operatorname{sgn}(\text{input}_{i})
|
|
|
|
Example::
|
|
|
|
>>> torch.frac(torch.tensor([1, 2.5, -3.2]))
|
|
tensor([ 0.0000, 0.5000, -0.2000])
|
|
""")
|
|
|
|
add_docstr(torch.from_numpy,
|
|
r"""
|
|
from_numpy(ndarray) -> Tensor
|
|
|
|
Creates a :class:`Tensor` from a :class:`numpy.ndarray`.
|
|
|
|
The returned tensor and :attr:`ndarray` share the same memory. Modifications to
|
|
the tensor will be reflected in the :attr:`ndarray` and vice versa. The returned
|
|
tensor is not resizable.
|
|
|
|
It currently accepts :attr:`ndarray` with dtypes of ``numpy.float64``,
|
|
``numpy.float32``, ``numpy.float16``, ``numpy.complex64``, ``numpy.complex128``,
|
|
``numpy.int64``, ``numpy.int32``, ``numpy.int16``, ``numpy.int8``, ``numpy.uint8``,
|
|
and ``numpy.bool``.
|
|
|
|
Example::
|
|
|
|
>>> a = numpy.array([1, 2, 3])
|
|
>>> t = torch.from_numpy(a)
|
|
>>> t
|
|
tensor([ 1, 2, 3])
|
|
>>> t[0] = -1
|
|
>>> a
|
|
array([-1, 2, 3])
|
|
""")
|
|
|
|
add_docstr(torch.flatten,
|
|
r"""
|
|
flatten(input, start_dim=0, end_dim=-1) -> Tensor
|
|
|
|
Flattens a contiguous range of dims in a tensor.
|
|
|
|
Args:
|
|
{input}
|
|
start_dim (int): the first dim to flatten
|
|
end_dim (int): the last dim to flatten
|
|
|
|
Example::
|
|
|
|
>>> t = torch.tensor([[[1, 2],
|
|
[3, 4]],
|
|
[[5, 6],
|
|
[7, 8]]])
|
|
>>> torch.flatten(t)
|
|
tensor([1, 2, 3, 4, 5, 6, 7, 8])
|
|
>>> torch.flatten(t, start_dim=1)
|
|
tensor([[1, 2, 3, 4],
|
|
[5, 6, 7, 8]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.gather,
|
|
r"""
|
|
gather(input, dim, index, out=None, sparse_grad=False) -> Tensor
|
|
|
|
Gathers values along an axis specified by `dim`.
|
|
|
|
For a 3-D tensor the output is specified by::
|
|
|
|
out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0
|
|
out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1
|
|
out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2
|
|
|
|
If :attr:`input` is an n-dimensional tensor with size
|
|
:math:`(x_0, x_1..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})`
|
|
and ``dim = i``, then :attr:`index` must be an :math:`n`-dimensional tensor with
|
|
size :math:`(x_0, x_1, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})` where :math:`y \geq 1`
|
|
and :attr:`out` will have the same size as :attr:`index`.
|
|
""" + r"""
|
|
Args:
|
|
input (Tensor): the source tensor
|
|
dim (int): the axis along which to index
|
|
index (LongTensor): the indices of elements to gather
|
|
out (Tensor, optional): the destination tensor
|
|
sparse_grad(bool,optional): If ``True``, gradient w.r.t. :attr:`input` will be a sparse tensor.
|
|
|
|
Example::
|
|
|
|
>>> t = torch.tensor([[1,2],[3,4]])
|
|
>>> torch.gather(t, 1, torch.tensor([[0,0],[1,0]]))
|
|
tensor([[ 1, 1],
|
|
[ 4, 3]])
|
|
""")
|
|
|
|
|
|
add_docstr(torch.gcd,
|
|
r"""
|
|
gcd(input, other, out=None) -> Tensor
|
|
|
|
Computes the element-wise greatest common divisor (GCD) of :attr:`input` and :attr:`other`.
|
|
|
|
Both :attr:`input` and :attr:`other` must have integer types.
|
|
|
|
.. note::
|
|
This defines :math:`gcd(0, 0) = 0`.
|
|
|
|
Args:
|
|
{input}
|
|
other (Tensor): the second input tensor
|
|
|
|
Keyword arguments:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.tensor([5, 10, 15])
|
|
>>> b = torch.tensor([3, 4, 5])
|
|
>>> torch.gcd(a, b)
|
|
tensor([1, 2, 5])
|
|
>>> c = torch.tensor([3])
|
|
>>> torch.gcd(a, c)
|
|
tensor([1, 1, 3])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.ge, r"""
|
|
ge(input, other, *, out=None) -> Tensor
|
|
|
|
Computes :math:`\text{input} \geq \text{other}` element-wise.
|
|
""" + r"""
|
|
|
|
The second argument can be a number or a tensor whose shape is
|
|
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
|
|
|
|
Args:
|
|
input (Tensor): the tensor to compare
|
|
other (Tensor or float): the tensor or value to compare
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Returns:
|
|
A boolean tensor that is True where :attr:`input` is greater than or equal to :attr:`other` and False elsewhere
|
|
|
|
Example::
|
|
|
|
>>> torch.ge(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
|
|
tensor([[True, True], [False, True]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.geqrf,
|
|
r"""
|
|
geqrf(input, out=None) -> (Tensor, Tensor)
|
|
|
|
This is a low-level function for calling LAPACK directly. This function
|
|
returns a namedtuple (a, tau) as defined in `LAPACK documentation for geqrf`_ .
|
|
|
|
You'll generally want to use :func:`torch.qr` instead.
|
|
|
|
Computes a QR decomposition of :attr:`input`, but without constructing
|
|
:math:`Q` and :math:`R` as explicit separate matrices.
|
|
|
|
Rather, this directly calls the underlying LAPACK function `?geqrf`
|
|
which produces a sequence of 'elementary reflectors'.
|
|
|
|
See `LAPACK documentation for geqrf`_ for further details.
|
|
|
|
Args:
|
|
input (Tensor): the input matrix
|
|
out (tuple, optional): the output tuple of (Tensor, Tensor)
|
|
|
|
.. _LAPACK documentation for geqrf:
|
|
https://software.intel.com/en-us/node/521004
|
|
|
|
""")
|
|
|
|
add_docstr(torch.outer, r"""
|
|
outer(input, vec2, *, out=None) -> Tensor
|
|
|
|
Alias of :func:`torch.ger`.
|
|
""")
|
|
|
|
add_docstr(torch.ger,
|
|
r"""
|
|
ger(input, vec2, out=None) -> Tensor
|
|
|
|
Outer product of :attr:`input` and :attr:`vec2`.
|
|
If :attr:`input` is a vector of size :math:`n` and :attr:`vec2` is a vector of
|
|
size :math:`m`, then :attr:`out` must be a matrix of size :math:`(n \times m)`.
|
|
|
|
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
|
|
|
|
Args:
|
|
input (Tensor): 1-D input vector
|
|
vec2 (Tensor): 1-D input vector
|
|
out (Tensor, optional): optional output matrix
|
|
|
|
Example::
|
|
|
|
>>> v1 = torch.arange(1., 5.)
|
|
>>> v2 = torch.arange(1., 4.)
|
|
>>> torch.ger(v1, v2)
|
|
tensor([[ 1., 2., 3.],
|
|
[ 2., 4., 6.],
|
|
[ 3., 6., 9.],
|
|
[ 4., 8., 12.]])
|
|
""")
|
|
|
|
add_docstr(torch.solve,
|
|
r"""
|
|
torch.solve(input, A, out=None) -> (Tensor, Tensor)
|
|
|
|
This function returns the solution to the system of linear
|
|
equations represented by :math:`AX = B` and the LU factorization of
|
|
A, in order as a namedtuple `solution, LU`.
|
|
|
|
`LU` contains `L` and `U` factors for LU factorization of `A`.
|
|
|
|
`torch.solve(B, A)` can take in 2D inputs `B, A` or inputs that are
|
|
batches of 2D matrices. If the inputs are batches, then returns
|
|
batched outputs `solution, LU`.
|
|
|
|
.. note::
|
|
|
|
Irrespective of the original strides, the returned matrices
|
|
`solution` and `LU` will be transposed, i.e. with strides like
|
|
`B.contiguous().transpose(-1, -2).stride()` and
|
|
`A.contiguous().transpose(-1, -2).stride()` respectively.
|
|
|
|
Args:
|
|
input (Tensor): input matrix :math:`B` of size :math:`(*, m, k)` , where :math:`*`
|
|
is zero or more batch dimensions.
|
|
A (Tensor): input square matrix of size :math:`(*, m, m)`, where
|
|
:math:`*` is zero or more batch dimensions.
|
|
out ((Tensor, Tensor), optional): optional output tuple.
|
|
|
|
Example::
|
|
|
|
>>> A = torch.tensor([[6.80, -2.11, 5.66, 5.97, 8.23],
|
|
[-6.05, -3.30, 5.36, -4.44, 1.08],
|
|
[-0.45, 2.58, -2.70, 0.27, 9.04],
|
|
[8.32, 2.71, 4.35, -7.17, 2.14],
|
|
[-9.67, -5.14, -7.26, 6.08, -6.87]]).t()
|
|
>>> B = torch.tensor([[4.02, 6.19, -8.22, -7.57, -3.03],
|
|
[-1.56, 4.00, -8.67, 1.75, 2.86],
|
|
[9.81, -4.09, -4.57, -8.61, 8.99]]).t()
|
|
>>> X, LU = torch.solve(B, A)
|
|
>>> torch.dist(B, torch.mm(A, X))
|
|
tensor(1.00000e-06 *
|
|
7.0977)
|
|
|
|
>>> # Batched solver example
|
|
>>> A = torch.randn(2, 3, 1, 4, 4)
|
|
>>> B = torch.randn(2, 3, 1, 4, 6)
|
|
>>> X, LU = torch.solve(B, A)
|
|
>>> torch.dist(B, A.matmul(X))
|
|
tensor(1.00000e-06 *
|
|
3.6386)
|
|
|
|
""")
|
|
|
|
add_docstr(torch.get_default_dtype,
|
|
r"""
|
|
get_default_dtype() -> torch.dtype
|
|
|
|
Get the current default floating point :class:`torch.dtype`.
|
|
|
|
Example::
|
|
|
|
>>> torch.get_default_dtype() # initial default for floating point is torch.float32
|
|
torch.float32
|
|
>>> torch.set_default_dtype(torch.float64)
|
|
>>> torch.get_default_dtype() # default is now changed to torch.float64
|
|
torch.float64
|
|
>>> torch.set_default_tensor_type(torch.FloatTensor) # setting tensor type also affects this
|
|
>>> torch.get_default_dtype() # changed to torch.float32, the dtype for torch.FloatTensor
|
|
torch.float32
|
|
|
|
""")
|
|
|
|
add_docstr(torch.get_num_threads,
|
|
r"""
|
|
get_num_threads() -> int
|
|
|
|
Returns the number of threads used for parallelizing CPU operations
|
|
""")
|
|
|
|
add_docstr(torch.get_num_interop_threads,
|
|
r"""
|
|
get_num_interop_threads() -> int
|
|
|
|
Returns the number of threads used for inter-op parallelism on CPU
|
|
(e.g. in JIT interpreter)
|
|
""")
|
|
|
|
add_docstr(torch.gt, r"""
|
|
gt(input, other, *, out=None) -> Tensor
|
|
|
|
Computes :math:`\text{input} > \text{other}` element-wise.
|
|
""" + r"""
|
|
|
|
The second argument can be a number or a tensor whose shape is
|
|
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
|
|
|
|
Args:
|
|
input (Tensor): the tensor to compare
|
|
other (Tensor or float): the tensor or value to compare
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Returns:
|
|
A boolean tensor that is True where :attr:`input` is greater than :attr:`other` and False elsewhere
|
|
|
|
Example::
|
|
|
|
>>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
|
|
tensor([[False, True], [False, False]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.histc,
|
|
r"""
|
|
histc(input, bins=100, min=0, max=0, out=None) -> Tensor
|
|
|
|
Computes the histogram of a tensor.
|
|
|
|
The elements are sorted into equal width bins between :attr:`min` and
|
|
:attr:`max`. If :attr:`min` and :attr:`max` are both zero, the minimum and
|
|
maximum values of the data are used.
|
|
|
|
Elements lower than min and higher than max are ignored.
|
|
|
|
Args:
|
|
{input}
|
|
bins (int): number of histogram bins
|
|
min (int): lower end of the range (inclusive)
|
|
max (int): upper end of the range (inclusive)
|
|
{out}
|
|
|
|
Returns:
|
|
Tensor: Histogram represented as a tensor
|
|
|
|
Example::
|
|
|
|
>>> torch.histc(torch.tensor([1., 2, 1]), bins=4, min=0, max=3)
|
|
tensor([ 0., 2., 1., 0.])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.hypot,
|
|
r"""
|
|
hypot(input, other, *, out=None) -> Tensor
|
|
|
|
Given the legs of a right triangle, return its hypotenuse.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \sqrt{\text{input}_{i}^{2} + \text{other}_{i}^{2}}
|
|
|
|
The shapes of ``input`` and ``other`` must be
|
|
:ref:`broadcastable <broadcasting-semantics>`.
|
|
""" + r"""
|
|
Args:
|
|
input (Tensor): the first input tensor
|
|
other (Tensor): the second input tensor
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.hypot(torch.tensor([4.0]), torch.tensor([3.0, 4.0, 5.0]))
|
|
tensor([5.0000, 5.6569, 6.4031])
|
|
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.index_select,
|
|
r"""
|
|
index_select(input, dim, index, out=None) -> Tensor
|
|
|
|
Returns a new tensor which indexes the :attr:`input` tensor along dimension
|
|
:attr:`dim` using the entries in :attr:`index` which is a `LongTensor`.
|
|
|
|
The returned tensor has the same number of dimensions as the original tensor
|
|
(:attr:`input`). The :attr:`dim`\ th dimension has the same size as the length
|
|
of :attr:`index`; other dimensions have the same size as in the original tensor.
|
|
|
|
.. note:: The returned tensor does **not** use the same storage as the original
|
|
tensor. If :attr:`out` has a different shape than expected, we
|
|
silently change it to the correct shape, reallocating the underlying
|
|
storage if necessary.
|
|
|
|
Args:
|
|
{input}
|
|
dim (int): the dimension in which we index
|
|
index (LongTensor): the 1-D tensor containing the indices to index
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(3, 4)
|
|
>>> x
|
|
tensor([[ 0.1427, 0.0231, -0.5414, -1.0009],
|
|
[-0.4664, 0.2647, -0.1228, -1.1068],
|
|
[-1.1734, -0.6571, 0.7230, -0.6004]])
|
|
>>> indices = torch.tensor([0, 2])
|
|
>>> torch.index_select(x, 0, indices)
|
|
tensor([[ 0.1427, 0.0231, -0.5414, -1.0009],
|
|
[-1.1734, -0.6571, 0.7230, -0.6004]])
|
|
>>> torch.index_select(x, 1, indices)
|
|
tensor([[ 0.1427, -0.5414],
|
|
[-0.4664, -0.1228],
|
|
[-1.1734, 0.7230]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.inverse,
|
|
r"""
|
|
inverse(input, out=None) -> Tensor
|
|
|
|
Takes the inverse of the square matrix :attr:`input`. :attr:`input` can be batches
|
|
of 2D square tensors, in which case this function would return a tensor composed of
|
|
individual inverses.
|
|
|
|
.. note::
|
|
|
|
Irrespective of the original strides, the returned tensors will be
|
|
transposed, i.e. with strides like `input.contiguous().transpose(-2, -1).stride()`
|
|
|
|
Args:
|
|
input (Tensor): the input tensor of size :math:`(*, n, n)` where `*` is zero or more
|
|
batch dimensions
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> x = torch.rand(4, 4)
|
|
>>> y = torch.inverse(x)
|
|
>>> z = torch.mm(x, y)
|
|
>>> z
|
|
tensor([[ 1.0000, -0.0000, -0.0000, 0.0000],
|
|
[ 0.0000, 1.0000, 0.0000, 0.0000],
|
|
[ 0.0000, 0.0000, 1.0000, 0.0000],
|
|
[ 0.0000, -0.0000, -0.0000, 1.0000]])
|
|
>>> torch.max(torch.abs(z - torch.eye(4))) # Max non-zero
|
|
tensor(1.1921e-07)
|
|
>>> # Batched inverse example
|
|
>>> x = torch.randn(2, 3, 4, 4)
|
|
>>> y = torch.inverse(x)
|
|
>>> z = torch.matmul(x, y)
|
|
>>> torch.max(torch.abs(z - torch.eye(4).expand_as(x))) # Max non-zero
|
|
tensor(1.9073e-06)
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.isinf, r"""
|
|
isinf(input) -> Tensor
|
|
|
|
Tests if each element of :attr:`input` is infinite
|
|
(positive or negative infinity) or not.
|
|
|
|
.. note::
|
|
Complex values are infinite when their real or imaginary part is
|
|
infinite.
|
|
|
|
Arguments:
|
|
{input}
|
|
|
|
Returns:
|
|
A boolean tensor that is True where :attr:`input` is infinite and False elsewhere
|
|
|
|
Example::
|
|
|
|
>>> torch.isinf(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
|
|
tensor([False, True, False, True, False])
|
|
""")
|
|
|
|
add_docstr(torch.isposinf,
|
|
r"""
|
|
isposinf(input, *, out=None) -> Tensor
|
|
Tests if each element of :attr:`input` is positive infinity or not.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Example::
|
|
>>> a = torch.tensor([-float('inf'), float('inf'), 1.2])
|
|
>>> torch.isposinf(a)
|
|
tensor([False, True, False])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.isneginf,
|
|
r"""
|
|
isneginf(input, *, out=None) -> Tensor
|
|
Tests if each element of :attr:`input` is negative infinity or not.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Example::
|
|
>>> a = torch.tensor([-float('inf'), float('inf'), 1.2])
|
|
>>> torch.isneginf(a)
|
|
tensor([ True, False, False])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.isclose, r"""
|
|
isclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor
|
|
|
|
Returns a new tensor with boolean elements representing if each element of
|
|
:attr:`input` is "close" to the corresponding element of :attr:`other`.
|
|
Closeness is defined as:
|
|
|
|
.. math::
|
|
\lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert
|
|
""" + r"""
|
|
|
|
where :attr:`input` and :attr:`other` are finite. Where :attr:`input`
|
|
and/or :attr:`other` are nonfinite they are close if and only if
|
|
they are equal, with NaNs being considered equal to each other when
|
|
:attr:`equal_nan` is True.
|
|
|
|
Args:
|
|
input (Tensor): first tensor to compare
|
|
other (Tensor): second tensor to compare
|
|
atol (float, optional): absolute tolerance. Default: 1e-08
|
|
rtol (float, optional): relative tolerance. Default: 1e-05
|
|
equal_nan (bool, optional): if ``True``, then two ``NaN`` s will be considered equal. Default: ``False``
|
|
|
|
Examples::
|
|
|
|
>>> torch.isclose(torch.tensor((1., 2, 3)), torch.tensor((1 + 1e-10, 3, 4)))
|
|
tensor([ True, False, False])
|
|
>>> torch.isclose(torch.tensor((float('inf'), 4)), torch.tensor((float('inf'), 6)), rtol=.5)
|
|
tensor([True, True])
|
|
""")
|
|
|
|
add_docstr(torch.isfinite, r"""
|
|
isfinite(input) -> Tensor
|
|
|
|
Returns a new tensor with boolean elements representing if each element is `finite` or not.
|
|
|
|
Real values are finite when they are not NaN, negative infinity, or infinity.
|
|
Complex values are finite when both their real and imaginary parts are finite.
|
|
|
|
Arguments:
|
|
{input}
|
|
|
|
Returns:
|
|
A boolean tensor that is True where :attr:`input` is finite and False elsewhere
|
|
|
|
Example::
|
|
|
|
>>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
|
|
tensor([True, False, True, False, False])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.isnan, r"""
|
|
isnan(input) -> Tensor
|
|
|
|
Returns a new tensor with boolean elements representing if each element of :attr:`input`
|
|
is NaN or not. Complex values are considered NaN when either their real
|
|
and/or imaginary part is NaN.
|
|
|
|
Arguments:
|
|
{input}
|
|
|
|
Returns:
|
|
A boolean tensor that is True where :attr:`input` is NaN and False elsewhere
|
|
|
|
Example::
|
|
|
|
>>> torch.isnan(torch.tensor([1, float('nan'), 2]))
|
|
tensor([False, True, False])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.isreal, r"""
|
|
isreal(input) -> Tensor
|
|
|
|
Returns a new tensor with boolean elements representing if each element of :attr:`input` is real-valued or not.
|
|
All real-valued types are considered real. Complex values are considered real when their imaginary part is 0.
|
|
|
|
Arguments:
|
|
{input}
|
|
|
|
Returns:
|
|
A boolean tensor that is True where :attr:`input` is real and False elsewhere
|
|
|
|
Example::
|
|
|
|
>>> torch.isreal(torch.tensor([1, 1+1j, 2+0j]))
|
|
tensor([True, False, True])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.is_floating_point, r"""
|
|
is_floating_point(input) -> (bool)
|
|
|
|
Returns True if the data type of :attr:`input` is a floating point data type i.e.,
|
|
one of ``torch.float64``, ``torch.float32`` and ``torch.float16``.
|
|
|
|
Args:
|
|
{input}
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.is_complex, r"""
|
|
is_complex(input) -> (bool)
|
|
|
|
Returns True if the data type of :attr:`input` is a complex data type i.e.,
|
|
one of ``torch.complex64``, and ``torch.complex128``.
|
|
|
|
Args:
|
|
{input}
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.is_nonzero, r"""
|
|
is_nonzero(input) -> (bool)
|
|
|
|
Returns True if the :attr:`input` is a single element tensor which is not equal to zero
|
|
after type conversions.
|
|
i.e. not equal to ``torch.tensor([0.])`` or ``torch.tensor([0])`` or
|
|
``torch.tensor([False])``.
|
|
Throws a ``RuntimeError`` if ``torch.numel() != 1`` (even in case
|
|
of sparse tensors).
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Examples::
|
|
|
|
>>> torch.is_nonzero(torch.tensor([0.]))
|
|
False
|
|
>>> torch.is_nonzero(torch.tensor([1.5]))
|
|
True
|
|
>>> torch.is_nonzero(torch.tensor([False]))
|
|
False
|
|
>>> torch.is_nonzero(torch.tensor([3]))
|
|
True
|
|
>>> torch.is_nonzero(torch.tensor([1, 3, 5]))
|
|
Traceback (most recent call last):
|
|
...
|
|
RuntimeError: bool value of Tensor with more than one value is ambiguous
|
|
>>> torch.is_nonzero(torch.tensor([]))
|
|
Traceback (most recent call last):
|
|
...
|
|
RuntimeError: bool value of Tensor with no values is ambiguous
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.kthvalue,
|
|
r"""
|
|
kthvalue(input, k, dim=None, keepdim=False, out=None) -> (Tensor, LongTensor)
|
|
|
|
Returns a namedtuple ``(values, indices)`` where ``values`` is the :attr:`k` th
|
|
smallest element of each row of the :attr:`input` tensor in the given dimension
|
|
:attr:`dim`. And ``indices`` is the index location of each element found.
|
|
|
|
If :attr:`dim` is not given, the last dimension of the `input` is chosen.
|
|
|
|
If :attr:`keepdim` is ``True``, both the :attr:`values` and :attr:`indices` tensors
|
|
are the same size as :attr:`input`, except in the dimension :attr:`dim` where
|
|
they are of size 1. Otherwise, :attr:`dim` is squeezed
|
|
(see :func:`torch.squeeze`), resulting in both the :attr:`values` and
|
|
:attr:`indices` tensors having 1 fewer dimension than the :attr:`input` tensor.
|
|
|
|
Args:
|
|
{input}
|
|
k (int): k for the k-th smallest element
|
|
dim (int, optional): the dimension to find the kth value along
|
|
{keepdim}
|
|
out (tuple, optional): the output tuple of (Tensor, LongTensor)
|
|
can be optionally given to be used as output buffers
|
|
|
|
Example::
|
|
|
|
>>> x = torch.arange(1., 6.)
|
|
>>> x
|
|
tensor([ 1., 2., 3., 4., 5.])
|
|
>>> torch.kthvalue(x, 4)
|
|
torch.return_types.kthvalue(values=tensor(4.), indices=tensor(3))
|
|
|
|
>>> x=torch.arange(1.,7.).resize_(2,3)
|
|
>>> x
|
|
tensor([[ 1., 2., 3.],
|
|
[ 4., 5., 6.]])
|
|
>>> torch.kthvalue(x, 2, 0, True)
|
|
torch.return_types.kthvalue(values=tensor([[4., 5., 6.]]), indices=tensor([[1, 1, 1]]))
|
|
""".format(**single_dim_common))
|
|
|
|
add_docstr(torch.lcm,
|
|
r"""
|
|
lcm(input, other, out=None) -> Tensor
|
|
|
|
Computes the element-wise least common multiple (LCM) of :attr:`input` and :attr:`other`.
|
|
|
|
Both :attr:`input` and :attr:`other` must have integer types.
|
|
|
|
.. note::
|
|
This defines :math:`lcm(0, 0) = 0` and :math:`lcm(0, a) = 0`.
|
|
|
|
Args:
|
|
{input}
|
|
other (Tensor): the second input tensor
|
|
|
|
Keyword arguments:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.tensor([5, 10, 15])
|
|
>>> b = torch.tensor([3, 4, 5])
|
|
>>> torch.lcm(a, b)
|
|
tensor([15, 20, 15])
|
|
>>> c = torch.tensor([3])
|
|
>>> torch.lcm(a, c)
|
|
tensor([15, 30, 15])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.le, r"""
|
|
le(input, other, *, out=None) -> Tensor
|
|
|
|
Computes :math:`\text{input} \leq \text{other}` element-wise.
|
|
""" + r"""
|
|
|
|
The second argument can be a number or a tensor whose shape is
|
|
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
|
|
|
|
Args:
|
|
input (Tensor): the tensor to compare
|
|
other (Tensor or Scalar): the tensor or value to compare
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Returns:
|
|
A boolean tensor that is True where :attr:`input` is less than or equal to
|
|
:attr:`other` and False elsewhere
|
|
|
|
Example::
|
|
|
|
>>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
|
|
tensor([[True, False], [True, True]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.lerp,
|
|
r"""
|
|
lerp(input, end, weight, out=None)
|
|
|
|
Does a linear interpolation of two tensors :attr:`start` (given by :attr:`input`) and :attr:`end` based
|
|
on a scalar or tensor :attr:`weight` and returns the resulting :attr:`out` tensor.
|
|
|
|
.. math::
|
|
\text{out}_i = \text{start}_i + \text{weight}_i \times (\text{end}_i - \text{start}_i)
|
|
""" + r"""
|
|
The shapes of :attr:`start` and :attr:`end` must be
|
|
:ref:`broadcastable <broadcasting-semantics>`. If :attr:`weight` is a tensor, then
|
|
the shapes of :attr:`weight`, :attr:`start`, and :attr:`end` must be :ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
Args:
|
|
input (Tensor): the tensor with the starting points
|
|
end (Tensor): the tensor with the ending points
|
|
weight (float or tensor): the weight for the interpolation formula
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> start = torch.arange(1., 5.)
|
|
>>> end = torch.empty(4).fill_(10)
|
|
>>> start
|
|
tensor([ 1., 2., 3., 4.])
|
|
>>> end
|
|
tensor([ 10., 10., 10., 10.])
|
|
>>> torch.lerp(start, end, 0.5)
|
|
tensor([ 5.5000, 6.0000, 6.5000, 7.0000])
|
|
>>> torch.lerp(start, end, torch.full_like(start, 0.5))
|
|
tensor([ 5.5000, 6.0000, 6.5000, 7.0000])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.lgamma,
|
|
r"""
|
|
lgamma(input, out=None) -> Tensor
|
|
|
|
Computes the logarithm of the gamma function on :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \log \Gamma(\text{input}_{i})
|
|
""" + """
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.arange(0.5, 2, 0.5)
|
|
>>> torch.lgamma(a)
|
|
tensor([ 0.5724, 0.0000, -0.1208])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.linspace,
|
|
r"""
|
|
linspace(start, end, steps=100, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a one-dimensional tensor of :attr:`steps`
|
|
equally spaced points between :attr:`start` and :attr:`end`.
|
|
|
|
The output tensor is 1-D of size :attr:`steps`.
|
|
|
|
Args:
|
|
start (float): the starting value for the set of points
|
|
end (float): the ending value for the set of points
|
|
steps (int): number of points to sample between :attr:`start`
|
|
and :attr:`end`. Default: ``100``.
|
|
{out}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
|
|
Example::
|
|
|
|
>>> torch.linspace(3, 10, steps=5)
|
|
tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000])
|
|
>>> torch.linspace(-10, 10, steps=5)
|
|
tensor([-10., -5., 0., 5., 10.])
|
|
>>> torch.linspace(start=-10, end=10, steps=5)
|
|
tensor([-10., -5., 0., 5., 10.])
|
|
>>> torch.linspace(start=-10, end=10, steps=1)
|
|
tensor([-10.])
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.log,
|
|
r"""
|
|
log(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the natural logarithm of the elements
|
|
of :attr:`input`.
|
|
|
|
.. math::
|
|
y_{i} = \log_{e} (x_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(5)
|
|
>>> a
|
|
tensor([-0.7168, -0.5471, -0.8933, -1.4428, -0.1190])
|
|
>>> torch.log(a)
|
|
tensor([ nan, nan, nan, nan, nan])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.log10,
|
|
r"""
|
|
log10(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the logarithm to the base 10 of the elements
|
|
of :attr:`input`.
|
|
|
|
.. math::
|
|
y_{i} = \log_{10} (x_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.rand(5)
|
|
>>> a
|
|
tensor([ 0.5224, 0.9354, 0.7257, 0.1301, 0.2251])
|
|
|
|
|
|
>>> torch.log10(a)
|
|
tensor([-0.2820, -0.0290, -0.1392, -0.8857, -0.6476])
|
|
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.log1p,
|
|
r"""
|
|
log1p(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the natural logarithm of (1 + :attr:`input`).
|
|
|
|
.. math::
|
|
y_i = \log_{e} (x_i + 1)
|
|
""" + r"""
|
|
.. note:: This function is more accurate than :func:`torch.log` for small
|
|
values of :attr:`input`
|
|
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(5)
|
|
>>> a
|
|
tensor([-1.0090, -0.9923, 1.0249, -0.5372, 0.2492])
|
|
>>> torch.log1p(a)
|
|
tensor([ nan, -4.8653, 0.7055, -0.7705, 0.2225])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.log2,
|
|
r"""
|
|
log2(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the logarithm to the base 2 of the elements
|
|
of :attr:`input`.
|
|
|
|
.. math::
|
|
y_{i} = \log_{2} (x_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.rand(5)
|
|
>>> a
|
|
tensor([ 0.8419, 0.8003, 0.9971, 0.5287, 0.0490])
|
|
|
|
|
|
>>> torch.log2(a)
|
|
tensor([-0.2483, -0.3213, -0.0042, -0.9196, -4.3504])
|
|
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.logaddexp,
|
|
r"""
|
|
logaddexp(input, other, out=None) -> Tensor
|
|
|
|
Logarithm of the sum of exponentiations of the inputs.
|
|
|
|
Calculates pointwise :math:`\log\left(e^x + e^y\right)`. This function is useful
|
|
in statistics where the calculated probabilities of events may be so small as to
|
|
exceed the range of normal floating point numbers. In such cases the logarithm
|
|
of the calculated probability is stored. This function allows adding
|
|
probabilities stored in such a fashion.
|
|
|
|
This op should be disambiguated with :func:`torch.logsumexp` which performs a
|
|
reduction on a single tensor.
|
|
|
|
Args:
|
|
{input}
|
|
other (Tensor): the second input tensor
|
|
|
|
Keyword arguments:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.logaddexp(torch.tensor([-1.0]), torch.tensor([-1.0, -2, -3]))
|
|
tensor([-0.3069, -0.6867, -0.8731])
|
|
>>> torch.logaddexp(torch.tensor([-100.0, -200, -300]), torch.tensor([-1.0, -2, -3]))
|
|
tensor([-1., -2., -3.])
|
|
>>> torch.logaddexp(torch.tensor([1.0, 2000, 30000]), torch.tensor([-1.0, -2, -3]))
|
|
tensor([1.1269e+00, 2.0000e+03, 3.0000e+04])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.logaddexp2,
|
|
r"""
|
|
logaddexp2(input, other, out=None) -> Tensor
|
|
|
|
Logarithm of the sum of exponentiations of the inputs in base-2.
|
|
|
|
Calculates pointwise :math:`\log_2\left(2^x + 2^y\right)`. See
|
|
:func:`torch.logaddexp` for more details.
|
|
|
|
Args:
|
|
{input}
|
|
other (Tensor): the second input tensor
|
|
|
|
Keyword arguments:
|
|
{out}
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.logical_and,
|
|
r"""
|
|
logical_and(input, other, out=None) -> Tensor
|
|
|
|
Computes the element-wise logical AND of the given input tensors. Zeros are treated as ``False`` and nonzeros are
|
|
treated as ``True``.
|
|
|
|
Args:
|
|
{input}
|
|
other (Tensor): the tensor to compute AND with
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.logical_and(torch.tensor([True, False, True]), torch.tensor([True, False, False]))
|
|
tensor([ True, False, False])
|
|
>>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8)
|
|
>>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8)
|
|
>>> torch.logical_and(a, b)
|
|
tensor([False, False, True, False])
|
|
>>> torch.logical_and(a.double(), b.double())
|
|
tensor([False, False, True, False])
|
|
>>> torch.logical_and(a.double(), b)
|
|
tensor([False, False, True, False])
|
|
>>> torch.logical_and(a, b, out=torch.empty(4, dtype=torch.bool))
|
|
tensor([False, False, True, False])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.logical_not,
|
|
r"""
|
|
logical_not(input, out=None) -> Tensor
|
|
|
|
Computes the element-wise logical NOT of the given input tensor. If not specified, the output tensor will have the bool
|
|
dtype. If the input tensor is not a bool tensor, zeros are treated as ``False`` and non-zeros are treated as ``True``.
|
|
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.logical_not(torch.tensor([True, False]))
|
|
tensor([False, True])
|
|
>>> torch.logical_not(torch.tensor([0, 1, -10], dtype=torch.int8))
|
|
tensor([ True, False, False])
|
|
>>> torch.logical_not(torch.tensor([0., 1.5, -10.], dtype=torch.double))
|
|
tensor([ True, False, False])
|
|
>>> torch.logical_not(torch.tensor([0., 1., -10.], dtype=torch.double), out=torch.empty(3, dtype=torch.int16))
|
|
tensor([1, 0, 0], dtype=torch.int16)
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.logical_or,
|
|
r"""
|
|
logical_or(input, other, out=None) -> Tensor
|
|
|
|
Computes the element-wise logical OR of the given input tensors. Zeros are treated as ``False`` and nonzeros are
|
|
treated as ``True``.
|
|
|
|
Args:
|
|
{input}
|
|
other (Tensor): the tensor to compute OR with
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.logical_or(torch.tensor([True, False, True]), torch.tensor([True, False, False]))
|
|
tensor([ True, False, True])
|
|
>>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8)
|
|
>>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8)
|
|
>>> torch.logical_or(a, b)
|
|
tensor([ True, True, True, False])
|
|
>>> torch.logical_or(a.double(), b.double())
|
|
tensor([ True, True, True, False])
|
|
>>> torch.logical_or(a.double(), b)
|
|
tensor([ True, True, True, False])
|
|
>>> torch.logical_or(a, b, out=torch.empty(4, dtype=torch.bool))
|
|
tensor([ True, True, True, False])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.logical_xor,
|
|
r"""
|
|
logical_xor(input, other, out=None) -> Tensor
|
|
|
|
Computes the element-wise logical XOR of the given input tensors. Zeros are treated as ``False`` and nonzeros are
|
|
treated as ``True``.
|
|
|
|
Args:
|
|
{input}
|
|
other (Tensor): the tensor to compute XOR with
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.logical_xor(torch.tensor([True, False, True]), torch.tensor([True, False, False]))
|
|
tensor([False, False, True])
|
|
>>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8)
|
|
>>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8)
|
|
>>> torch.logical_xor(a, b)
|
|
tensor([ True, True, False, False])
|
|
>>> torch.logical_xor(a.double(), b.double())
|
|
tensor([ True, True, False, False])
|
|
>>> torch.logical_xor(a.double(), b)
|
|
tensor([ True, True, False, False])
|
|
>>> torch.logical_xor(a, b, out=torch.empty(4, dtype=torch.bool))
|
|
tensor([ True, True, False, False])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.logspace,
|
|
r"""
|
|
logspace(start, end, steps=100, base=10.0, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a one-dimensional tensor of :attr:`steps` points
|
|
logarithmically spaced with base :attr:`base` between
|
|
:math:`{{\text{{base}}}}^{{\text{{start}}}}` and :math:`{{\text{{base}}}}^{{\text{{end}}}}`.
|
|
|
|
The output tensor is 1-D of size :attr:`steps`.
|
|
|
|
Args:
|
|
start (float): the starting value for the set of points
|
|
end (float): the ending value for the set of points
|
|
steps (int): number of points to sample between :attr:`start`
|
|
and :attr:`end`. Default: ``100``.
|
|
base (float): base of the logarithm function. Default: ``10.0``.
|
|
{out}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> torch.logspace(start=-10, end=10, steps=5)
|
|
tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10])
|
|
>>> torch.logspace(start=0.1, end=1.0, steps=5)
|
|
tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000])
|
|
>>> torch.logspace(start=0.1, end=1.0, steps=1)
|
|
tensor([1.2589])
|
|
>>> torch.logspace(start=2, end=2, steps=1, base=2)
|
|
tensor([4.0])
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.logsumexp,
|
|
r"""
|
|
logsumexp(input, dim, keepdim=False, out=None)
|
|
|
|
Returns the log of summed exponentials of each row of the :attr:`input`
|
|
tensor in the given dimension :attr:`dim`. The computation is numerically
|
|
stabilized.
|
|
|
|
For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is
|
|
|
|
.. math::
|
|
\text{{logsumexp}}(x)_{{i}} = \log \sum_j \exp(x_{{ij}})
|
|
|
|
{keepdim_details}
|
|
|
|
Args:
|
|
{input}
|
|
{dim}
|
|
{keepdim}
|
|
{out}
|
|
|
|
|
|
Example::
|
|
>>> a = torch.randn(3, 3)
|
|
>>> torch.logsumexp(a, 1)
|
|
tensor([ 0.8442, 1.4322, 0.8711])
|
|
""".format(**multi_dim_common))
|
|
|
|
add_docstr(torch.lstsq,
|
|
r"""
|
|
lstsq(input, A, out=None) -> Tensor
|
|
|
|
Computes the solution to the least squares and least norm problems for a full
|
|
rank matrix :math:`A` of size :math:`(m \times n)` and a matrix :math:`B` of
|
|
size :math:`(m \times k)`.
|
|
|
|
If :math:`m \geq n`, :func:`lstsq` solves the least-squares problem:
|
|
|
|
.. math::
|
|
|
|
\begin{array}{ll}
|
|
\min_X & \|AX-B\|_2.
|
|
\end{array}
|
|
|
|
If :math:`m < n`, :func:`lstsq` solves the least-norm problem:
|
|
|
|
.. math::
|
|
|
|
\begin{array}{ll}
|
|
\min_X & \|X\|_2 & \text{subject to} & AX = B.
|
|
\end{array}
|
|
|
|
Returned tensor :math:`X` has shape :math:`(\max(m, n) \times k)`. The first :math:`n`
|
|
rows of :math:`X` contains the solution. If :math:`m \geq n`, the residual sum of squares
|
|
for the solution in each column is given by the sum of squares of elements in the
|
|
remaining :math:`m - n` rows of that column.
|
|
|
|
.. note::
|
|
The case when :math:`m < n` is not supported on the GPU.
|
|
|
|
Args:
|
|
input (Tensor): the matrix :math:`B`
|
|
A (Tensor): the :math:`m` by :math:`n` matrix :math:`A`
|
|
out (tuple, optional): the optional destination tensor
|
|
|
|
Returns:
|
|
(Tensor, Tensor): A namedtuple (solution, QR) containing:
|
|
|
|
- **solution** (*Tensor*): the least squares solution
|
|
- **QR** (*Tensor*): the details of the QR factorization
|
|
|
|
.. note::
|
|
|
|
The returned matrices will always be transposed, irrespective of the strides
|
|
of the input matrices. That is, they will have stride `(1, m)` instead of
|
|
`(m, 1)`.
|
|
|
|
Example::
|
|
|
|
>>> A = torch.tensor([[1., 1, 1],
|
|
[2, 3, 4],
|
|
[3, 5, 2],
|
|
[4, 2, 5],
|
|
[5, 4, 3]])
|
|
>>> B = torch.tensor([[-10., -3],
|
|
[ 12, 14],
|
|
[ 14, 12],
|
|
[ 16, 16],
|
|
[ 18, 16]])
|
|
>>> X, _ = torch.lstsq(B, A)
|
|
>>> X
|
|
tensor([[ 2.0000, 1.0000],
|
|
[ 1.0000, 1.0000],
|
|
[ 1.0000, 2.0000],
|
|
[ 10.9635, 4.8501],
|
|
[ 8.9332, 5.2418]])
|
|
""")
|
|
|
|
add_docstr(torch.lt, r"""
|
|
lt(input, other, *, out=None) -> Tensor
|
|
|
|
Computes :math:`\text{input} < \text{other}` element-wise.
|
|
""" + r"""
|
|
|
|
The second argument can be a number or a tensor whose shape is
|
|
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
|
|
|
|
Args:
|
|
input (Tensor): the tensor to compare
|
|
other (Tensor or float): the tensor or value to compare
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Returns:
|
|
A boolean tensor that is True where :attr:`input` is less than :attr:`other` and False elsewhere
|
|
|
|
Example::
|
|
|
|
>>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
|
|
tensor([[False, False], [True, False]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.lu_solve,
|
|
r"""
|
|
lu_solve(input, LU_data, LU_pivots, out=None) -> Tensor
|
|
|
|
Returns the LU solve of the linear system :math:`Ax = b` using the partially pivoted
|
|
LU factorization of A from :meth:`torch.lu`.
|
|
|
|
Arguments:
|
|
b (Tensor): the RHS tensor of size :math:`(*, m, k)`, where :math:`*`
|
|
is zero or more batch dimensions.
|
|
LU_data (Tensor): the pivoted LU factorization of A from :meth:`torch.lu` of size :math:`(*, m, m)`,
|
|
where :math:`*` is zero or more batch dimensions.
|
|
LU_pivots (IntTensor): the pivots of the LU factorization from :meth:`torch.lu` of size :math:`(*, m)`,
|
|
where :math:`*` is zero or more batch dimensions.
|
|
The batch dimensions of :attr:`LU_pivots` must be equal to the batch dimensions of
|
|
:attr:`LU_data`.
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> A = torch.randn(2, 3, 3)
|
|
>>> b = torch.randn(2, 3, 1)
|
|
>>> A_LU = torch.lu(A)
|
|
>>> x = torch.lu_solve(b, *A_LU)
|
|
>>> torch.norm(torch.bmm(A, x) - b)
|
|
tensor(1.00000e-07 *
|
|
2.8312)
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.masked_select,
|
|
r"""
|
|
masked_select(input, mask, out=None) -> Tensor
|
|
|
|
Returns a new 1-D tensor which indexes the :attr:`input` tensor according to
|
|
the boolean mask :attr:`mask` which is a `BoolTensor`.
|
|
|
|
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor don't need
|
|
to match, but they must be :ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
.. note:: The returned tensor does **not** use the same storage
|
|
as the original tensor
|
|
|
|
Args:
|
|
{input}
|
|
mask (BoolTensor): the tensor containing the binary mask to index with
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(3, 4)
|
|
>>> x
|
|
tensor([[ 0.3552, -2.3825, -0.8297, 0.3477],
|
|
[-1.2035, 1.2252, 0.5002, 0.6248],
|
|
[ 0.1307, -2.0608, 0.1244, 2.0139]])
|
|
>>> mask = x.ge(0.5)
|
|
>>> mask
|
|
tensor([[False, False, False, False],
|
|
[False, True, True, True],
|
|
[False, False, False, True]])
|
|
>>> torch.masked_select(x, mask)
|
|
tensor([ 1.2252, 0.5002, 0.6248, 2.0139])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.matrix_rank,
|
|
r"""
|
|
matrix_rank(input, tol=None, symmetric=False) -> Tensor
|
|
|
|
Returns the numerical rank of a 2-D tensor. The method to compute the
|
|
matrix rank is done using SVD by default. If :attr:`symmetric` is ``True``,
|
|
then :attr:`input` is assumed to be symmetric, and the computation of the
|
|
rank is done by obtaining the eigenvalues.
|
|
|
|
:attr:`tol` is the threshold below which the singular values (or the eigenvalues
|
|
when :attr:`symmetric` is ``True``) are considered to be 0. If :attr:`tol` is not
|
|
specified, :attr:`tol` is set to ``S.max() * max(S.size()) * eps`` where `S` is the
|
|
singular values (or the eigenvalues when :attr:`symmetric` is ``True``), and ``eps``
|
|
is the epsilon value for the datatype of :attr:`input`.
|
|
|
|
Args:
|
|
input (Tensor): the input 2-D tensor
|
|
tol (float, optional): the tolerance value. Default: ``None``
|
|
symmetric(bool, optional): indicates whether :attr:`input` is symmetric.
|
|
Default: ``False``
|
|
|
|
Example::
|
|
|
|
>>> a = torch.eye(10)
|
|
>>> torch.matrix_rank(a)
|
|
tensor(10)
|
|
>>> b = torch.eye(10)
|
|
>>> b[0, 0] = 0
|
|
>>> torch.matrix_rank(b)
|
|
tensor(9)
|
|
""")
|
|
|
|
add_docstr(torch.matrix_power,
|
|
r"""
|
|
matrix_power(input, n) -> Tensor
|
|
|
|
Returns the matrix raised to the power :attr:`n` for square matrices.
|
|
For batch of matrices, each individual matrix is raised to the power :attr:`n`.
|
|
|
|
If :attr:`n` is negative, then the inverse of the matrix (if invertible) is
|
|
raised to the power :attr:`n`. For a batch of matrices, the batched inverse
|
|
(if invertible) is raised to the power :attr:`n`. If :attr:`n` is 0, then an identity matrix
|
|
is returned.
|
|
|
|
Args:
|
|
{input}
|
|
n (int): the power to raise the matrix to
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(2, 2, 2)
|
|
>>> a
|
|
tensor([[[-1.9975, -1.9610],
|
|
[ 0.9592, -2.3364]],
|
|
|
|
[[-1.2534, -1.3429],
|
|
[ 0.4153, -1.4664]]])
|
|
>>> torch.matrix_power(a, 3)
|
|
tensor([[[ 3.9392, -23.9916],
|
|
[ 11.7357, -0.2070]],
|
|
|
|
[[ 0.2468, -6.7168],
|
|
[ 2.0774, -0.8187]]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.max,
|
|
r"""
|
|
max(input) -> Tensor
|
|
|
|
Returns the maximum value of all elements in the ``input`` tensor.
|
|
|
|
.. warning::
|
|
This function produces deterministic (sub)gradients unlike ``max(dim=0)``
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 3)
|
|
>>> a
|
|
tensor([[ 0.6763, 0.7445, -2.2369]])
|
|
>>> torch.max(a)
|
|
tensor(0.7445)
|
|
|
|
.. function:: max(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor)
|
|
|
|
Returns a namedtuple ``(values, indices)`` where ``values`` is the maximum
|
|
value of each row of the :attr:`input` tensor in the given dimension
|
|
:attr:`dim`. And ``indices`` is the index location of each maximum value found
|
|
(argmax).
|
|
|
|
.. warning::
|
|
``indices`` does not necessarily contain the first occurrence of each
|
|
maximal value found, unless it is unique.
|
|
The exact implementation details are device-specific.
|
|
Do not expect the same result when run on CPU and GPU in general.
|
|
For the same reason do not expect the gradients to be deterministic.
|
|
|
|
If ``keepdim`` is ``True``, the output tensors are of the same size
|
|
as ``input`` except in the dimension ``dim`` where they are of size 1.
|
|
Otherwise, ``dim`` is squeezed (see :func:`torch.squeeze`), resulting
|
|
in the output tensors having 1 fewer dimension than ``input``.
|
|
|
|
Args:
|
|
{input}
|
|
{dim}
|
|
{keepdim} Default: ``False``.
|
|
out (tuple, optional): the result tuple of two output tensors (max, max_indices)
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[-1.2360, -0.2942, -0.1222, 0.8475],
|
|
[ 1.1949, -1.1127, -2.2379, -0.6702],
|
|
[ 1.5717, -0.9207, 0.1297, -1.8768],
|
|
[-0.6172, 1.0036, -0.6060, -0.2432]])
|
|
>>> torch.max(a, 1)
|
|
torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1]))
|
|
|
|
.. function:: max(input, other, out=None) -> Tensor
|
|
|
|
Each element of the tensor ``input`` is compared with the corresponding
|
|
element of the tensor ``other`` and an element-wise maximum is taken.
|
|
|
|
The shapes of ``input`` and ``other`` don't need to match,
|
|
but they must be :ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
.. math::
|
|
\text{{out}}_i = \max(\text{{tensor}}_i, \text{{other}}_i)
|
|
|
|
.. note:: When the shapes do not match, the shape of the returned output tensor
|
|
follows the :ref:`broadcasting rules <broadcasting-semantics>`.
|
|
|
|
Args:
|
|
{input}
|
|
other (Tensor): the second input tensor
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.2942, -0.7416, 0.2653, -0.1584])
|
|
>>> b = torch.randn(4)
|
|
>>> b
|
|
tensor([ 0.8722, -1.7421, -0.4141, -0.5055])
|
|
>>> torch.max(a, b)
|
|
tensor([ 0.8722, -0.7416, 0.2653, -0.1584])
|
|
""".format(**single_dim_common))
|
|
|
|
add_docstr(torch.argmax,
|
|
r"""
|
|
argmax(input) -> LongTensor
|
|
|
|
Returns the indices of the maximum value of all elements in the :attr:`input` tensor.
|
|
|
|
This is the second value returned by :meth:`torch.max`. See its
|
|
documentation for the exact semantics of this method.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[ 1.3398, 0.2663, -0.2686, 0.2450],
|
|
[-0.7401, -0.8805, -0.3402, -1.1936],
|
|
[ 0.4907, -1.3948, -1.0691, -0.3132],
|
|
[-1.6092, 0.5419, -0.2993, 0.3195]])
|
|
>>> torch.argmax(a)
|
|
tensor(0)
|
|
|
|
.. function:: argmax(input, dim, keepdim=False) -> LongTensor
|
|
|
|
Returns the indices of the maximum values of a tensor across a dimension.
|
|
|
|
This is the second value returned by :meth:`torch.max`. See its
|
|
documentation for the exact semantics of this method.
|
|
|
|
Args:
|
|
{input}
|
|
{dim} If ``None``, the argmax of the flattened input is returned.
|
|
{keepdim} Ignored if ``dim=None``.
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[ 1.3398, 0.2663, -0.2686, 0.2450],
|
|
[-0.7401, -0.8805, -0.3402, -1.1936],
|
|
[ 0.4907, -1.3948, -1.0691, -0.3132],
|
|
[-1.6092, 0.5419, -0.2993, 0.3195]])
|
|
>>> torch.argmax(a, dim=1)
|
|
tensor([ 0, 2, 0, 1])
|
|
""".format(**single_dim_common))
|
|
|
|
add_docstr(torch.mean,
|
|
r"""
|
|
mean(input) -> Tensor
|
|
|
|
Returns the mean value of all elements in the :attr:`input` tensor.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 3)
|
|
>>> a
|
|
tensor([[ 0.2294, -0.5481, 1.3288]])
|
|
>>> torch.mean(a)
|
|
tensor(0.3367)
|
|
|
|
.. function:: mean(input, dim, keepdim=False, out=None) -> Tensor
|
|
|
|
Returns the mean value of each row of the :attr:`input` tensor in the given
|
|
dimension :attr:`dim`. If :attr:`dim` is a list of dimensions,
|
|
reduce over all of them.
|
|
|
|
{keepdim_details}
|
|
|
|
Args:
|
|
{input}
|
|
{dim}
|
|
{keepdim}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[-0.3841, 0.6320, 0.4254, -0.7384],
|
|
[-0.9644, 1.0131, -0.6549, -1.4279],
|
|
[-0.2951, -1.3350, -0.7694, 0.5600],
|
|
[ 1.0842, -0.9580, 0.3623, 0.2343]])
|
|
>>> torch.mean(a, 1)
|
|
tensor([-0.0163, -0.5085, -0.4599, 0.1807])
|
|
>>> torch.mean(a, 1, True)
|
|
tensor([[-0.0163],
|
|
[-0.5085],
|
|
[-0.4599],
|
|
[ 0.1807]])
|
|
""".format(**multi_dim_common))
|
|
|
|
add_docstr(torch.median,
|
|
r"""
|
|
median(input) -> Tensor
|
|
|
|
Returns the median value of all elements in the :attr:`input` tensor.
|
|
|
|
.. warning::
|
|
This function produces deterministic (sub)gradients unlike ``median(dim=0)``
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 3)
|
|
>>> a
|
|
tensor([[ 1.5219, -1.5212, 0.2202]])
|
|
>>> torch.median(a)
|
|
tensor(0.2202)
|
|
|
|
.. function:: median(input, dim=-1, keepdim=False, out=None) -> (Tensor, LongTensor)
|
|
|
|
Returns a namedtuple ``(values, indices)`` where ``values`` is the median
|
|
value of each row of the :attr:`input` tensor in the given dimension
|
|
:attr:`dim`. And ``indices`` is the index location of each median value found.
|
|
|
|
By default, :attr:`dim` is the last dimension of the :attr:`input` tensor.
|
|
|
|
If :attr:`keepdim` is ``True``, the output tensors are of the same size
|
|
as :attr:`input` except in the dimension :attr:`dim` where they are of size 1.
|
|
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in
|
|
the outputs tensor having 1 fewer dimension than :attr:`input`.
|
|
|
|
.. warning::
|
|
``indices`` does not necessarily contain the first occurrence of each
|
|
median value found, unless it is unique.
|
|
The exact implementation details are device-specific.
|
|
Do not expect the same result when run on CPU and GPU in general.
|
|
For the same reason do not expect the gradients to be deterministic.
|
|
|
|
|
|
Args:
|
|
{input}
|
|
{dim}
|
|
{keepdim}
|
|
out (tuple, optional): the result tuple of two output tensors (max, max_indices)
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 5)
|
|
>>> a
|
|
tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131],
|
|
[ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270],
|
|
[-0.2751, 0.7303, 0.2192, 0.3321, 0.2488],
|
|
[ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]])
|
|
>>> torch.median(a, 1)
|
|
torch.return_types.median(values=tensor([-0.3982, 0.2270, 0.2488, 0.4742]), indices=tensor([1, 4, 4, 3]))
|
|
""".format(**single_dim_common))
|
|
|
|
add_docstr(torch.quantile,
|
|
r"""
|
|
quantile(input, q) -> Tensor
|
|
|
|
Returns the q-th quantiles of all elements in the :attr:`input` tensor, doing a linear
|
|
interpolation when the q-th quantile lies between two data.
|
|
|
|
Args:
|
|
{input}
|
|
q (float or Tensor): a scalar or 1D tensor of quantile values in the range [0, 1]
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 3)
|
|
>>> a
|
|
tensor([[ 0.0700, -0.5446, 0.9214]])
|
|
>>> q = torch.tensor([0, 0.5, 1])
|
|
>>> torch.quantile(a, q)
|
|
tensor([-0.5446, 0.0700, 0.9214])
|
|
|
|
.. function:: quantile(input, q, dim=None, keepdim=False, *, out=None) -> Tensor
|
|
|
|
Returns the q-th quantiles of each row of the :attr:`input` tensor along the dimension
|
|
:attr:`dim`, doing a linear interpolation when the q-th quantile lies between two
|
|
data points. By default, :attr:`dim` is `None` resulting in the :attr:`input` tensor
|
|
beign flattened before computation.
|
|
|
|
If :attr:`q` is a 1D tensor, the first dimension of the result corresponds to the quantiles
|
|
and the remaining dimensions are what remains from the reduction of the :attr:`input` tensor.
|
|
If :attr:`q` is a scalar or scalar tensor, the result is placed in the reduced dimension.
|
|
|
|
If :attr:`keepdim` is ``True``, the remaining dimensions are of the same size as
|
|
:attr:`input` except in the dimension :attr:`dim` where it is size 1. Otherwise,
|
|
the dimension :attr:`dim` is squeezed (see :func:`torch.squeeze`).
|
|
|
|
Args:
|
|
{input}
|
|
q (float or Tensor): a scalar or 1D tensor of quantile values in the range [0, 1]
|
|
{dim}
|
|
{keepdim}
|
|
|
|
Keyword arguments:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(2, 3)
|
|
>>> a
|
|
tensor([[ 0.0795, -1.2117, 0.9765],
|
|
[ 1.1707, 0.6706, 0.4884]])
|
|
>>> q = torch.tensor([0.25, 0.5, 0.75])
|
|
>>> torch.quantile(a, q, dim=1, keepdim=True)
|
|
tensor([[[-0.5661],
|
|
[ 0.5795]],
|
|
|
|
[[ 0.0795],
|
|
[ 0.6706]],
|
|
|
|
[[ 0.5280],
|
|
[ 0.9206]]])
|
|
>>> torch.quantile(a, q, dim=1, keepdim=True).shape
|
|
torch.Size([3, 2, 1])
|
|
""".format(**single_dim_common))
|
|
|
|
add_docstr(torch.min,
|
|
r"""
|
|
min(input) -> Tensor
|
|
|
|
Returns the minimum value of all elements in the :attr:`input` tensor.
|
|
|
|
.. warning::
|
|
This function produces deterministic (sub)gradients unlike ``min(dim=0)``
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 3)
|
|
>>> a
|
|
tensor([[ 0.6750, 1.0857, 1.7197]])
|
|
>>> torch.min(a)
|
|
tensor(0.6750)
|
|
|
|
.. function:: min(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor)
|
|
|
|
Returns a namedtuple ``(values, indices)`` where ``values`` is the minimum
|
|
value of each row of the :attr:`input` tensor in the given dimension
|
|
:attr:`dim`. And ``indices`` is the index location of each minimum value found
|
|
(argmin).
|
|
|
|
.. warning::
|
|
``indices`` does not necessarily contain the first occurrence of each
|
|
minimal value found, unless it is unique.
|
|
The exact implementation details are device-specific.
|
|
Do not expect the same result when run on CPU and GPU in general.
|
|
For the same reason do not expect the gradients to be deterministic.
|
|
|
|
If :attr:`keepdim` is ``True``, the output tensors are of the same size as
|
|
:attr:`input` except in the dimension :attr:`dim` where they are of size 1.
|
|
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in
|
|
the output tensors having 1 fewer dimension than :attr:`input`.
|
|
|
|
Args:
|
|
{input}
|
|
{dim}
|
|
{keepdim}
|
|
out (tuple, optional): the tuple of two output tensors (min, min_indices)
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[-0.6248, 1.1334, -1.1899, -0.2803],
|
|
[-1.4644, -0.2635, -0.3651, 0.6134],
|
|
[ 0.2457, 0.0384, 1.0128, 0.7015],
|
|
[-0.1153, 2.9849, 2.1458, 0.5788]])
|
|
>>> torch.min(a, 1)
|
|
torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0]))
|
|
|
|
.. function:: min(input, other, out=None) -> Tensor
|
|
|
|
Each element of the tensor :attr:`input` is compared with the corresponding
|
|
element of the tensor :attr:`other` and an element-wise minimum is taken.
|
|
The resulting tensor is returned.
|
|
|
|
The shapes of :attr:`input` and :attr:`other` don't need to match,
|
|
but they must be :ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
.. math::
|
|
\text{{out}}_i = \min(\text{{tensor}}_i, \text{{other}}_i)
|
|
|
|
.. note:: When the shapes do not match, the shape of the returned output tensor
|
|
follows the :ref:`broadcasting rules <broadcasting-semantics>`.
|
|
|
|
Args:
|
|
{input}
|
|
other (Tensor): the second input tensor
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.8137, -1.1740, -0.6460, 0.6308])
|
|
>>> b = torch.randn(4)
|
|
>>> b
|
|
tensor([-0.1369, 0.1555, 0.4019, -0.1929])
|
|
>>> torch.min(a, b)
|
|
tensor([-0.1369, -1.1740, -0.6460, -0.1929])
|
|
""".format(**single_dim_common))
|
|
|
|
add_docstr(torch.argmin,
|
|
r"""
|
|
argmin(input) -> LongTensor
|
|
|
|
Returns the indices of the minimum value of all elements in the :attr:`input` tensor.
|
|
|
|
This is the second value returned by :meth:`torch.min`. See its
|
|
documentation for the exact semantics of this method.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[ 0.1139, 0.2254, -0.1381, 0.3687],
|
|
[ 1.0100, -1.1975, -0.0102, -0.4732],
|
|
[-0.9240, 0.1207, -0.7506, -1.0213],
|
|
[ 1.7809, -1.2960, 0.9384, 0.1438]])
|
|
>>> torch.argmin(a)
|
|
tensor(13)
|
|
|
|
.. function:: argmin(input, dim, keepdim=False, out=None) -> LongTensor
|
|
|
|
Returns the indices of the minimum values of a tensor across a dimension.
|
|
|
|
This is the second value returned by :meth:`torch.min`. See its
|
|
documentation for the exact semantics of this method.
|
|
|
|
Args:
|
|
{input}
|
|
{dim} If ``None``, the argmin of the flattened input is returned.
|
|
{keepdim} Ignored if ``dim=None``.
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[ 0.1139, 0.2254, -0.1381, 0.3687],
|
|
[ 1.0100, -1.1975, -0.0102, -0.4732],
|
|
[-0.9240, 0.1207, -0.7506, -1.0213],
|
|
[ 1.7809, -1.2960, 0.9384, 0.1438]])
|
|
>>> torch.argmin(a, dim=1)
|
|
tensor([ 2, 1, 3, 1])
|
|
""".format(**single_dim_common))
|
|
|
|
add_docstr(torch.mm,
|
|
r"""
|
|
mm(input, mat2, out=None) -> Tensor
|
|
|
|
Performs a matrix multiplication of the matrices :attr:`input` and :attr:`mat2`.
|
|
|
|
If :attr:`input` is a :math:`(n \times m)` tensor, :attr:`mat2` is a
|
|
:math:`(m \times p)` tensor, :attr:`out` will be a :math:`(n \times p)` tensor.
|
|
|
|
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
|
|
For broadcasting matrix products, see :func:`torch.matmul`.
|
|
|
|
Args:
|
|
input (Tensor): the first matrix to be multiplied
|
|
mat2 (Tensor): the second matrix to be multiplied
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> mat1 = torch.randn(2, 3)
|
|
>>> mat2 = torch.randn(3, 3)
|
|
>>> torch.mm(mat1, mat2)
|
|
tensor([[ 0.4851, 0.5037, -0.3633],
|
|
[-0.0760, -3.6705, 2.4784]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.matmul,
|
|
r"""
|
|
matmul(input, other, out=None) -> Tensor
|
|
|
|
Matrix product of two tensors.
|
|
|
|
The behavior depends on the dimensionality of the tensors as follows:
|
|
|
|
- If both tensors are 1-dimensional, the dot product (scalar) is returned.
|
|
- If both arguments are 2-dimensional, the matrix-matrix product is returned.
|
|
- If the first argument is 1-dimensional and the second argument is 2-dimensional,
|
|
a 1 is prepended to its dimension for the purpose of the matrix multiply.
|
|
After the matrix multiply, the prepended dimension is removed.
|
|
- If the first argument is 2-dimensional and the second argument is 1-dimensional,
|
|
the matrix-vector product is returned.
|
|
- If both arguments are at least 1-dimensional and at least one argument is
|
|
N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first
|
|
argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the
|
|
batched matrix multiply and removed after. If the second argument is 1-dimensional, a
|
|
1 is appended to its dimension for the purpose of the batched matrix multiple and removed after.
|
|
The non-matrix (i.e. batch) dimensions are :ref:`broadcasted <broadcasting-semantics>` (and thus
|
|
must be broadcastable). For example, if :attr:`input` is a
|
|
:math:`(j \times 1 \times n \times m)` tensor and :attr:`other` is a :math:`(k \times m \times p)`
|
|
tensor, :attr:`out` will be an :math:`(j \times k \times n \times p)` tensor.
|
|
|
|
.. note::
|
|
|
|
The 1-dimensional dot product version of this function does not support an :attr:`out` parameter.
|
|
|
|
Arguments:
|
|
input (Tensor): the first tensor to be multiplied
|
|
other (Tensor): the second tensor to be multiplied
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> # vector x vector
|
|
>>> tensor1 = torch.randn(3)
|
|
>>> tensor2 = torch.randn(3)
|
|
>>> torch.matmul(tensor1, tensor2).size()
|
|
torch.Size([])
|
|
>>> # matrix x vector
|
|
>>> tensor1 = torch.randn(3, 4)
|
|
>>> tensor2 = torch.randn(4)
|
|
>>> torch.matmul(tensor1, tensor2).size()
|
|
torch.Size([3])
|
|
>>> # batched matrix x broadcasted vector
|
|
>>> tensor1 = torch.randn(10, 3, 4)
|
|
>>> tensor2 = torch.randn(4)
|
|
>>> torch.matmul(tensor1, tensor2).size()
|
|
torch.Size([10, 3])
|
|
>>> # batched matrix x batched matrix
|
|
>>> tensor1 = torch.randn(10, 3, 4)
|
|
>>> tensor2 = torch.randn(10, 4, 5)
|
|
>>> torch.matmul(tensor1, tensor2).size()
|
|
torch.Size([10, 3, 5])
|
|
>>> # batched matrix x broadcasted matrix
|
|
>>> tensor1 = torch.randn(10, 3, 4)
|
|
>>> tensor2 = torch.randn(4, 5)
|
|
>>> torch.matmul(tensor1, tensor2).size()
|
|
torch.Size([10, 3, 5])
|
|
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.mode,
|
|
r"""
|
|
mode(input, dim=-1, keepdim=False, out=None) -> (Tensor, LongTensor)
|
|
|
|
Returns a namedtuple ``(values, indices)`` where ``values`` is the mode
|
|
value of each row of the :attr:`input` tensor in the given dimension
|
|
:attr:`dim`, i.e. a value which appears most often
|
|
in that row, and ``indices`` is the index location of each mode value found.
|
|
|
|
By default, :attr:`dim` is the last dimension of the :attr:`input` tensor.
|
|
|
|
If :attr:`keepdim` is ``True``, the output tensors are of the same size as
|
|
:attr:`input` except in the dimension :attr:`dim` where they are of size 1.
|
|
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting
|
|
in the output tensors having 1 fewer dimension than :attr:`input`.
|
|
|
|
.. note:: This function is not defined for ``torch.cuda.Tensor`` yet.
|
|
|
|
Args:
|
|
{input}
|
|
{dim}
|
|
{keepdim}
|
|
out (tuple, optional): the result tuple of two output tensors (values, indices)
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randint(10, (5,))
|
|
>>> a
|
|
tensor([6, 5, 1, 0, 2])
|
|
>>> b = a + (torch.randn(50, 1) * 5).long()
|
|
>>> torch.mode(b, 0)
|
|
torch.return_types.mode(values=tensor([6, 5, 1, 0, 2]), indices=tensor([2, 2, 2, 2, 2]))
|
|
""".format(**single_dim_common))
|
|
|
|
add_docstr(torch.mul,
|
|
r"""
|
|
mul(input, other, out=None)
|
|
|
|
Multiplies each element of the input :attr:`input` with the scalar
|
|
:attr:`other` and returns a new resulting tensor.
|
|
|
|
.. math::
|
|
\text{out}_i = \text{other} \times \text{input}_i
|
|
""" + r"""
|
|
If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`other`
|
|
should be a real number, otherwise it should be an integer
|
|
|
|
Args:
|
|
{input}
|
|
value (Number): the number to be multiplied to each element of :attr:`input`
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(3)
|
|
>>> a
|
|
tensor([ 0.2015, -0.4255, 2.6087])
|
|
>>> torch.mul(a, 100)
|
|
tensor([ 20.1494, -42.5491, 260.8663])
|
|
|
|
.. function:: mul(input, other, out=None)
|
|
|
|
Each element of the tensor :attr:`input` is multiplied by the corresponding
|
|
element of the Tensor :attr:`other`. The resulting tensor is returned.
|
|
|
|
The shapes of :attr:`input` and :attr:`other` must be
|
|
:ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
.. math::
|
|
\text{out}_i = \text{input}_i \times \text{other}_i
|
|
""" + r"""
|
|
Args:
|
|
input (Tensor): the first multiplicand tensor
|
|
other (Tensor): the second multiplicand tensor
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 1)
|
|
>>> a
|
|
tensor([[ 1.1207],
|
|
[-0.3137],
|
|
[ 0.0700],
|
|
[ 0.8378]])
|
|
>>> b = torch.randn(1, 4)
|
|
>>> b
|
|
tensor([[ 0.5146, 0.1216, -0.5244, 2.2382]])
|
|
>>> torch.mul(a, b)
|
|
tensor([[ 0.5767, 0.1363, -0.5877, 2.5083],
|
|
[-0.1614, -0.0382, 0.1645, -0.7021],
|
|
[ 0.0360, 0.0085, -0.0367, 0.1567],
|
|
[ 0.4312, 0.1019, -0.4394, 1.8753]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.multinomial,
|
|
r"""
|
|
multinomial(input, num_samples, replacement=False, *, generator=None, out=None) -> LongTensor
|
|
|
|
Returns a tensor where each row contains :attr:`num_samples` indices sampled
|
|
from the multinomial probability distribution located in the corresponding row
|
|
of tensor :attr:`input`.
|
|
|
|
.. note::
|
|
The rows of :attr:`input` do not need to sum to one (in which case we use
|
|
the values as weights), but must be non-negative, finite and have
|
|
a non-zero sum.
|
|
|
|
Indices are ordered from left to right according to when each was sampled
|
|
(first samples are placed in first column).
|
|
|
|
If :attr:`input` is a vector, :attr:`out` is a vector of size :attr:`num_samples`.
|
|
|
|
If :attr:`input` is a matrix with `m` rows, :attr:`out` is an matrix of shape
|
|
:math:`(m \times \text{{num\_samples}})`.
|
|
|
|
If replacement is ``True``, samples are drawn with replacement.
|
|
|
|
If not, they are drawn without replacement, which means that when a
|
|
sample index is drawn for a row, it cannot be drawn again for that row.
|
|
|
|
.. note::
|
|
When drawn without replacement, :attr:`num_samples` must be lower than
|
|
number of non-zero elements in :attr:`input` (or the min number of non-zero
|
|
elements in each row of :attr:`input` if it is a matrix).
|
|
|
|
Args:
|
|
input (Tensor): the input tensor containing probabilities
|
|
num_samples (int): number of samples to draw
|
|
replacement (bool, optional): whether to draw with replacement or not
|
|
{generator}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> weights = torch.tensor([0, 10, 3, 0], dtype=torch.float) # create a tensor of weights
|
|
>>> torch.multinomial(weights, 2)
|
|
tensor([1, 2])
|
|
>>> torch.multinomial(weights, 4) # ERROR!
|
|
RuntimeError: invalid argument 2: invalid multinomial distribution (with replacement=False,
|
|
not enough non-negative category to sample) at ../aten/src/TH/generic/THTensorRandom.cpp:320
|
|
>>> torch.multinomial(weights, 4, replacement=True)
|
|
tensor([ 2, 1, 1, 1])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.mv,
|
|
r"""
|
|
mv(input, vec, out=None) -> Tensor
|
|
|
|
Performs a matrix-vector product of the matrix :attr:`input` and the vector
|
|
:attr:`vec`.
|
|
|
|
If :attr:`input` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of
|
|
size :math:`m`, :attr:`out` will be 1-D of size :math:`n`.
|
|
|
|
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
|
|
|
|
Args:
|
|
input (Tensor): matrix to be multiplied
|
|
vec (Tensor): vector to be multiplied
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> mat = torch.randn(2, 3)
|
|
>>> vec = torch.randn(3)
|
|
>>> torch.mv(mat, vec)
|
|
tensor([ 1.0404, -0.6361])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.mvlgamma,
|
|
r"""
|
|
mvlgamma(input, p) -> Tensor
|
|
|
|
Computes the `multivariate log-gamma function
|
|
<https://en.wikipedia.org/wiki/Multivariate_gamma_function>`_) with dimension
|
|
:math:`p` element-wise, given by
|
|
|
|
.. math::
|
|
\log(\Gamma_{p}(a)) = C + \displaystyle \sum_{i=1}^{p} \log\left(\Gamma\left(a - \frac{i - 1}{2}\right)\right)
|
|
|
|
where :math:`C = \log(\pi) \times \frac{p (p - 1)}{4}` and :math:`\Gamma(\cdot)` is the Gamma function.
|
|
|
|
All elements must be greater than :math:`\frac{p - 1}{2}`, otherwise an error would be thrown.
|
|
|
|
Args:
|
|
input (Tensor): the tensor to compute the multivariate log-gamma function
|
|
p (int): the number of dimensions
|
|
|
|
Example::
|
|
|
|
>>> a = torch.empty(2, 3).uniform_(1, 2)
|
|
>>> a
|
|
tensor([[1.6835, 1.8474, 1.1929],
|
|
[1.0475, 1.7162, 1.4180]])
|
|
>>> torch.mvlgamma(a, 2)
|
|
tensor([[0.3928, 0.4007, 0.7586],
|
|
[1.0311, 0.3901, 0.5049]])
|
|
""")
|
|
|
|
add_docstr(torch.movedim,
|
|
r"""
|
|
movedim(input, source, destination) -> Tensor
|
|
|
|
Moves the dimension(s) of :attr:`input` at the position(s) in :attr:`source`
|
|
to the position(s) in :attr:`destination`.
|
|
|
|
Other dimensions of :attr:`input` that are not explicitly moved remain in
|
|
their original order and appear at the positions not specified in :attr:`destination`.
|
|
|
|
Args:
|
|
{input}
|
|
source (int or tuple of ints): Original positions of the dims to move. These must be unique.
|
|
destination (int or tuple of ints): Destination positions for each of the original dims. These must also be unique.
|
|
|
|
Examples::
|
|
|
|
>>> t = torch.randn(3,2,1)
|
|
>>> t
|
|
tensor([[[-0.3362],
|
|
[-0.8437]],
|
|
|
|
[[-0.9627],
|
|
[ 0.1727]],
|
|
|
|
[[ 0.5173],
|
|
[-0.1398]]])
|
|
>>> torch.movedim(t, 1, 0).shape
|
|
torch.Size([2, 3, 1])
|
|
>>> torch.movedim(t, 1, 0)
|
|
tensor([[[-0.3362],
|
|
[-0.9627],
|
|
[ 0.5173]],
|
|
|
|
[[-0.8437],
|
|
[ 0.1727],
|
|
[-0.1398]]])
|
|
>>> torch.movedim(t, (1, 2), (0, 1)).shape
|
|
torch.Size([2, 1, 3])
|
|
>>> torch.movedim(t, (1, 2), (0, 1))
|
|
tensor([[[-0.3362, -0.9627, 0.5173]],
|
|
|
|
[[-0.8437, 0.1727, -0.1398]]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.narrow,
|
|
r"""
|
|
narrow(input, dim, start, length) -> Tensor
|
|
|
|
Returns a new tensor that is a narrowed version of :attr:`input` tensor. The
|
|
dimension :attr:`dim` is input from :attr:`start` to :attr:`start + length`. The
|
|
returned tensor and :attr:`input` tensor share the same underlying storage.
|
|
|
|
Args:
|
|
input (Tensor): the tensor to narrow
|
|
dim (int): the dimension along which to narrow
|
|
start (int): the starting dimension
|
|
length (int): the distance to the ending dimension
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
|
>>> torch.narrow(x, 0, 0, 2)
|
|
tensor([[ 1, 2, 3],
|
|
[ 4, 5, 6]])
|
|
>>> torch.narrow(x, 1, 1, 2)
|
|
tensor([[ 2, 3],
|
|
[ 5, 6],
|
|
[ 8, 9]])
|
|
""")
|
|
|
|
add_docstr(torch.ne, r"""
|
|
ne(input, other, *, out=None) -> Tensor
|
|
|
|
Computes :math:`\text{input} \neq \text{other}` element-wise.
|
|
""" + r"""
|
|
|
|
The second argument can be a number or a tensor whose shape is
|
|
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
|
|
|
|
Args:
|
|
input (Tensor): the tensor to compare
|
|
other (Tensor or float): the tensor or value to compare
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Returns:
|
|
A boolean tensor that is True where :attr:`input` is not equal to :attr:`other` and False elsewhere
|
|
|
|
Example::
|
|
|
|
>>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
|
|
tensor([[False, True], [True, False]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.neg,
|
|
r"""
|
|
neg(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the negative of the elements of :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out} = -1 \times \text{input}
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(5)
|
|
>>> a
|
|
tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940])
|
|
>>> torch.neg(a)
|
|
tensor([-0.0090, 0.2262, 0.0682, 0.2866, -0.3940])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.nextafter,
|
|
r"""
|
|
nextafter(input, other, *, out=None) -> Tensor
|
|
|
|
Return the next floating-point value after :attr:`input` towards :attr:`other`, elementwise.
|
|
|
|
The shapes of ``input`` and ``other`` must be
|
|
:ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
Args:
|
|
input (Tensor): the first input tensor
|
|
other (Tensor): the second input tensor
|
|
Keyword args:
|
|
{out}
|
|
|
|
Example::
|
|
>>> eps = torch.finfo(torch.float32).eps
|
|
>>> torch.nextafter(torch.Tensor([1, 2]), torch.Tensor([2, 1])) == torch.Tensor([eps + 1, 2 - eps])
|
|
tensor([True, True])
|
|
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.nonzero,
|
|
r"""
|
|
nonzero(input, *, out=None, as_tuple=False) -> LongTensor or tuple of LongTensors
|
|
|
|
.. note::
|
|
:func:`torch.nonzero(..., as_tuple=False) <torch.nonzero>` (default) returns a
|
|
2-D tensor where each row is the index for a nonzero value.
|
|
|
|
:func:`torch.nonzero(..., as_tuple=True) <torch.nonzero>` returns a tuple of 1-D
|
|
index tensors, allowing for advanced indexing, so ``x[x.nonzero(as_tuple=True)]``
|
|
gives all nonzero values of tensor ``x``. Of the returned tuple, each index tensor
|
|
contains nonzero indices for a certain dimension.
|
|
|
|
See below for more details on the two behaviors.
|
|
|
|
|
|
**When** :attr:`as_tuple` **is ``False`` (default)**:
|
|
|
|
Returns a tensor containing the indices of all non-zero elements of
|
|
:attr:`input`. Each row in the result contains the indices of a non-zero
|
|
element in :attr:`input`. The result is sorted lexicographically, with
|
|
the last index changing the fastest (C-style).
|
|
|
|
If :attr:`input` has :math:`n` dimensions, then the resulting indices tensor
|
|
:attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of
|
|
non-zero elements in the :attr:`input` tensor.
|
|
|
|
**When** :attr:`as_tuple` **is ``True``**:
|
|
|
|
Returns a tuple of 1-D tensors, one for each dimension in :attr:`input`,
|
|
each containing the indices (in that dimension) of all non-zero elements of
|
|
:attr:`input` .
|
|
|
|
If :attr:`input` has :math:`n` dimensions, then the resulting tuple contains :math:`n`
|
|
tensors of size :math:`z`, where :math:`z` is the total number of
|
|
non-zero elements in the :attr:`input` tensor.
|
|
|
|
As a special case, when :attr:`input` has zero dimensions and a nonzero scalar
|
|
value, it is treated as a one-dimensional tensor with one element.
|
|
|
|
Args:
|
|
{input}
|
|
out (LongTensor, optional): the output tensor containing indices
|
|
|
|
Returns:
|
|
LongTensor or tuple of LongTensor: If :attr:`as_tuple` is ``False``, the output
|
|
tensor containing indices. If :attr:`as_tuple` is ``True``, one 1-D tensor for
|
|
each dimension, containing the indices of each nonzero element along that
|
|
dimension.
|
|
|
|
Example::
|
|
|
|
>>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1]))
|
|
tensor([[ 0],
|
|
[ 1],
|
|
[ 2],
|
|
[ 4]])
|
|
>>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0],
|
|
[0.0, 0.4, 0.0, 0.0],
|
|
[0.0, 0.0, 1.2, 0.0],
|
|
[0.0, 0.0, 0.0,-0.4]]))
|
|
tensor([[ 0, 0],
|
|
[ 1, 1],
|
|
[ 2, 2],
|
|
[ 3, 3]])
|
|
>>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1]), as_tuple=True)
|
|
(tensor([0, 1, 2, 4]),)
|
|
>>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0],
|
|
[0.0, 0.4, 0.0, 0.0],
|
|
[0.0, 0.0, 1.2, 0.0],
|
|
[0.0, 0.0, 0.0,-0.4]]), as_tuple=True)
|
|
(tensor([0, 1, 2, 3]), tensor([0, 1, 2, 3]))
|
|
>>> torch.nonzero(torch.tensor(5), as_tuple=True)
|
|
(tensor([0]),)
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.normal,
|
|
r"""
|
|
normal(mean, std, *, generator=None, out=None) -> Tensor
|
|
|
|
Returns a tensor of random numbers drawn from separate normal distributions
|
|
whose mean and standard deviation are given.
|
|
|
|
The :attr:`mean` is a tensor with the mean of
|
|
each output element's normal distribution
|
|
|
|
The :attr:`std` is a tensor with the standard deviation of
|
|
each output element's normal distribution
|
|
|
|
The shapes of :attr:`mean` and :attr:`std` don't need to match, but the
|
|
total number of elements in each tensor need to be the same.
|
|
|
|
.. note:: When the shapes do not match, the shape of :attr:`mean`
|
|
is used as the shape for the returned output tensor
|
|
|
|
Args:
|
|
mean (Tensor): the tensor of per-element means
|
|
std (Tensor): the tensor of per-element standard deviations
|
|
{generator}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1))
|
|
tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134,
|
|
8.0505, 8.1408, 9.0563, 10.0566])
|
|
|
|
.. function:: normal(mean=0.0, std, out=None) -> Tensor
|
|
|
|
Similar to the function above, but the means are shared among all drawn
|
|
elements.
|
|
|
|
Args:
|
|
mean (float, optional): the mean for all distributions
|
|
std (Tensor): the tensor of per-element standard deviations
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.normal(mean=0.5, std=torch.arange(1., 6.))
|
|
tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303])
|
|
|
|
.. function:: normal(mean, std=1.0, out=None) -> Tensor
|
|
|
|
Similar to the function above, but the standard-deviations are shared among
|
|
all drawn elements.
|
|
|
|
Args:
|
|
mean (Tensor): the tensor of per-element means
|
|
std (float, optional): the standard deviation for all distributions
|
|
out (Tensor, optional): the output tensor
|
|
|
|
Example::
|
|
|
|
>>> torch.normal(mean=torch.arange(1., 6.))
|
|
tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361])
|
|
|
|
.. function:: normal(mean, std, size, *, out=None) -> Tensor
|
|
|
|
Similar to the function above, but the means and standard deviations are shared
|
|
among all drawn elements. The resulting tensor has size given by :attr:`size`.
|
|
|
|
Args:
|
|
mean (float): the mean for all distributions
|
|
std (float): the standard deviation for all distributions
|
|
size (int...): a sequence of integers defining the shape of the output tensor.
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.normal(2, 3, size=(1, 4))
|
|
tensor([[-1.3987, -1.9544, 3.6048, 0.7909]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.numel,
|
|
r"""
|
|
numel(input) -> int
|
|
|
|
Returns the total number of elements in the :attr:`input` tensor.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 2, 3, 4, 5)
|
|
>>> torch.numel(a)
|
|
120
|
|
>>> a = torch.zeros(4,4)
|
|
>>> torch.numel(a)
|
|
16
|
|
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.ones,
|
|
r"""
|
|
ones(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a tensor filled with the scalar value `1`, with the shape defined
|
|
by the variable argument :attr:`size`.
|
|
|
|
Args:
|
|
size (int...): a sequence of integers defining the shape of the output tensor.
|
|
Can be a variable number of arguments or a collection like a list or tuple.
|
|
{out}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> torch.ones(2, 3)
|
|
tensor([[ 1., 1., 1.],
|
|
[ 1., 1., 1.]])
|
|
|
|
>>> torch.ones(5)
|
|
tensor([ 1., 1., 1., 1., 1.])
|
|
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.ones_like,
|
|
r"""
|
|
ones_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor
|
|
|
|
Returns a tensor filled with the scalar value `1`, with the same size as
|
|
:attr:`input`. ``torch.ones_like(input)`` is equivalent to
|
|
``torch.ones(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
|
|
|
|
.. warning::
|
|
As of 0.4, this function does not support an :attr:`out` keyword. As an alternative,
|
|
the old ``torch.ones_like(input, out=output)`` is equivalent to
|
|
``torch.ones(input.size(), out=output)``.
|
|
|
|
Args:
|
|
{input}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
{memory_format}
|
|
|
|
Example::
|
|
|
|
>>> input = torch.empty(2, 3)
|
|
>>> torch.ones_like(input)
|
|
tensor([[ 1., 1., 1.],
|
|
[ 1., 1., 1.]])
|
|
""".format(**factory_like_common_args))
|
|
|
|
add_docstr(torch.orgqr,
|
|
r"""
|
|
orgqr(input, input2) -> Tensor
|
|
|
|
Computes the orthogonal matrix `Q` of a QR factorization, from the `(input, input2)`
|
|
tuple returned by :func:`torch.geqrf`.
|
|
|
|
This directly calls the underlying LAPACK function `?orgqr`.
|
|
See `LAPACK documentation for orgqr`_ for further details.
|
|
|
|
Args:
|
|
input (Tensor): the `a` from :func:`torch.geqrf`.
|
|
input2 (Tensor): the `tau` from :func:`torch.geqrf`.
|
|
|
|
.. _LAPACK documentation for orgqr:
|
|
https://software.intel.com/en-us/mkl-developer-reference-c-orgqr
|
|
|
|
""")
|
|
|
|
add_docstr(torch.ormqr,
|
|
r"""
|
|
ormqr(input, input2, input3, left=True, transpose=False) -> Tensor
|
|
|
|
Multiplies `mat` (given by :attr:`input3`) by the orthogonal `Q` matrix of the QR factorization
|
|
formed by :func:`torch.geqrf` that is represented by `(a, tau)` (given by (:attr:`input`, :attr:`input2`)).
|
|
|
|
This directly calls the underlying LAPACK function `?ormqr`.
|
|
See `LAPACK documentation for ormqr`_ for further details.
|
|
|
|
Args:
|
|
input (Tensor): the `a` from :func:`torch.geqrf`.
|
|
input2 (Tensor): the `tau` from :func:`torch.geqrf`.
|
|
input3 (Tensor): the matrix to be multiplied.
|
|
|
|
.. _LAPACK documentation for ormqr:
|
|
https://software.intel.com/en-us/mkl-developer-reference-c-ormqr
|
|
|
|
""")
|
|
|
|
add_docstr(torch.poisson,
|
|
r"""
|
|
poisson(input *, generator=None) -> Tensor
|
|
|
|
Returns a tensor of the same size as :attr:`input` with each element
|
|
sampled from a Poisson distribution with rate parameter given by the corresponding
|
|
element in :attr:`input` i.e.,
|
|
|
|
.. math::
|
|
\text{{out}}_i \sim \text{{Poisson}}(\text{{input}}_i)
|
|
|
|
Args:
|
|
input (Tensor): the input tensor containing the rates of the Poisson distribution
|
|
{generator}
|
|
|
|
Example::
|
|
|
|
>>> rates = torch.rand(4, 4) * 5 # rate parameter between 0 and 5
|
|
>>> torch.poisson(rates)
|
|
tensor([[9., 1., 3., 5.],
|
|
[8., 6., 6., 0.],
|
|
[0., 4., 5., 3.],
|
|
[2., 1., 4., 2.]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.polygamma,
|
|
r"""
|
|
polygamma(n, input, out=None) -> Tensor
|
|
|
|
Computes the :math:`n^{th}` derivative of the digamma function on :attr:`input`.
|
|
:math:`n \geq 0` is called the order of the polygamma function.
|
|
|
|
.. math::
|
|
\psi^{(n)}(x) = \frac{d^{(n)}}{dx^{(n)}} \psi(x)
|
|
|
|
.. note::
|
|
This function is implemented only for nonnegative integers :math:`n \geq 0`.
|
|
""" + """
|
|
Args:
|
|
n (int): the order of the polygamma function
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
>>> a = torch.tensor([1, 0.5])
|
|
>>> torch.polygamma(1, a)
|
|
tensor([1.64493, 4.9348])
|
|
>>> torch.polygamma(2, a)
|
|
tensor([ -2.4041, -16.8288])
|
|
>>> torch.polygamma(3, a)
|
|
tensor([ 6.4939, 97.4091])
|
|
>>> torch.polygamma(4, a)
|
|
tensor([ -24.8863, -771.4742])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.pow,
|
|
r"""
|
|
pow(input, exponent, out=None) -> Tensor
|
|
|
|
Takes the power of each element in :attr:`input` with :attr:`exponent` and
|
|
returns a tensor with the result.
|
|
|
|
:attr:`exponent` can be either a single ``float`` number or a `Tensor`
|
|
with the same number of elements as :attr:`input`.
|
|
|
|
When :attr:`exponent` is a scalar value, the operation applied is:
|
|
|
|
.. math::
|
|
\text{out}_i = x_i ^ \text{exponent}
|
|
|
|
When :attr:`exponent` is a tensor, the operation applied is:
|
|
|
|
.. math::
|
|
\text{out}_i = x_i ^ {\text{exponent}_i}
|
|
""" + r"""
|
|
When :attr:`exponent` is a tensor, the shapes of :attr:`input`
|
|
and :attr:`exponent` must be :ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
Args:
|
|
{input}
|
|
exponent (float or tensor): the exponent value
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.4331, 1.2475, 0.6834, -0.2791])
|
|
>>> torch.pow(a, 2)
|
|
tensor([ 0.1875, 1.5561, 0.4670, 0.0779])
|
|
>>> exp = torch.arange(1., 5.)
|
|
|
|
>>> a = torch.arange(1., 5.)
|
|
>>> a
|
|
tensor([ 1., 2., 3., 4.])
|
|
>>> exp
|
|
tensor([ 1., 2., 3., 4.])
|
|
>>> torch.pow(a, exp)
|
|
tensor([ 1., 4., 27., 256.])
|
|
|
|
.. function:: pow(self, exponent, out=None) -> Tensor
|
|
|
|
:attr:`self` is a scalar ``float`` value, and :attr:`exponent` is a tensor.
|
|
The returned tensor :attr:`out` is of the same shape as :attr:`exponent`
|
|
|
|
The operation applied is:
|
|
|
|
.. math::
|
|
\text{{out}}_i = \text{{self}} ^ {{\text{{exponent}}_i}}
|
|
|
|
Args:
|
|
self (float): the scalar base value for the power operation
|
|
exponent (Tensor): the exponent tensor
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> exp = torch.arange(1., 5.)
|
|
>>> base = 2
|
|
>>> torch.pow(base, exp)
|
|
tensor([ 2., 4., 8., 16.])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.prod,
|
|
r"""
|
|
prod(input, dtype=None) -> Tensor
|
|
|
|
Returns the product of all elements in the :attr:`input` tensor.
|
|
|
|
Args:
|
|
{input}
|
|
{dtype}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 3)
|
|
>>> a
|
|
tensor([[-0.8020, 0.5428, -1.5854]])
|
|
>>> torch.prod(a)
|
|
tensor(0.6902)
|
|
|
|
.. function:: prod(input, dim, keepdim=False, dtype=None) -> Tensor
|
|
|
|
Returns the product of each row of the :attr:`input` tensor in the given
|
|
dimension :attr:`dim`.
|
|
|
|
{keepdim_details}
|
|
|
|
Args:
|
|
{input}
|
|
{dim}
|
|
{keepdim}
|
|
{dtype}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 2)
|
|
>>> a
|
|
tensor([[ 0.5261, -0.3837],
|
|
[ 1.1857, -0.2498],
|
|
[-1.1646, 0.0705],
|
|
[ 1.1131, -1.0629]])
|
|
>>> torch.prod(a, 1)
|
|
tensor([-0.2018, -0.2962, -0.0821, -1.1831])
|
|
""".format(**single_dim_common))
|
|
|
|
add_docstr(torch.promote_types,
|
|
r"""
|
|
promote_types(type1, type2) -> dtype
|
|
|
|
Returns the :class:`torch.dtype` with the smallest size and scalar kind that is
|
|
not smaller nor of lower kind than either `type1` or `type2`. See type promotion
|
|
:ref:`documentation <type-promotion-doc>` for more information on the type
|
|
promotion logic.
|
|
|
|
Args:
|
|
type1 (:class:`torch.dtype`)
|
|
type2 (:class:`torch.dtype`)
|
|
|
|
Example::
|
|
|
|
>>> torch.promote_types(torch.int32, torch.float32))
|
|
torch.float32
|
|
>>> torch.promote_types(torch.uint8, torch.long)
|
|
torch.long
|
|
""")
|
|
|
|
add_docstr(torch.qr,
|
|
r"""
|
|
qr(input, some=True, out=None) -> (Tensor, Tensor)
|
|
|
|
Computes the QR decomposition of a matrix or a batch of matrices :attr:`input`,
|
|
and returns a namedtuple (Q, R) of tensors such that :math:`\text{input} = Q R`
|
|
with :math:`Q` being an orthogonal matrix or batch of orthogonal matrices and
|
|
:math:`R` being an upper triangular matrix or batch of upper triangular matrices.
|
|
|
|
If :attr:`some` is ``True``, then this function returns the thin (reduced) QR factorization.
|
|
Otherwise, if :attr:`some` is ``False``, this function returns the complete QR factorization.
|
|
|
|
.. note:: precision may be lost if the magnitudes of the elements of :attr:`input`
|
|
are large
|
|
|
|
.. note:: While it should always give you a valid decomposition, it may not
|
|
give you the same one across platforms - it will depend on your
|
|
LAPACK implementation.
|
|
|
|
Args:
|
|
input (Tensor): the input tensor of size :math:`(*, m, n)` where `*` is zero or more
|
|
batch dimensions consisting of matrices of dimension :math:`m \times n`.
|
|
some (bool, optional): Set to ``True`` for reduced QR decomposition and ``False`` for
|
|
complete QR decomposition.
|
|
out (tuple, optional): tuple of `Q` and `R` tensors
|
|
satisfying :code:`input = torch.matmul(Q, R)`.
|
|
The dimensions of `Q` and `R` are :math:`(*, m, k)` and :math:`(*, k, n)`
|
|
respectively, where :math:`k = \min(m, n)` if :attr:`some:` is ``True`` and
|
|
:math:`k = m` otherwise.
|
|
|
|
Example::
|
|
|
|
>>> a = torch.tensor([[12., -51, 4], [6, 167, -68], [-4, 24, -41]])
|
|
>>> q, r = torch.qr(a)
|
|
>>> q
|
|
tensor([[-0.8571, 0.3943, 0.3314],
|
|
[-0.4286, -0.9029, -0.0343],
|
|
[ 0.2857, -0.1714, 0.9429]])
|
|
>>> r
|
|
tensor([[ -14.0000, -21.0000, 14.0000],
|
|
[ 0.0000, -175.0000, 70.0000],
|
|
[ 0.0000, 0.0000, -35.0000]])
|
|
>>> torch.mm(q, r).round()
|
|
tensor([[ 12., -51., 4.],
|
|
[ 6., 167., -68.],
|
|
[ -4., 24., -41.]])
|
|
>>> torch.mm(q.t(), q).round()
|
|
tensor([[ 1., 0., 0.],
|
|
[ 0., 1., -0.],
|
|
[ 0., -0., 1.]])
|
|
>>> a = torch.randn(3, 4, 5)
|
|
>>> q, r = torch.qr(a, some=False)
|
|
>>> torch.allclose(torch.matmul(q, r), a)
|
|
True
|
|
>>> torch.allclose(torch.matmul(q.transpose(-2, -1), q), torch.eye(5))
|
|
True
|
|
""")
|
|
|
|
add_docstr(torch.rad2deg,
|
|
r"""
|
|
rad2deg(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with each of the elements of :attr:`input`
|
|
converted from angles in radians to degrees.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Keyword arguments:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.tensor([[3.142, -3.142], [6.283, -6.283], [1.570, -1.570]])
|
|
>>> torch.rad2deg(a)
|
|
tensor([[ 180.0233, -180.0233],
|
|
[ 359.9894, -359.9894],
|
|
[ 89.9544, -89.9544]])
|
|
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.deg2rad,
|
|
r"""
|
|
deg2rad(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with each of the elements of :attr:`input`
|
|
converted from angles in degrees to radians.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Keyword arguments:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.tensor([[180.0, -180.0], [360.0, -360.0], [90.0, -90.0]])
|
|
>>> torch.deg2rad(a)
|
|
tensor([[ 3.1416, -3.1416],
|
|
[ 6.2832, -6.2832],
|
|
[ 1.5708, -1.5708]])
|
|
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.rand,
|
|
r"""
|
|
rand(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a tensor filled with random numbers from a uniform distribution
|
|
on the interval :math:`[0, 1)`
|
|
|
|
The shape of the tensor is defined by the variable argument :attr:`size`.
|
|
|
|
Args:
|
|
size (int...): a sequence of integers defining the shape of the output tensor.
|
|
Can be a variable number of arguments or a collection like a list or tuple.
|
|
{out}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> torch.rand(4)
|
|
tensor([ 0.5204, 0.2503, 0.3525, 0.5673])
|
|
>>> torch.rand(2, 3)
|
|
tensor([[ 0.8237, 0.5781, 0.6879],
|
|
[ 0.3816, 0.7249, 0.0998]])
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.rand_like,
|
|
r"""
|
|
rand_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor
|
|
|
|
Returns a tensor with the same size as :attr:`input` that is filled with
|
|
random numbers from a uniform distribution on the interval :math:`[0, 1)`.
|
|
``torch.rand_like(input)`` is equivalent to
|
|
``torch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
|
|
|
|
Args:
|
|
{input}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
{memory_format}
|
|
|
|
""".format(**factory_like_common_args))
|
|
|
|
add_docstr(torch.randint,
|
|
"""
|
|
randint(low=0, high, size, \\*, generator=None, out=None, \
|
|
dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a tensor filled with random integers generated uniformly
|
|
between :attr:`low` (inclusive) and :attr:`high` (exclusive).
|
|
|
|
The shape of the tensor is defined by the variable argument :attr:`size`.
|
|
|
|
.. note:
|
|
With the global dtype default (``torch.float32``), this function returns
|
|
a tensor with dtype ``torch.int64``.
|
|
|
|
Args:
|
|
low (int, optional): Lowest integer to be drawn from the distribution. Default: 0.
|
|
high (int): One above the highest integer to be drawn from the distribution.
|
|
size (tuple): a tuple defining the shape of the output tensor.
|
|
{generator}
|
|
{out}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> torch.randint(3, 5, (3,))
|
|
tensor([4, 3, 4])
|
|
|
|
|
|
>>> torch.randint(10, (2, 2))
|
|
tensor([[0, 2],
|
|
[5, 5]])
|
|
|
|
|
|
>>> torch.randint(3, 10, (2, 2))
|
|
tensor([[4, 5],
|
|
[6, 7]])
|
|
|
|
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.randint_like,
|
|
"""
|
|
randint_like(input, low=0, high, dtype=None, layout=torch.strided, device=None, requires_grad=False, \
|
|
memory_format=torch.preserve_format) -> Tensor
|
|
|
|
Returns a tensor with the same shape as Tensor :attr:`input` filled with
|
|
random integers generated uniformly between :attr:`low` (inclusive) and
|
|
:attr:`high` (exclusive).
|
|
|
|
.. note:
|
|
With the global dtype default (``torch.float32``), this function returns
|
|
a tensor with dtype ``torch.int64``.
|
|
|
|
Args:
|
|
{input}
|
|
low (int, optional): Lowest integer to be drawn from the distribution. Default: 0.
|
|
high (int): One above the highest integer to be drawn from the distribution.
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
{memory_format}
|
|
|
|
""".format(**factory_like_common_args))
|
|
|
|
add_docstr(torch.randn,
|
|
r"""
|
|
randn(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a tensor filled with random numbers from a normal distribution
|
|
with mean `0` and variance `1` (also called the standard normal
|
|
distribution).
|
|
|
|
.. math::
|
|
\text{{out}}_{{i}} \sim \mathcal{{N}}(0, 1)
|
|
|
|
The shape of the tensor is defined by the variable argument :attr:`size`.
|
|
|
|
Args:
|
|
size (int...): a sequence of integers defining the shape of the output tensor.
|
|
Can be a variable number of arguments or a collection like a list or tuple.
|
|
{out}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> torch.randn(4)
|
|
tensor([-2.1436, 0.9966, 2.3426, -0.6366])
|
|
>>> torch.randn(2, 3)
|
|
tensor([[ 1.5954, 2.8929, -1.0923],
|
|
[ 1.1719, -0.4709, -0.1996]])
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.randn_like,
|
|
r"""
|
|
randn_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor
|
|
|
|
Returns a tensor with the same size as :attr:`input` that is filled with
|
|
random numbers from a normal distribution with mean 0 and variance 1.
|
|
``torch.randn_like(input)`` is equivalent to
|
|
``torch.randn(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
|
|
|
|
Args:
|
|
{input}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
{memory_format}
|
|
|
|
""".format(**factory_like_common_args))
|
|
|
|
add_docstr(torch.randperm,
|
|
r"""
|
|
randperm(n, out=None, dtype=torch.int64, layout=torch.strided, device=None, requires_grad=False) -> LongTensor
|
|
|
|
Returns a random permutation of integers from ``0`` to ``n - 1``.
|
|
|
|
Args:
|
|
n (int): the upper bound (exclusive)
|
|
{out}
|
|
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
|
|
Default: ``torch.int64``.
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> torch.randperm(4)
|
|
tensor([2, 1, 0, 3])
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.tensor,
|
|
r"""
|
|
tensor(data, dtype=None, device=None, requires_grad=False, pin_memory=False) -> Tensor
|
|
|
|
Constructs a tensor with :attr:`data`.
|
|
|
|
.. warning::
|
|
|
|
:func:`torch.tensor` always copies :attr:`data`. If you have a Tensor
|
|
``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_`
|
|
or :func:`torch.Tensor.detach`.
|
|
If you have a NumPy ``ndarray`` and want to avoid a copy, use
|
|
:func:`torch.as_tensor`.
|
|
|
|
.. warning::
|
|
|
|
When data is a tensor `x`, :func:`torch.tensor` reads out 'the data' from whatever it is passed,
|
|
and constructs a leaf variable. Therefore ``torch.tensor(x)`` is equivalent to ``x.clone().detach()``
|
|
and ``torch.tensor(x, requires_grad=True)`` is equivalent to ``x.clone().detach().requires_grad_(True)``.
|
|
The equivalents using ``clone()`` and ``detach()`` are recommended.
|
|
|
|
Args:
|
|
{data}
|
|
{dtype}
|
|
{device}
|
|
{requires_grad}
|
|
{pin_memory}
|
|
|
|
|
|
Example::
|
|
|
|
>>> torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
|
|
tensor([[ 0.1000, 1.2000],
|
|
[ 2.2000, 3.1000],
|
|
[ 4.9000, 5.2000]])
|
|
|
|
>>> torch.tensor([0, 1]) # Type inference on data
|
|
tensor([ 0, 1])
|
|
|
|
>>> torch.tensor([[0.11111, 0.222222, 0.3333333]],
|
|
dtype=torch.float64,
|
|
device=torch.device('cuda:0')) # creates a torch.cuda.DoubleTensor
|
|
tensor([[ 0.1111, 0.2222, 0.3333]], dtype=torch.float64, device='cuda:0')
|
|
|
|
>>> torch.tensor(3.14159) # Create a scalar (zero-dimensional tensor)
|
|
tensor(3.1416)
|
|
|
|
>>> torch.tensor([]) # Create an empty tensor (of size (0,))
|
|
tensor([])
|
|
""".format(**factory_data_common_args))
|
|
|
|
add_docstr(torch.range,
|
|
r"""
|
|
range(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a 1-D tensor of size :math:`\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1`
|
|
with values from :attr:`start` to :attr:`end` with step :attr:`step`. Step is
|
|
the gap between two values in the tensor.
|
|
|
|
.. math::
|
|
\text{out}_{i+1} = \text{out}_i + \text{step}.
|
|
""" + r"""
|
|
.. warning::
|
|
This function is deprecated in favor of :func:`torch.arange`.
|
|
|
|
Args:
|
|
start (float): the starting value for the set of points. Default: ``0``.
|
|
end (float): the ending value for the set of points
|
|
step (float): the gap between each pair of adjacent points. Default: ``1``.
|
|
{out}
|
|
{dtype} If `dtype` is not given, infer the data type from the other input
|
|
arguments. If any of `start`, `end`, or `stop` are floating-point, the
|
|
`dtype` is inferred to be the default dtype, see
|
|
:meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to
|
|
be `torch.int64`.
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> torch.range(1, 4)
|
|
tensor([ 1., 2., 3., 4.])
|
|
>>> torch.range(1, 4, 0.5)
|
|
tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000])
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.arange,
|
|
r"""
|
|
arange(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil`
|
|
with values from the interval ``[start, end)`` taken with common difference
|
|
:attr:`step` beginning from `start`.
|
|
|
|
Note that non-integer :attr:`step` is subject to floating point rounding errors when
|
|
comparing against :attr:`end`; to avoid inconsistency, we advise adding a small epsilon to :attr:`end`
|
|
in such cases.
|
|
|
|
.. math::
|
|
\text{out}_{{i+1}} = \text{out}_{i} + \text{step}
|
|
""" + r"""
|
|
Args:
|
|
start (Number): the starting value for the set of points. Default: ``0``.
|
|
end (Number): the ending value for the set of points
|
|
step (Number): the gap between each pair of adjacent points. Default: ``1``.
|
|
{out}
|
|
{dtype} If `dtype` is not given, infer the data type from the other input
|
|
arguments. If any of `start`, `end`, or `stop` are floating-point, the
|
|
`dtype` is inferred to be the default dtype, see
|
|
:meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to
|
|
be `torch.int64`.
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> torch.arange(5)
|
|
tensor([ 0, 1, 2, 3, 4])
|
|
>>> torch.arange(1, 4)
|
|
tensor([ 1, 2, 3])
|
|
>>> torch.arange(1, 2.5, 0.5)
|
|
tensor([ 1.0000, 1.5000, 2.0000])
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.remainder,
|
|
r"""
|
|
remainder(input, other, out=None) -> Tensor
|
|
|
|
Computes the element-wise remainder of division.
|
|
|
|
The dividend and divisor may contain both for integer and floating point
|
|
numbers. The remainder has the same sign as the divisor :attr:`other`.
|
|
|
|
When :attr:`other` is a tensor, the shapes of :attr:`input` and
|
|
:attr:`other` must be :ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
Args:
|
|
input (Tensor): the dividend
|
|
other (Tensor or float): the divisor that may be either a number or a
|
|
Tensor of the same shape as the dividend
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2)
|
|
tensor([ 1., 0., 1., 1., 0., 1.])
|
|
>>> torch.remainder(torch.tensor([1., 2, 3, 4, 5]), 1.5)
|
|
tensor([ 1.0000, 0.5000, 0.0000, 1.0000, 0.5000])
|
|
|
|
.. seealso::
|
|
|
|
:func:`torch.fmod`, which computes the element-wise remainder of
|
|
division equivalently to the C library function ``fmod()``.
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.renorm,
|
|
r"""
|
|
renorm(input, p, dim, maxnorm, out=None) -> Tensor
|
|
|
|
Returns a tensor where each sub-tensor of :attr:`input` along dimension
|
|
:attr:`dim` is normalized such that the `p`-norm of the sub-tensor is lower
|
|
than the value :attr:`maxnorm`
|
|
|
|
.. note:: If the norm of a row is lower than `maxnorm`, the row is unchanged
|
|
|
|
Args:
|
|
{input}
|
|
p (float): the power for the norm computation
|
|
dim (int): the dimension to slice over to get the sub-tensors
|
|
maxnorm (float): the maximum norm to keep each sub-tensor under
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> x = torch.ones(3, 3)
|
|
>>> x[1].fill_(2)
|
|
tensor([ 2., 2., 2.])
|
|
>>> x[2].fill_(3)
|
|
tensor([ 3., 3., 3.])
|
|
>>> x
|
|
tensor([[ 1., 1., 1.],
|
|
[ 2., 2., 2.],
|
|
[ 3., 3., 3.]])
|
|
>>> torch.renorm(x, 1, 0, 5)
|
|
tensor([[ 1.0000, 1.0000, 1.0000],
|
|
[ 1.6667, 1.6667, 1.6667],
|
|
[ 1.6667, 1.6667, 1.6667]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.reshape,
|
|
r"""
|
|
reshape(input, shape) -> Tensor
|
|
|
|
Returns a tensor with the same data and number of elements as :attr:`input`,
|
|
but with the specified shape. When possible, the returned tensor will be a view
|
|
of :attr:`input`. Otherwise, it will be a copy. Contiguous inputs and inputs
|
|
with compatible strides can be reshaped without copying, but you should not
|
|
depend on the copying vs. viewing behavior.
|
|
|
|
See :meth:`torch.Tensor.view` on when it is possible to return a view.
|
|
|
|
A single dimension may be -1, in which case it's inferred from the remaining
|
|
dimensions and the number of elements in :attr:`input`.
|
|
|
|
Args:
|
|
input (Tensor): the tensor to be reshaped
|
|
shape (tuple of ints): the new shape
|
|
|
|
Example::
|
|
|
|
>>> a = torch.arange(4.)
|
|
>>> torch.reshape(a, (2, 2))
|
|
tensor([[ 0., 1.],
|
|
[ 2., 3.]])
|
|
>>> b = torch.tensor([[0, 1], [2, 3]])
|
|
>>> torch.reshape(b, (-1,))
|
|
tensor([ 0, 1, 2, 3])
|
|
""")
|
|
|
|
|
|
add_docstr(torch.result_type,
|
|
r"""
|
|
result_type(tensor1, tensor2) -> dtype
|
|
|
|
Returns the :class:`torch.dtype` that would result from performing an arithmetic
|
|
operation on the provided input tensors. See type promotion :ref:`documentation <type-promotion-doc>`
|
|
for more information on the type promotion logic.
|
|
|
|
Args:
|
|
tensor1 (Tensor or Number): an input tensor or number
|
|
tensor2 (Tensor or Number): an input tensor or number
|
|
|
|
Example::
|
|
|
|
>>> torch.result_type(torch.tensor([1, 2], dtype=torch.int), 1.0)
|
|
torch.float32
|
|
>>> torch.result_type(torch.tensor([1, 2], dtype=torch.uint8), torch.tensor(1))
|
|
torch.uint8
|
|
""")
|
|
|
|
|
|
add_docstr(torch.round,
|
|
r"""
|
|
round(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with each of the elements of :attr:`input` rounded
|
|
to the closest integer.
|
|
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.9920, 0.6077, 0.9734, -1.0362])
|
|
>>> torch.round(a)
|
|
tensor([ 1., 1., 1., -1.])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.rsqrt,
|
|
r"""
|
|
rsqrt(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the reciprocal of the square-root of each of
|
|
the elements of :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \frac{1}{\sqrt{\text{input}_{i}}}
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([-0.0370, 0.2970, 1.5420, -0.9105])
|
|
>>> torch.rsqrt(a)
|
|
tensor([ nan, 1.8351, 0.8053, nan])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.set_flush_denormal,
|
|
r"""
|
|
set_flush_denormal(mode) -> bool
|
|
|
|
Disables denormal floating numbers on CPU.
|
|
|
|
Returns ``True`` if your system supports flushing denormal numbers and it
|
|
successfully configures flush denormal mode. :meth:`~torch.set_flush_denormal`
|
|
is only supported on x86 architectures supporting SSE3.
|
|
|
|
Args:
|
|
mode (bool): Controls whether to enable flush denormal mode or not
|
|
|
|
Example::
|
|
|
|
>>> torch.set_flush_denormal(True)
|
|
True
|
|
>>> torch.tensor([1e-323], dtype=torch.float64)
|
|
tensor([ 0.], dtype=torch.float64)
|
|
>>> torch.set_flush_denormal(False)
|
|
True
|
|
>>> torch.tensor([1e-323], dtype=torch.float64)
|
|
tensor(9.88131e-324 *
|
|
[ 1.0000], dtype=torch.float64)
|
|
""")
|
|
|
|
add_docstr(torch.set_num_threads, r"""
|
|
set_num_threads(int)
|
|
|
|
Sets the number of threads used for intraop parallelism on CPU.
|
|
|
|
.. warning::
|
|
To ensure that the correct number of threads is used, set_num_threads
|
|
must be called before running eager, JIT or autograd code.
|
|
""")
|
|
|
|
add_docstr(torch.set_num_interop_threads, r"""
|
|
set_num_interop_threads(int)
|
|
|
|
Sets the number of threads used for interop parallelism
|
|
(e.g. in JIT interpreter) on CPU.
|
|
|
|
.. warning::
|
|
Can only be called once and before any inter-op parallel work
|
|
is started (e.g. JIT execution).
|
|
""")
|
|
|
|
add_docstr(torch.sigmoid, r"""
|
|
sigmoid(input, *, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the sigmoid of the elements of :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \frac{1}{1 + e^{-\text{input}_{i}}}
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.9213, 1.0887, -0.8858, -1.7683])
|
|
>>> torch.sigmoid(a)
|
|
tensor([ 0.7153, 0.7481, 0.2920, 0.1458])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.logit,
|
|
r"""
|
|
logit(input, eps=None, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the logit of the elements of :attr:`input`.
|
|
:attr:`input` is clamped to [eps, 1 - eps] when eps is not None.
|
|
When eps is None and :attr:`input` < 0 or :attr:`input` > 1, the function will yields NaN.
|
|
|
|
.. math::
|
|
y_{i} = \ln(\frac{z_{i}}{1 - z_{i}}) \\
|
|
z_{i} = \begin{cases}
|
|
x_{i} & \text{if eps is None} \\
|
|
\text{eps} & \text{if } x_{i} < \text{eps} \\
|
|
x_{i} & \text{if } \text{eps} \leq x_{i} \leq 1 - \text{eps} \\
|
|
1 - \text{eps} & \text{if } x_{i} > 1 - \text{eps}
|
|
\end{cases}
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
eps (float, optional): the epsilon for input clamp bound. Default: ``None``
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.rand(5)
|
|
>>> a
|
|
tensor([0.2796, 0.9331, 0.6486, 0.1523, 0.6516])
|
|
>>> torch.logit(a, eps=1e-6)
|
|
tensor([-0.9466, 2.6352, 0.6131, -1.7169, 0.6261])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.sign,
|
|
r"""
|
|
sign(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the signs of the elements of :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \operatorname{sgn}(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.tensor([0.7, -1.2, 0., 2.3])
|
|
>>> a
|
|
tensor([ 0.7000, -1.2000, 0.0000, 2.3000])
|
|
>>> torch.sign(a)
|
|
tensor([ 1., -1., 0., 1.])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.signbit,
|
|
r"""
|
|
signbit(input, *, out=None) -> Tensor
|
|
|
|
Tests if each element of :attr:`input` has its sign bit set (is less than zero) or not.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.tensor([0.7, -1.2, 0., 2.3])
|
|
>>> torch.signbit(a)
|
|
tensor([ False, True, False, False])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.sin,
|
|
r"""
|
|
sin(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the sine of the elements of :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \sin(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([-0.5461, 0.1347, -2.7266, -0.2746])
|
|
>>> torch.sin(a)
|
|
tensor([-0.5194, 0.1343, -0.4032, -0.2711])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.sinh,
|
|
r"""
|
|
sinh(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the hyperbolic sine of the elements of
|
|
:attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \sinh(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.5380, -0.8632, -0.1265, 0.9399])
|
|
>>> torch.sinh(a)
|
|
tensor([ 0.5644, -0.9744, -0.1268, 1.0845])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.sort,
|
|
r"""
|
|
sort(input, dim=-1, descending=False, out=None) -> (Tensor, LongTensor)
|
|
|
|
Sorts the elements of the :attr:`input` tensor along a given dimension
|
|
in ascending order by value.
|
|
|
|
If :attr:`dim` is not given, the last dimension of the `input` is chosen.
|
|
|
|
If :attr:`descending` is ``True`` then the elements are sorted in descending
|
|
order by value.
|
|
|
|
A namedtuple of (values, indices) is returned, where the `values` are the
|
|
sorted values and `indices` are the indices of the elements in the original
|
|
`input` tensor.
|
|
|
|
Args:
|
|
{input}
|
|
dim (int, optional): the dimension to sort along
|
|
descending (bool, optional): controls the sorting order (ascending or descending)
|
|
out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can
|
|
be optionally given to be used as output buffers
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(3, 4)
|
|
>>> sorted, indices = torch.sort(x)
|
|
>>> sorted
|
|
tensor([[-0.2162, 0.0608, 0.6719, 2.3332],
|
|
[-0.5793, 0.0061, 0.6058, 0.9497],
|
|
[-0.5071, 0.3343, 0.9553, 1.0960]])
|
|
>>> indices
|
|
tensor([[ 1, 0, 2, 3],
|
|
[ 3, 1, 0, 2],
|
|
[ 0, 3, 1, 2]])
|
|
|
|
>>> sorted, indices = torch.sort(x, 0)
|
|
>>> sorted
|
|
tensor([[-0.5071, -0.2162, 0.6719, -0.5793],
|
|
[ 0.0608, 0.0061, 0.9497, 0.3343],
|
|
[ 0.6058, 0.9553, 1.0960, 2.3332]])
|
|
>>> indices
|
|
tensor([[ 2, 0, 0, 1],
|
|
[ 0, 1, 1, 2],
|
|
[ 1, 2, 2, 0]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.argsort,
|
|
r"""
|
|
argsort(input, dim=-1, descending=False) -> LongTensor
|
|
|
|
Returns the indices that sort a tensor along a given dimension in ascending
|
|
order by value.
|
|
|
|
This is the second value returned by :meth:`torch.sort`. See its documentation
|
|
for the exact semantics of this method.
|
|
|
|
Args:
|
|
{input}
|
|
dim (int, optional): the dimension to sort along
|
|
descending (bool, optional): controls the sorting order (ascending or descending)
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[ 0.0785, 1.5267, -0.8521, 0.4065],
|
|
[ 0.1598, 0.0788, -0.0745, -1.2700],
|
|
[ 1.2208, 1.0722, -0.7064, 1.2564],
|
|
[ 0.0669, -0.2318, -0.8229, -0.9280]])
|
|
|
|
|
|
>>> torch.argsort(a, dim=1)
|
|
tensor([[2, 0, 3, 1],
|
|
[3, 2, 1, 0],
|
|
[2, 1, 0, 3],
|
|
[3, 2, 1, 0]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.sparse_coo_tensor,
|
|
r"""
|
|
sparse_coo_tensor(indices, values, size=None, dtype=None, device=None, requires_grad=False) -> Tensor
|
|
|
|
Constructs a sparse tensors in COO(rdinate) format with non-zero elements at the given :attr:`indices`
|
|
with the given :attr:`values`. A sparse tensor can be `uncoalesced`, in that case, there are duplicate
|
|
coordinates in the indices, and the value at that index is the sum of all duplicate value entries:
|
|
`torch.sparse`_.
|
|
|
|
Args:
|
|
indices (array_like): Initial data for the tensor. Can be a list, tuple,
|
|
NumPy ``ndarray``, scalar, and other types. Will be cast to a :class:`torch.LongTensor`
|
|
internally. The indices are the coordinates of the non-zero values in the matrix, and thus
|
|
should be two-dimensional where the first dimension is the number of tensor dimensions and
|
|
the second dimension is the number of non-zero values.
|
|
values (array_like): Initial values for the tensor. Can be a list, tuple,
|
|
NumPy ``ndarray``, scalar, and other types.
|
|
size (list, tuple, or :class:`torch.Size`, optional): Size of the sparse tensor. If not
|
|
provided the size will be inferred as the minimum size big enough to hold all non-zero
|
|
elements.
|
|
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
|
|
Default: if None, infers data type from :attr:`values`.
|
|
device (:class:`torch.device`, optional): the desired device of returned tensor.
|
|
Default: if None, uses the current device for the default tensor type
|
|
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
|
|
for CPU tensor types and the current CUDA device for CUDA tensor types.
|
|
{requires_grad}
|
|
|
|
|
|
Example::
|
|
|
|
>>> i = torch.tensor([[0, 1, 1],
|
|
[2, 0, 2]])
|
|
>>> v = torch.tensor([3, 4, 5], dtype=torch.float32)
|
|
>>> torch.sparse_coo_tensor(i, v, [2, 4])
|
|
tensor(indices=tensor([[0, 1, 1],
|
|
[2, 0, 2]]),
|
|
values=tensor([3., 4., 5.]),
|
|
size=(2, 4), nnz=3, layout=torch.sparse_coo)
|
|
|
|
>>> torch.sparse_coo_tensor(i, v) # Shape inference
|
|
tensor(indices=tensor([[0, 1, 1],
|
|
[2, 0, 2]]),
|
|
values=tensor([3., 4., 5.]),
|
|
size=(2, 3), nnz=3, layout=torch.sparse_coo)
|
|
|
|
>>> torch.sparse_coo_tensor(i, v, [2, 4],
|
|
dtype=torch.float64,
|
|
device=torch.device('cuda:0'))
|
|
tensor(indices=tensor([[0, 1, 1],
|
|
[2, 0, 2]]),
|
|
values=tensor([3., 4., 5.]),
|
|
device='cuda:0', size=(2, 4), nnz=3, dtype=torch.float64,
|
|
layout=torch.sparse_coo)
|
|
|
|
# Create an empty sparse tensor with the following invariants:
|
|
# 1. sparse_dim + dense_dim = len(SparseTensor.shape)
|
|
# 2. SparseTensor._indices().shape = (sparse_dim, nnz)
|
|
# 3. SparseTensor._values().shape = (nnz, SparseTensor.shape[sparse_dim:])
|
|
#
|
|
# For instance, to create an empty sparse tensor with nnz = 0, dense_dim = 0 and
|
|
# sparse_dim = 1 (hence indices is a 2D tensor of shape = (1, 0))
|
|
>>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), [], [1])
|
|
tensor(indices=tensor([], size=(1, 0)),
|
|
values=tensor([], size=(0,)),
|
|
size=(1,), nnz=0, layout=torch.sparse_coo)
|
|
|
|
# and to create an empty sparse tensor with nnz = 0, dense_dim = 1 and
|
|
# sparse_dim = 1
|
|
>>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), torch.empty([0, 2]), [1, 2])
|
|
tensor(indices=tensor([], size=(1, 0)),
|
|
values=tensor([], size=(0, 2)),
|
|
size=(1, 2), nnz=0, layout=torch.sparse_coo)
|
|
|
|
.. _torch.sparse: https://pytorch.org/docs/stable/sparse.html
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.sqrt,
|
|
r"""
|
|
sqrt(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the square-root of the elements of :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \sqrt{\text{input}_{i}}
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([-2.0755, 1.0226, 0.0831, 0.4806])
|
|
>>> torch.sqrt(a)
|
|
tensor([ nan, 1.0112, 0.2883, 0.6933])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.square,
|
|
r"""
|
|
square(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the square of the elements of :attr:`input`.
|
|
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([-2.0755, 1.0226, 0.0831, 0.4806])
|
|
>>> torch.square(a)
|
|
tensor([ 4.3077, 1.0457, 0.0069, 0.2310])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.squeeze,
|
|
r"""
|
|
squeeze(input, dim=None, out=None) -> Tensor
|
|
|
|
Returns a tensor with all the dimensions of :attr:`input` of size `1` removed.
|
|
|
|
For example, if `input` is of shape:
|
|
:math:`(A \times 1 \times B \times C \times 1 \times D)` then the `out` tensor
|
|
will be of shape: :math:`(A \times B \times C \times D)`.
|
|
|
|
When :attr:`dim` is given, a squeeze operation is done only in the given
|
|
dimension. If `input` is of shape: :math:`(A \times 1 \times B)`,
|
|
``squeeze(input, 0)`` leaves the tensor unchanged, but ``squeeze(input, 1)``
|
|
will squeeze the tensor to the shape :math:`(A \times B)`.
|
|
|
|
.. note:: The returned tensor shares the storage with the input tensor,
|
|
so changing the contents of one will change the contents of the other.
|
|
|
|
.. warning:: If the tensor has a batch dimension of size 1, then `squeeze(input)`
|
|
will also remove the batch dimension, which can lead to unexpected
|
|
errors.
|
|
|
|
Args:
|
|
{input}
|
|
dim (int, optional): if given, the input will be squeezed only in
|
|
this dimension
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> x = torch.zeros(2, 1, 2, 1, 2)
|
|
>>> x.size()
|
|
torch.Size([2, 1, 2, 1, 2])
|
|
>>> y = torch.squeeze(x)
|
|
>>> y.size()
|
|
torch.Size([2, 2, 2])
|
|
>>> y = torch.squeeze(x, 0)
|
|
>>> y.size()
|
|
torch.Size([2, 1, 2, 1, 2])
|
|
>>> y = torch.squeeze(x, 1)
|
|
>>> y.size()
|
|
torch.Size([2, 2, 1, 2])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.std,
|
|
r"""
|
|
std(input, unbiased=True) -> Tensor
|
|
|
|
Returns the standard-deviation of all elements in the :attr:`input` tensor.
|
|
|
|
If :attr:`unbiased` is ``False``, then the standard-deviation will be calculated
|
|
via the biased estimator. Otherwise, Bessel's correction will be used.
|
|
|
|
Args:
|
|
{input}
|
|
unbiased (bool): whether to use the unbiased estimation or not
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 3)
|
|
>>> a
|
|
tensor([[-0.8166, -1.3802, -0.3560]])
|
|
>>> torch.std(a)
|
|
tensor(0.5130)
|
|
|
|
.. function:: std(input, dim, unbiased=True, keepdim=False, out=None) -> Tensor
|
|
|
|
Returns the standard-deviation of each row of the :attr:`input` tensor in the
|
|
dimension :attr:`dim`. If :attr:`dim` is a list of dimensions,
|
|
reduce over all of them.
|
|
|
|
{keepdim_details}
|
|
|
|
If :attr:`unbiased` is ``False``, then the standard-deviation will be calculated
|
|
via the biased estimator. Otherwise, Bessel's correction will be used.
|
|
|
|
Args:
|
|
{input}
|
|
{dim}
|
|
unbiased (bool): whether to use the unbiased estimation or not
|
|
{keepdim}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[ 0.2035, 1.2959, 1.8101, -0.4644],
|
|
[ 1.5027, -0.3270, 0.5905, 0.6538],
|
|
[-1.5745, 1.3330, -0.5596, -0.6548],
|
|
[ 0.1264, -0.5080, 1.6420, 0.1992]])
|
|
>>> torch.std(a, dim=1)
|
|
tensor([ 1.0311, 0.7477, 1.2204, 0.9087])
|
|
""".format(**multi_dim_common))
|
|
|
|
add_docstr(torch.std_mean,
|
|
r"""
|
|
std_mean(input, unbiased=True) -> (Tensor, Tensor)
|
|
|
|
Returns the standard-deviation and mean of all elements in the :attr:`input` tensor.
|
|
|
|
If :attr:`unbiased` is ``False``, then the standard-deviation will be calculated
|
|
via the biased estimator. Otherwise, Bessel's correction will be used.
|
|
|
|
Args:
|
|
{input}
|
|
unbiased (bool): whether to use the unbiased estimation or not
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 3)
|
|
>>> a
|
|
tensor([[0.3364, 0.3591, 0.9462]])
|
|
>>> torch.std_mean(a)
|
|
(tensor(0.3457), tensor(0.5472))
|
|
|
|
.. function:: std_mean(input, dim, unbiased=True, keepdim=False) -> (Tensor, Tensor)
|
|
|
|
Returns the standard-deviation and mean of each row of the :attr:`input` tensor in the
|
|
dimension :attr:`dim`. If :attr:`dim` is a list of dimensions,
|
|
reduce over all of them.
|
|
|
|
{keepdim_details}
|
|
|
|
If :attr:`unbiased` is ``False``, then the standard-deviation will be calculated
|
|
via the biased estimator. Otherwise, Bessel's correction will be used.
|
|
|
|
Args:
|
|
{input}
|
|
{dim}
|
|
unbiased (bool): whether to use the unbiased estimation or not
|
|
{keepdim}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[ 0.5648, -0.5984, -1.2676, -1.4471],
|
|
[ 0.9267, 1.0612, 1.1050, -0.6014],
|
|
[ 0.0154, 1.9301, 0.0125, -1.0904],
|
|
[-1.9711, -0.7748, -1.3840, 0.5067]])
|
|
>>> torch.std_mean(a, 1)
|
|
(tensor([0.9110, 0.8197, 1.2552, 1.0608]), tensor([-0.6871, 0.6229, 0.2169, -0.9058]))
|
|
""".format(**multi_dim_common))
|
|
|
|
add_docstr(torch.sum,
|
|
r"""
|
|
sum(input, dtype=None) -> Tensor
|
|
|
|
Returns the sum of all elements in the :attr:`input` tensor.
|
|
|
|
Args:
|
|
{input}
|
|
{dtype}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 3)
|
|
>>> a
|
|
tensor([[ 0.1133, -0.9567, 0.2958]])
|
|
>>> torch.sum(a)
|
|
tensor(-0.5475)
|
|
|
|
.. function:: sum(input, dim, keepdim=False, dtype=None) -> Tensor
|
|
|
|
Returns the sum of each row of the :attr:`input` tensor in the given
|
|
dimension :attr:`dim`. If :attr:`dim` is a list of dimensions,
|
|
reduce over all of them.
|
|
|
|
{keepdim_details}
|
|
|
|
Args:
|
|
{input}
|
|
{dim}
|
|
{keepdim}
|
|
{dtype}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[ 0.0569, -0.2475, 0.0737, -0.3429],
|
|
[-0.2993, 0.9138, 0.9337, -1.6864],
|
|
[ 0.1132, 0.7892, -0.1003, 0.5688],
|
|
[ 0.3637, -0.9906, -0.4752, -1.5197]])
|
|
>>> torch.sum(a, 1)
|
|
tensor([-0.4598, -0.1381, 1.3708, -2.6217])
|
|
>>> b = torch.arange(4 * 5 * 6).view(4, 5, 6)
|
|
>>> torch.sum(b, (2, 1))
|
|
tensor([ 435., 1335., 2235., 3135.])
|
|
""".format(**multi_dim_common))
|
|
|
|
add_docstr(torch.nansum,
|
|
r"""
|
|
nansum(input, dtype=None) -> Tensor
|
|
|
|
Returns the sum of all elements, treating Not a Numbers (NaNs) as zero.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Keyword args:
|
|
{dtype}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.tensor([1., 2., float('nan'), 4.])
|
|
>>> torch.nansum(a)
|
|
tensor(7.)
|
|
|
|
.. function:: nansum(input, dim, keepdim=False, dtype=None) -> Tensor
|
|
|
|
Returns the sum of each row of the :attr:`input` tensor in the given
|
|
dimension :attr:`dim`, treating Not a Numbers (NaNs) as zero.
|
|
If :attr:`dim` is a list of dimensions, reduce over all of them.
|
|
|
|
{keepdim_details}
|
|
|
|
Args:
|
|
{input}
|
|
{dim}
|
|
{keepdim}
|
|
|
|
Keyword args:
|
|
{dtype}
|
|
|
|
Example::
|
|
|
|
>>> torch.nansum(torch.tensor([1., float("nan")]))
|
|
1.0
|
|
>>> a = torch.tensor([[1, 2], [3., float("nan")]])
|
|
>>> torch.nansum(a)
|
|
tensor(6.)
|
|
>>> torch.nansum(a, dim=0)
|
|
tensor([4., 2.])
|
|
>>> torch.nansum(a, dim=1)
|
|
tensor([3., 3.])
|
|
""".format(**multi_dim_common))
|
|
|
|
add_docstr(torch.svd,
|
|
r"""
|
|
svd(input, some=True, compute_uv=True, out=None) -> (Tensor, Tensor, Tensor)
|
|
|
|
This function returns a namedtuple ``(U, S, V)`` which is the singular value
|
|
decomposition of a input real matrix or batches of real matrices :attr:`input` such that
|
|
:math:`input = U \times diag(S) \times V^T`.
|
|
|
|
If :attr:`some` is ``True`` (default), the method returns the reduced singular value decomposition
|
|
i.e., if the last two dimensions of :attr:`input` are ``m`` and ``n``, then the returned
|
|
`U` and `V` matrices will contain only :math:`min(n, m)` orthonormal columns.
|
|
|
|
If :attr:`compute_uv` is ``False``, the returned `U` and `V` matrices will be zero matrices
|
|
of shape :math:`(m \times m)` and :math:`(n \times n)` respectively. :attr:`some` will be ignored here.
|
|
|
|
.. note:: The singular values are returned in descending order. If :attr:`input` is a batch of matrices,
|
|
then the singular values of each matrix in the batch is returned in descending order.
|
|
|
|
.. note:: The implementation of SVD on CPU uses the LAPACK routine `?gesdd` (a divide-and-conquer
|
|
algorithm) instead of `?gesvd` for speed. Analogously, the SVD on GPU uses the MAGMA routine
|
|
`gesdd` as well.
|
|
|
|
.. note:: Irrespective of the original strides, the returned matrix `U`
|
|
will be transposed, i.e. with strides :code:`U.contiguous().transpose(-2, -1).stride()`
|
|
|
|
.. note:: Extra care needs to be taken when backward through `U` and `V`
|
|
outputs. Such operation is really only stable when :attr:`input` is
|
|
full rank with all distinct singular values. Otherwise, ``NaN`` can
|
|
appear as the gradients are not properly defined. Also, notice that
|
|
double backward will usually do an additional backward through `U` and
|
|
`V` even if the original backward is only on `S`.
|
|
|
|
.. note:: When :attr:`some` = ``False``, the gradients on :code:`U[..., :, min(m, n):]`
|
|
and :code:`V[..., :, min(m, n):]` will be ignored in backward as those vectors
|
|
can be arbitrary bases of the subspaces.
|
|
|
|
.. note:: When :attr:`compute_uv` = ``False``, backward cannot be performed since `U` and `V`
|
|
from the forward pass is required for the backward operation.
|
|
|
|
Args:
|
|
input (Tensor): the input tensor of size :math:`(*, m, n)` where `*` is zero or more
|
|
batch dimensions consisting of :math:`m \times n` matrices.
|
|
some (bool, optional): controls the shape of returned `U` and `V`
|
|
compute_uv (bool, optional): option whether to compute `U` and `V` or not
|
|
out (tuple, optional): the output tuple of tensors
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(5, 3)
|
|
>>> a
|
|
tensor([[ 0.2364, -0.7752, 0.6372],
|
|
[ 1.7201, 0.7394, -0.0504],
|
|
[-0.3371, -1.0584, 0.5296],
|
|
[ 0.3550, -0.4022, 1.5569],
|
|
[ 0.2445, -0.0158, 1.1414]])
|
|
>>> u, s, v = torch.svd(a)
|
|
>>> u
|
|
tensor([[ 0.4027, 0.0287, 0.5434],
|
|
[-0.1946, 0.8833, 0.3679],
|
|
[ 0.4296, -0.2890, 0.5261],
|
|
[ 0.6604, 0.2717, -0.2618],
|
|
[ 0.4234, 0.2481, -0.4733]])
|
|
>>> s
|
|
tensor([2.3289, 2.0315, 0.7806])
|
|
>>> v
|
|
tensor([[-0.0199, 0.8766, 0.4809],
|
|
[-0.5080, 0.4054, -0.7600],
|
|
[ 0.8611, 0.2594, -0.4373]])
|
|
>>> torch.dist(a, torch.mm(torch.mm(u, torch.diag(s)), v.t()))
|
|
tensor(8.6531e-07)
|
|
>>> a_big = torch.randn(7, 5, 3)
|
|
>>> u, s, v = torch.svd(a_big)
|
|
>>> torch.dist(a_big, torch.matmul(torch.matmul(u, torch.diag_embed(s)), v.transpose(-2, -1)))
|
|
tensor(2.6503e-06)
|
|
""")
|
|
|
|
add_docstr(torch.symeig,
|
|
r"""
|
|
symeig(input, eigenvectors=False, upper=True, out=None) -> (Tensor, Tensor)
|
|
|
|
This function returns eigenvalues and eigenvectors
|
|
of a real symmetric matrix :attr:`input` or a batch of real symmetric matrices,
|
|
represented by a namedtuple (eigenvalues, eigenvectors).
|
|
|
|
This function calculates all eigenvalues (and vectors) of :attr:`input`
|
|
such that :math:`\text{input} = V \text{diag}(e) V^T`.
|
|
|
|
The boolean argument :attr:`eigenvectors` defines computation of
|
|
both eigenvectors and eigenvalues or eigenvalues only.
|
|
|
|
If it is ``False``, only eigenvalues are computed. If it is ``True``,
|
|
both eigenvalues and eigenvectors are computed.
|
|
|
|
Since the input matrix :attr:`input` is supposed to be symmetric,
|
|
only the upper triangular portion is used by default.
|
|
|
|
If :attr:`upper` is ``False``, then lower triangular portion is used.
|
|
|
|
.. note:: The eigenvalues are returned in ascending order. If :attr:`input` is a batch of matrices,
|
|
then the eigenvalues of each matrix in the batch is returned in ascending order.
|
|
|
|
.. note:: Irrespective of the original strides, the returned matrix `V` will
|
|
be transposed, i.e. with strides `V.contiguous().transpose(-1, -2).stride()`.
|
|
|
|
.. note:: Extra care needs to be taken when backward through outputs. Such
|
|
operation is really only stable when all eigenvalues are distinct.
|
|
Otherwise, ``NaN`` can appear as the gradients are not properly defined.
|
|
|
|
Args:
|
|
input (Tensor): the input tensor of size :math:`(*, n, n)` where `*` is zero or more
|
|
batch dimensions consisting of symmetric matrices.
|
|
eigenvectors(boolean, optional): controls whether eigenvectors have to be computed
|
|
upper(boolean, optional): controls whether to consider upper-triangular or lower-triangular region
|
|
out (tuple, optional): the output tuple of (Tensor, Tensor)
|
|
|
|
Returns:
|
|
(Tensor, Tensor): A namedtuple (eigenvalues, eigenvectors) containing
|
|
|
|
- **eigenvalues** (*Tensor*): Shape :math:`(*, m)`. The eigenvalues in ascending order.
|
|
- **eigenvectors** (*Tensor*): Shape :math:`(*, m, m)`.
|
|
If ``eigenvectors=False``, it's an empty tensor.
|
|
Otherwise, this tensor contains the orthonormal eigenvectors of the ``input``.
|
|
|
|
Examples::
|
|
|
|
|
|
>>> a = torch.randn(5, 5)
|
|
>>> a = a + a.t() # To make a symmetric
|
|
>>> a
|
|
tensor([[-5.7827, 4.4559, -0.2344, -1.7123, -1.8330],
|
|
[ 4.4559, 1.4250, -2.8636, -3.2100, -0.1798],
|
|
[-0.2344, -2.8636, 1.7112, -5.5785, 7.1988],
|
|
[-1.7123, -3.2100, -5.5785, -2.6227, 3.1036],
|
|
[-1.8330, -0.1798, 7.1988, 3.1036, -5.1453]])
|
|
>>> e, v = torch.symeig(a, eigenvectors=True)
|
|
>>> e
|
|
tensor([-13.7012, -7.7497, -2.3163, 5.2477, 8.1050])
|
|
>>> v
|
|
tensor([[ 0.1643, 0.9034, -0.0291, 0.3508, 0.1817],
|
|
[-0.2417, -0.3071, -0.5081, 0.6534, 0.4026],
|
|
[-0.5176, 0.1223, -0.0220, 0.3295, -0.7798],
|
|
[-0.4850, 0.2695, -0.5773, -0.5840, 0.1337],
|
|
[ 0.6415, -0.0447, -0.6381, -0.0193, -0.4230]])
|
|
>>> a_big = torch.randn(5, 2, 2)
|
|
>>> a_big = a_big + a_big.transpose(-2, -1) # To make a_big symmetric
|
|
>>> e, v = a_big.symeig(eigenvectors=True)
|
|
>>> torch.allclose(torch.matmul(v, torch.matmul(e.diag_embed(), v.transpose(-2, -1))), a_big)
|
|
True
|
|
""")
|
|
|
|
add_docstr(torch.t,
|
|
r"""
|
|
t(input) -> Tensor
|
|
|
|
Expects :attr:`input` to be <= 2-D tensor and transposes dimensions 0
|
|
and 1.
|
|
|
|
0-D and 1-D tensors are returned as is. When input is a 2-D tensor this
|
|
is equivalent to ``transpose(input, 0, 1)``.
|
|
|
|
Args:
|
|
{input}
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(())
|
|
>>> x
|
|
tensor(0.1995)
|
|
>>> torch.t(x)
|
|
tensor(0.1995)
|
|
>>> x = torch.randn(3)
|
|
>>> x
|
|
tensor([ 2.4320, -0.4608, 0.7702])
|
|
>>> torch.t(x)
|
|
tensor([ 2.4320, -0.4608, 0.7702])
|
|
>>> x = torch.randn(2, 3)
|
|
>>> x
|
|
tensor([[ 0.4875, 0.9158, -0.5872],
|
|
[ 0.3938, -0.6929, 0.6932]])
|
|
>>> torch.t(x)
|
|
tensor([[ 0.4875, 0.3938],
|
|
[ 0.9158, -0.6929],
|
|
[-0.5872, 0.6932]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.flip,
|
|
r"""
|
|
flip(input, dims) -> Tensor
|
|
|
|
Reverse the order of a n-D tensor along given axis in dims.
|
|
|
|
Args:
|
|
{input}
|
|
dims (a list or tuple): axis to flip on
|
|
|
|
Example::
|
|
|
|
>>> x = torch.arange(8).view(2, 2, 2)
|
|
>>> x
|
|
tensor([[[ 0, 1],
|
|
[ 2, 3]],
|
|
|
|
[[ 4, 5],
|
|
[ 6, 7]]])
|
|
>>> torch.flip(x, [0, 1])
|
|
tensor([[[ 6, 7],
|
|
[ 4, 5]],
|
|
|
|
[[ 2, 3],
|
|
[ 0, 1]]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.fliplr,
|
|
r"""
|
|
fliplr(input) -> Tensor
|
|
|
|
Flip array in the left/right direction, returning a new tensor.
|
|
|
|
Flip the entries in each row in the left/right direction.
|
|
Columns are preserved, but appear in a different order than before.
|
|
|
|
Note:
|
|
Equivalent to input[:,::-1]. Requires the array to be at least 2-D.
|
|
|
|
Args:
|
|
input (Tensor): Must be at least 2-dimensional.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.arange(4).view(2, 2)
|
|
>>> x
|
|
tensor([[0, 1],
|
|
[2, 3]])
|
|
>>> torch.fliplr(x)
|
|
tensor([[1, 0],
|
|
[3, 2]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.flipud,
|
|
r"""
|
|
flipud(input) -> Tensor
|
|
|
|
Flip array in the up/down direction, returning a new tensor.
|
|
|
|
Flip the entries in each column in the up/down direction.
|
|
Rows are preserved, but appear in a different order than before.
|
|
|
|
Note:
|
|
Equivalent to input[::-1,...]. Requires the array to be at least 1-D.
|
|
|
|
Args:
|
|
input (Tensor): Must be at least 1-dimensional.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.arange(4).view(2, 2)
|
|
>>> x
|
|
tensor([[0, 1],
|
|
[2, 3]])
|
|
>>> torch.flipud(x)
|
|
tensor([[2, 3],
|
|
[0, 1]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.roll,
|
|
r"""
|
|
roll(input, shifts, dims=None) -> Tensor
|
|
|
|
Roll the tensor along the given dimension(s). Elements that are shifted beyond the
|
|
last position are re-introduced at the first position. If a dimension is not
|
|
specified, the tensor will be flattened before rolling and then restored
|
|
to the original shape.
|
|
|
|
Args:
|
|
{input}
|
|
shifts (int or tuple of ints): The number of places by which the elements
|
|
of the tensor are shifted. If shifts is a tuple, dims must be a tuple of
|
|
the same size, and each dimension will be rolled by the corresponding
|
|
value
|
|
dims (int or tuple of ints): Axis along which to roll
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]).view(4, 2)
|
|
>>> x
|
|
tensor([[1, 2],
|
|
[3, 4],
|
|
[5, 6],
|
|
[7, 8]])
|
|
>>> torch.roll(x, 1, 0)
|
|
tensor([[7, 8],
|
|
[1, 2],
|
|
[3, 4],
|
|
[5, 6]])
|
|
>>> torch.roll(x, -1, 0)
|
|
tensor([[3, 4],
|
|
[5, 6],
|
|
[7, 8],
|
|
[1, 2]])
|
|
>>> torch.roll(x, shifts=(2, 1), dims=(0, 1))
|
|
tensor([[6, 5],
|
|
[8, 7],
|
|
[2, 1],
|
|
[4, 3]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.rot90,
|
|
r"""
|
|
rot90(input, k, dims) -> Tensor
|
|
|
|
Rotate a n-D tensor by 90 degrees in the plane specified by dims axis.
|
|
Rotation direction is from the first towards the second axis if k > 0, and from the second towards the first for k < 0.
|
|
|
|
Args:
|
|
{input}
|
|
k (int): number of times to rotate
|
|
dims (a list or tuple): axis to rotate
|
|
|
|
Example::
|
|
|
|
>>> x = torch.arange(4).view(2, 2)
|
|
>>> x
|
|
tensor([[0, 1],
|
|
[2, 3]])
|
|
>>> torch.rot90(x, 1, [0, 1])
|
|
tensor([[1, 3],
|
|
[0, 2]])
|
|
|
|
>>> x = torch.arange(8).view(2, 2, 2)
|
|
>>> x
|
|
tensor([[[0, 1],
|
|
[2, 3]],
|
|
|
|
[[4, 5],
|
|
[6, 7]]])
|
|
>>> torch.rot90(x, 1, [1, 2])
|
|
tensor([[[1, 3],
|
|
[0, 2]],
|
|
|
|
[[5, 7],
|
|
[4, 6]]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.take,
|
|
r"""
|
|
take(input, index) -> Tensor
|
|
|
|
Returns a new tensor with the elements of :attr:`input` at the given indices.
|
|
The input tensor is treated as if it were viewed as a 1-D tensor. The result
|
|
takes the same shape as the indices.
|
|
|
|
Args:
|
|
{input}
|
|
indices (LongTensor): the indices into tensor
|
|
|
|
Example::
|
|
|
|
>>> src = torch.tensor([[4, 3, 5],
|
|
[6, 7, 8]])
|
|
>>> torch.take(src, torch.tensor([0, 2, 5]))
|
|
tensor([ 4, 5, 8])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.tan,
|
|
r"""
|
|
tan(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the tangent of the elements of :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \tan(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([-1.2027, -1.7687, 0.4412, -1.3856])
|
|
>>> torch.tan(a)
|
|
tensor([-2.5930, 4.9859, 0.4722, -5.3366])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.tanh,
|
|
r"""
|
|
tanh(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the hyperbolic tangent of the elements
|
|
of :attr:`input`.
|
|
|
|
.. math::
|
|
\text{out}_{i} = \tanh(\text{input}_{i})
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 0.8986, -0.7279, 1.1745, 0.2611])
|
|
>>> torch.tanh(a)
|
|
tensor([ 0.7156, -0.6218, 0.8257, 0.2553])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.topk,
|
|
r"""
|
|
topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)
|
|
|
|
Returns the :attr:`k` largest elements of the given :attr:`input` tensor along
|
|
a given dimension.
|
|
|
|
If :attr:`dim` is not given, the last dimension of the `input` is chosen.
|
|
|
|
If :attr:`largest` is ``False`` then the `k` smallest elements are returned.
|
|
|
|
A namedtuple of `(values, indices)` is returned, where the `indices` are the indices
|
|
of the elements in the original `input` tensor.
|
|
|
|
The boolean option :attr:`sorted` if ``True``, will make sure that the returned
|
|
`k` elements are themselves sorted
|
|
|
|
Args:
|
|
{input}
|
|
k (int): the k in "top-k"
|
|
dim (int, optional): the dimension to sort along
|
|
largest (bool, optional): controls whether to return largest or
|
|
smallest elements
|
|
sorted (bool, optional): controls whether to return the elements
|
|
in sorted order
|
|
out (tuple, optional): the output tuple of (Tensor, LongTensor) that can be
|
|
optionally given to be used as output buffers
|
|
|
|
Example::
|
|
|
|
>>> x = torch.arange(1., 6.)
|
|
>>> x
|
|
tensor([ 1., 2., 3., 4., 5.])
|
|
>>> torch.topk(x, 3)
|
|
torch.return_types.topk(values=tensor([5., 4., 3.]), indices=tensor([4, 3, 2]))
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.trace,
|
|
r"""
|
|
trace(input) -> Tensor
|
|
|
|
Returns the sum of the elements of the diagonal of the input 2-D matrix.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.arange(1., 10.).view(3, 3)
|
|
>>> x
|
|
tensor([[ 1., 2., 3.],
|
|
[ 4., 5., 6.],
|
|
[ 7., 8., 9.]])
|
|
>>> torch.trace(x)
|
|
tensor(15.)
|
|
""")
|
|
|
|
add_docstr(torch.transpose,
|
|
r"""
|
|
transpose(input, dim0, dim1) -> Tensor
|
|
|
|
Returns a tensor that is a transposed version of :attr:`input`.
|
|
The given dimensions :attr:`dim0` and :attr:`dim1` are swapped.
|
|
|
|
The resulting :attr:`out` tensor shares it's underlying storage with the
|
|
:attr:`input` tensor, so changing the content of one would change the content
|
|
of the other.
|
|
|
|
Args:
|
|
{input}
|
|
dim0 (int): the first dimension to be transposed
|
|
dim1 (int): the second dimension to be transposed
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(2, 3)
|
|
>>> x
|
|
tensor([[ 1.0028, -0.9893, 0.5809],
|
|
[-0.1669, 0.7299, 0.4942]])
|
|
>>> torch.transpose(x, 0, 1)
|
|
tensor([[ 1.0028, -0.1669],
|
|
[-0.9893, 0.7299],
|
|
[ 0.5809, 0.4942]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.triangular_solve,
|
|
r"""
|
|
triangular_solve(input, A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor)
|
|
|
|
Solves a system of equations with a triangular coefficient matrix :math:`A`
|
|
and multiple right-hand sides :math:`b`.
|
|
|
|
In particular, solves :math:`AX = b` and assumes :math:`A` is upper-triangular
|
|
with the default keyword arguments.
|
|
|
|
`torch.triangular_solve(b, A)` can take in 2D inputs `b, A` or inputs that are
|
|
batches of 2D matrices. If the inputs are batches, then returns
|
|
batched outputs `X`
|
|
|
|
Args:
|
|
input (Tensor): multiple right-hand sides of size :math:`(*, m, k)` where
|
|
:math:`*` is zero of more batch dimensions (:math:`b`)
|
|
A (Tensor): the input triangular coefficient matrix of size :math:`(*, m, m)`
|
|
where :math:`*` is zero or more batch dimensions
|
|
upper (bool, optional): whether to solve the upper-triangular system
|
|
of equations (default) or the lower-triangular system of equations. Default: ``True``.
|
|
transpose (bool, optional): whether :math:`A` should be transposed before
|
|
being sent into the solver. Default: ``False``.
|
|
unitriangular (bool, optional): whether :math:`A` is unit triangular.
|
|
If True, the diagonal elements of :math:`A` are assumed to be
|
|
1 and not referenced from :math:`A`. Default: ``False``.
|
|
|
|
Returns:
|
|
A namedtuple `(solution, cloned_coefficient)` where `cloned_coefficient`
|
|
is a clone of :math:`A` and `solution` is the solution :math:`X` to :math:`AX = b`
|
|
(or whatever variant of the system of equations, depending on the keyword arguments.)
|
|
|
|
Examples::
|
|
|
|
>>> A = torch.randn(2, 2).triu()
|
|
>>> A
|
|
tensor([[ 1.1527, -1.0753],
|
|
[ 0.0000, 0.7986]])
|
|
>>> b = torch.randn(2, 3)
|
|
>>> b
|
|
tensor([[-0.0210, 2.3513, -1.5492],
|
|
[ 1.5429, 0.7403, -1.0243]])
|
|
>>> torch.triangular_solve(b, A)
|
|
torch.return_types.triangular_solve(
|
|
solution=tensor([[ 1.7841, 2.9046, -2.5405],
|
|
[ 1.9320, 0.9270, -1.2826]]),
|
|
cloned_coefficient=tensor([[ 1.1527, -1.0753],
|
|
[ 0.0000, 0.7986]]))
|
|
""")
|
|
|
|
add_docstr(torch.tril,
|
|
r"""
|
|
tril(input, diagonal=0, out=None) -> Tensor
|
|
|
|
Returns the lower triangular part of the matrix (2-D tensor) or batch of matrices
|
|
:attr:`input`, the other elements of the result tensor :attr:`out` are set to 0.
|
|
|
|
The lower triangular part of the matrix is defined as the elements on and
|
|
below the diagonal.
|
|
|
|
The argument :attr:`diagonal` controls which diagonal to consider. If
|
|
:attr:`diagonal` = 0, all elements on and below the main diagonal are
|
|
retained. A positive value includes just as many diagonals above the main
|
|
diagonal, and similarly a negative value excludes just as many diagonals below
|
|
the main diagonal. The main diagonal are the set of indices
|
|
:math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
|
|
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
diagonal (int, optional): the diagonal to consider
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(3, 3)
|
|
>>> a
|
|
tensor([[-1.0813, -0.8619, 0.7105],
|
|
[ 0.0935, 0.1380, 2.2112],
|
|
[-0.3409, -0.9828, 0.0289]])
|
|
>>> torch.tril(a)
|
|
tensor([[-1.0813, 0.0000, 0.0000],
|
|
[ 0.0935, 0.1380, 0.0000],
|
|
[-0.3409, -0.9828, 0.0289]])
|
|
|
|
>>> b = torch.randn(4, 6)
|
|
>>> b
|
|
tensor([[ 1.2219, 0.5653, -0.2521, -0.2345, 1.2544, 0.3461],
|
|
[ 0.4785, -0.4477, 0.6049, 0.6368, 0.8775, 0.7145],
|
|
[ 1.1502, 3.2716, -1.1243, -0.5413, 0.3615, 0.6864],
|
|
[-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0978]])
|
|
>>> torch.tril(b, diagonal=1)
|
|
tensor([[ 1.2219, 0.5653, 0.0000, 0.0000, 0.0000, 0.0000],
|
|
[ 0.4785, -0.4477, 0.6049, 0.0000, 0.0000, 0.0000],
|
|
[ 1.1502, 3.2716, -1.1243, -0.5413, 0.0000, 0.0000],
|
|
[-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0000]])
|
|
>>> torch.tril(b, diagonal=-1)
|
|
tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
|
[ 0.4785, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
|
[ 1.1502, 3.2716, 0.0000, 0.0000, 0.0000, 0.0000],
|
|
[-0.0614, -0.7344, -1.3164, 0.0000, 0.0000, 0.0000]])
|
|
""".format(**common_args))
|
|
|
|
# docstr is split in two parts to avoid format mis-captureing :math: braces '{}'
|
|
# as common args.
|
|
add_docstr(torch.tril_indices,
|
|
r"""
|
|
tril_indices(row, col, offset=0, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor
|
|
|
|
Returns the indices of the lower triangular part of a :attr:`row`-by-
|
|
:attr:`col` matrix in a 2-by-N Tensor, where the first row contains row
|
|
coordinates of all indices and the second row contains column coordinates.
|
|
Indices are ordered based on rows and then columns.
|
|
|
|
The lower triangular part of the matrix is defined as the elements on and
|
|
below the diagonal.
|
|
|
|
The argument :attr:`offset` controls which diagonal to consider. If
|
|
:attr:`offset` = 0, all elements on and below the main diagonal are
|
|
retained. A positive value includes just as many diagonals above the main
|
|
diagonal, and similarly a negative value excludes just as many diagonals below
|
|
the main diagonal. The main diagonal are the set of indices
|
|
:math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]`
|
|
where :math:`d_{1}, d_{2}` are the dimensions of the matrix.
|
|
|
|
.. note::
|
|
When running on CUDA, ``row * col`` must be less than :math:`2^{59}` to
|
|
prevent overflow during calculation.
|
|
""" + r"""
|
|
Args:
|
|
row (``int``): number of rows in the 2-D matrix.
|
|
col (``int``): number of columns in the 2-D matrix.
|
|
offset (``int``): diagonal offset from the main diagonal.
|
|
Default: if not provided, 0.
|
|
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
|
|
Default: if ``None``, ``torch.long``.
|
|
{device}
|
|
layout (:class:`torch.layout`, optional): currently only support ``torch.strided``.
|
|
|
|
Example::
|
|
>>> a = torch.tril_indices(3, 3)
|
|
>>> a
|
|
tensor([[0, 1, 1, 2, 2, 2],
|
|
[0, 0, 1, 0, 1, 2]])
|
|
|
|
>>> a = torch.tril_indices(4, 3, -1)
|
|
>>> a
|
|
tensor([[1, 2, 2, 3, 3, 3],
|
|
[0, 0, 1, 0, 1, 2]])
|
|
|
|
>>> a = torch.tril_indices(4, 3, 1)
|
|
>>> a
|
|
tensor([[0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3],
|
|
[0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2]])
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.triu,
|
|
r"""
|
|
triu(input, diagonal=0, out=None) -> Tensor
|
|
|
|
Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices
|
|
:attr:`input`, the other elements of the result tensor :attr:`out` are set to 0.
|
|
|
|
The upper triangular part of the matrix is defined as the elements on and
|
|
above the diagonal.
|
|
|
|
The argument :attr:`diagonal` controls which diagonal to consider. If
|
|
:attr:`diagonal` = 0, all elements on and above the main diagonal are
|
|
retained. A positive value excludes just as many diagonals above the main
|
|
diagonal, and similarly a negative value includes just as many diagonals below
|
|
the main diagonal. The main diagonal are the set of indices
|
|
:math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
|
|
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
|
|
""" + r"""
|
|
Args:
|
|
{input}
|
|
diagonal (int, optional): the diagonal to consider
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(3, 3)
|
|
>>> a
|
|
tensor([[ 0.2309, 0.5207, 2.0049],
|
|
[ 0.2072, -1.0680, 0.6602],
|
|
[ 0.3480, -0.5211, -0.4573]])
|
|
>>> torch.triu(a)
|
|
tensor([[ 0.2309, 0.5207, 2.0049],
|
|
[ 0.0000, -1.0680, 0.6602],
|
|
[ 0.0000, 0.0000, -0.4573]])
|
|
>>> torch.triu(a, diagonal=1)
|
|
tensor([[ 0.0000, 0.5207, 2.0049],
|
|
[ 0.0000, 0.0000, 0.6602],
|
|
[ 0.0000, 0.0000, 0.0000]])
|
|
>>> torch.triu(a, diagonal=-1)
|
|
tensor([[ 0.2309, 0.5207, 2.0049],
|
|
[ 0.2072, -1.0680, 0.6602],
|
|
[ 0.0000, -0.5211, -0.4573]])
|
|
|
|
>>> b = torch.randn(4, 6)
|
|
>>> b
|
|
tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235],
|
|
[-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857],
|
|
[ 0.4333, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410],
|
|
[-0.9888, 1.0679, -1.3337, -1.6556, 0.4798, 0.2830]])
|
|
>>> torch.triu(b, diagonal=1)
|
|
tensor([[ 0.0000, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235],
|
|
[ 0.0000, 0.0000, -1.2919, 1.3378, -0.1768, -1.0857],
|
|
[ 0.0000, 0.0000, 0.0000, -1.0432, 0.9348, -0.4410],
|
|
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.4798, 0.2830]])
|
|
>>> torch.triu(b, diagonal=-1)
|
|
tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235],
|
|
[-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857],
|
|
[ 0.0000, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410],
|
|
[ 0.0000, 0.0000, -1.3337, -1.6556, 0.4798, 0.2830]])
|
|
""".format(**common_args))
|
|
|
|
# docstr is split in two parts to avoid format mis-capturing :math: braces '{}'
|
|
# as common args.
|
|
add_docstr(torch.triu_indices,
|
|
r"""
|
|
triu_indices(row, col, offset=0, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor
|
|
|
|
Returns the indices of the upper triangular part of a :attr:`row` by
|
|
:attr:`col` matrix in a 2-by-N Tensor, where the first row contains row
|
|
coordinates of all indices and the second row contains column coordinates.
|
|
Indices are ordered based on rows and then columns.
|
|
|
|
The upper triangular part of the matrix is defined as the elements on and
|
|
above the diagonal.
|
|
|
|
The argument :attr:`offset` controls which diagonal to consider. If
|
|
:attr:`offset` = 0, all elements on and above the main diagonal are
|
|
retained. A positive value excludes just as many diagonals above the main
|
|
diagonal, and similarly a negative value includes just as many diagonals below
|
|
the main diagonal. The main diagonal are the set of indices
|
|
:math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]`
|
|
where :math:`d_{1}, d_{2}` are the dimensions of the matrix.
|
|
|
|
.. note::
|
|
When running on CUDA, ``row * col`` must be less than :math:`2^{59}` to
|
|
prevent overflow during calculation.
|
|
""" + r"""
|
|
Args:
|
|
row (``int``): number of rows in the 2-D matrix.
|
|
col (``int``): number of columns in the 2-D matrix.
|
|
offset (``int``): diagonal offset from the main diagonal.
|
|
Default: if not provided, 0.
|
|
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
|
|
Default: if ``None``, ``torch.long``.
|
|
{device}
|
|
layout (:class:`torch.layout`, optional): currently only support ``torch.strided``.
|
|
|
|
Example::
|
|
>>> a = torch.triu_indices(3, 3)
|
|
>>> a
|
|
tensor([[0, 0, 0, 1, 1, 2],
|
|
[0, 1, 2, 1, 2, 2]])
|
|
|
|
>>> a = torch.triu_indices(4, 3, -1)
|
|
>>> a
|
|
tensor([[0, 0, 0, 1, 1, 1, 2, 2, 3],
|
|
[0, 1, 2, 0, 1, 2, 1, 2, 2]])
|
|
|
|
>>> a = torch.triu_indices(4, 3, 1)
|
|
>>> a
|
|
tensor([[0, 0, 1],
|
|
[1, 2, 2]])
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.true_divide, r"""
|
|
true_divide(dividend, divisor, *, out) -> Tensor
|
|
|
|
Performs "true division" that always computes the division
|
|
in floating point. Analogous to division in Python 3 and equivalent to
|
|
:func:`torch.div` except when both inputs have bool or integer scalar types,
|
|
in which case they are cast to the default (floating) scalar type before the division.
|
|
|
|
.. math::
|
|
\text{{out}}_i = \frac{{\text{{dividend}}_i}}{{\text{{divisor}}}}
|
|
|
|
Args:
|
|
dividend (Tensor): the dividend
|
|
divisor (Tensor or Scalar): the divisor
|
|
|
|
Keyword args:
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> dividend = torch.tensor([5, 3], dtype=torch.int)
|
|
>>> divisor = torch.tensor([3, 2], dtype=torch.int)
|
|
>>> torch.true_divide(dividend, divisor)
|
|
tensor([1.6667, 1.5000])
|
|
>>> torch.true_divide(dividend, 2)
|
|
tensor([2.5000, 1.5000])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.trunc,
|
|
r"""
|
|
trunc(input, out=None) -> Tensor
|
|
|
|
Returns a new tensor with the truncated integer values of
|
|
the elements of :attr:`input`.
|
|
|
|
Args:
|
|
{input}
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4)
|
|
>>> a
|
|
tensor([ 3.4742, 0.5466, -0.8008, -0.9079])
|
|
>>> torch.trunc(a)
|
|
tensor([ 3., 0., -0., -0.])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.unsqueeze,
|
|
r"""
|
|
unsqueeze(input, dim) -> Tensor
|
|
|
|
Returns a new tensor with a dimension of size one inserted at the
|
|
specified position.
|
|
|
|
The returned tensor shares the same underlying data with this tensor.
|
|
|
|
A :attr:`dim` value within the range ``[-input.dim() - 1, input.dim() + 1)``
|
|
can be used. Negative :attr:`dim` will correspond to :meth:`unsqueeze`
|
|
applied at :attr:`dim` = ``dim + input.dim() + 1``.
|
|
|
|
Args:
|
|
{input}
|
|
dim (int): the index at which to insert the singleton dimension
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([1, 2, 3, 4])
|
|
>>> torch.unsqueeze(x, 0)
|
|
tensor([[ 1, 2, 3, 4]])
|
|
>>> torch.unsqueeze(x, 1)
|
|
tensor([[ 1],
|
|
[ 2],
|
|
[ 3],
|
|
[ 4]])
|
|
""".format(**common_args))
|
|
|
|
add_docstr(torch.var,
|
|
r"""
|
|
var(input, unbiased=True) -> Tensor
|
|
|
|
Returns the variance of all elements in the :attr:`input` tensor.
|
|
|
|
If :attr:`unbiased` is ``False``, then the variance will be calculated via the
|
|
biased estimator. Otherwise, Bessel's correction will be used.
|
|
|
|
Args:
|
|
{input}
|
|
unbiased (bool): whether to use the unbiased estimation or not
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 3)
|
|
>>> a
|
|
tensor([[-0.3425, -1.2636, -0.4864]])
|
|
>>> torch.var(a)
|
|
tensor(0.2455)
|
|
|
|
|
|
.. function:: var(input, dim, keepdim=False, unbiased=True, out=None) -> Tensor
|
|
|
|
Returns the variance of each row of the :attr:`input` tensor in the given
|
|
dimension :attr:`dim`.
|
|
|
|
{keepdim_details}
|
|
|
|
If :attr:`unbiased` is ``False``, then the variance will be calculated via the
|
|
biased estimator. Otherwise, Bessel's correction will be used.
|
|
|
|
Args:
|
|
{input}
|
|
{dim}
|
|
{keepdim}
|
|
unbiased (bool): whether to use the unbiased estimation or not
|
|
{out}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[-0.3567, 1.7385, -1.3042, 0.7423],
|
|
[ 1.3436, -0.1015, -0.9834, -0.8438],
|
|
[ 0.6056, 0.1089, -0.3112, -1.4085],
|
|
[-0.7700, 0.6074, -0.1469, 0.7777]])
|
|
>>> torch.var(a, 1)
|
|
tensor([ 1.7444, 1.1363, 0.7356, 0.5112])
|
|
""".format(**multi_dim_common))
|
|
|
|
add_docstr(torch.var_mean,
|
|
r"""
|
|
var_mean(input, unbiased=True) -> (Tensor, Tensor)
|
|
|
|
Returns the variance and mean of all elements in the :attr:`input` tensor.
|
|
|
|
If :attr:`unbiased` is ``False``, then the variance will be calculated via the
|
|
biased estimator. Otherwise, Bessel's correction will be used.
|
|
|
|
Args:
|
|
{input}
|
|
unbiased (bool): whether to use the unbiased estimation or not
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(1, 3)
|
|
>>> a
|
|
tensor([[0.0146, 0.4258, 0.2211]])
|
|
>>> torch.var_mean(a)
|
|
(tensor(0.0423), tensor(0.2205))
|
|
|
|
.. function:: var_mean(input, dim, keepdim=False, unbiased=True) -> (Tensor, Tensor)
|
|
|
|
Returns the variance and mean of each row of the :attr:`input` tensor in the given
|
|
dimension :attr:`dim`.
|
|
|
|
{keepdim_details}
|
|
|
|
If :attr:`unbiased` is ``False``, then the variance will be calculated via the
|
|
biased estimator. Otherwise, Bessel's correction will be used.
|
|
|
|
Args:
|
|
{input}
|
|
{dim}
|
|
{keepdim}
|
|
unbiased (bool): whether to use the unbiased estimation or not
|
|
|
|
Example::
|
|
|
|
>>> a = torch.randn(4, 4)
|
|
>>> a
|
|
tensor([[-1.5650, 2.0415, -0.1024, -0.5790],
|
|
[ 0.2325, -2.6145, -1.6428, -0.3537],
|
|
[-0.2159, -1.1069, 1.2882, -1.3265],
|
|
[-0.6706, -1.5893, 0.6827, 1.6727]])
|
|
>>> torch.var_mean(a, 1)
|
|
(tensor([2.3174, 1.6403, 1.4092, 2.0791]), tensor([-0.0512, -1.0946, -0.3403, 0.0239]))
|
|
""".format(**multi_dim_common))
|
|
|
|
add_docstr(torch.zeros,
|
|
r"""
|
|
zeros(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
|
|
Returns a tensor filled with the scalar value `0`, with the shape defined
|
|
by the variable argument :attr:`size`.
|
|
|
|
Args:
|
|
size (int...): a sequence of integers defining the shape of the output tensor.
|
|
Can be a variable number of arguments or a collection like a list or tuple.
|
|
{out}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> torch.zeros(2, 3)
|
|
tensor([[ 0., 0., 0.],
|
|
[ 0., 0., 0.]])
|
|
|
|
>>> torch.zeros(5)
|
|
tensor([ 0., 0., 0., 0., 0.])
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.zeros_like,
|
|
r"""
|
|
zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor
|
|
|
|
Returns a tensor filled with the scalar value `0`, with the same size as
|
|
:attr:`input`. ``torch.zeros_like(input)`` is equivalent to
|
|
``torch.zeros(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
|
|
|
|
.. warning::
|
|
As of 0.4, this function does not support an :attr:`out` keyword. As an alternative,
|
|
the old ``torch.zeros_like(input, out=output)`` is equivalent to
|
|
``torch.zeros(input.size(), out=output)``.
|
|
|
|
Args:
|
|
{input}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
{memory_format}
|
|
|
|
Example::
|
|
|
|
>>> input = torch.empty(2, 3)
|
|
>>> torch.zeros_like(input)
|
|
tensor([[ 0., 0., 0.],
|
|
[ 0., 0., 0.]])
|
|
""".format(**factory_like_common_args))
|
|
|
|
add_docstr(torch.empty,
|
|
r"""
|
|
empty(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor
|
|
|
|
Returns a tensor filled with uninitialized data. The shape of the tensor is
|
|
defined by the variable argument :attr:`size`.
|
|
|
|
Args:
|
|
size (int...): a sequence of integers defining the shape of the output tensor.
|
|
Can be a variable number of arguments or a collection like a list or tuple.
|
|
{out}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
{pin_memory}
|
|
{memory_format}
|
|
|
|
Example::
|
|
|
|
>>> torch.empty(2, 3)
|
|
tensor(1.00000e-08 *
|
|
[[ 6.3984, 0.0000, 0.0000],
|
|
[ 0.0000, 0.0000, 0.0000]])
|
|
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.empty_like,
|
|
r"""
|
|
empty_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor
|
|
|
|
Returns an uninitialized tensor with the same size as :attr:`input`.
|
|
``torch.empty_like(input)`` is equivalent to
|
|
``torch.empty(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
|
|
|
|
Args:
|
|
{input}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
{memory_format}
|
|
|
|
Example::
|
|
|
|
>>> torch.empty((2,3), dtype=torch.int64)
|
|
tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13],
|
|
[ 7.5751e+18, 7.1428e+18, 7.5955e+18]])
|
|
""".format(**factory_like_common_args))
|
|
|
|
add_docstr(torch.empty_strided,
|
|
r"""
|
|
empty_strided(size, stride, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False) -> Tensor
|
|
|
|
Returns a tensor filled with uninitialized data. The shape and strides of the tensor is
|
|
defined by the variable argument :attr:`size` and :attr:`stride` respectively.
|
|
``torch.empty_strided(size, stride)`` is equivalent to
|
|
``torch.empty(size).as_strided(size, stride)``.
|
|
|
|
.. warning::
|
|
More than one element of the created tensor may refer to a single memory
|
|
location. As a result, in-place operations (especially ones that are
|
|
vectorized) may result in incorrect behavior. If you need to write to
|
|
the tensors, please clone them first.
|
|
|
|
Args:
|
|
size (tuple of ints): the shape of the output tensor
|
|
stride (tuple of ints): the strides of the output tensor
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
{pin_memory}
|
|
|
|
Example::
|
|
|
|
>>> a = torch.empty_strided((2, 3), (1, 2))
|
|
>>> a
|
|
tensor([[8.9683e-44, 4.4842e-44, 5.1239e+07],
|
|
[0.0000e+00, 0.0000e+00, 3.0705e-41]])
|
|
>>> a.stride()
|
|
(1, 2)
|
|
>>> a.size()
|
|
torch.Size([2, 3])
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.full, r"""
|
|
full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
|
|
Creates a tensor of size :attr:`size` filled with :attr:`fill_value`. The
|
|
tensor's dtype is inferred from :attr:`fill_value`.
|
|
|
|
Args:
|
|
size (int...): a list, tuple, or :class:`torch.Size` of integers defining the
|
|
shape of the output tensor.
|
|
fill_value (Scalar): the value to fill the output tensor with.
|
|
{out}
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Example::
|
|
|
|
>>> torch.full((2, 3), 3.141592)
|
|
tensor([[ 3.1416, 3.1416, 3.1416],
|
|
[ 3.1416, 3.1416, 3.1416]])
|
|
""".format(**factory_common_args))
|
|
|
|
add_docstr(torch.full_like,
|
|
"""
|
|
full_like(input, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, \
|
|
memory_format=torch.preserve_format) -> Tensor
|
|
|
|
Returns a tensor with the same size as :attr:`input` filled with :attr:`fill_value`.
|
|
``torch.full_like(input, fill_value)`` is equivalent to
|
|
``torch.full(input.size(), fill_value, dtype=input.dtype, layout=input.layout, device=input.device)``.
|
|
|
|
Args:
|
|
{input}
|
|
fill_value: the number to fill the output tensor with.
|
|
{dtype}
|
|
{layout}
|
|
{device}
|
|
{requires_grad}
|
|
{memory_format}
|
|
""".format(**factory_like_common_args))
|
|
|
|
add_docstr(torch.det,
|
|
r"""
|
|
det(input) -> Tensor
|
|
|
|
Calculates determinant of a square matrix or batches of square matrices.
|
|
|
|
.. note::
|
|
Backward through :meth:`det` internally uses SVD results when :attr:`input` is
|
|
not invertible. In this case, double backward through :meth:`det` will be
|
|
unstable in when :attr:`input` doesn't have distinct singular values. See
|
|
:meth:`~torch.svd` for details.
|
|
|
|
Arguments:
|
|
input (Tensor): the input tensor of size ``(*, n, n)`` where ``*`` is zero or more
|
|
batch dimensions.
|
|
|
|
Example::
|
|
|
|
>>> A = torch.randn(3, 3)
|
|
>>> torch.det(A)
|
|
tensor(3.7641)
|
|
|
|
>>> A = torch.randn(3, 2, 2)
|
|
>>> A
|
|
tensor([[[ 0.9254, -0.6213],
|
|
[-0.5787, 1.6843]],
|
|
|
|
[[ 0.3242, -0.9665],
|
|
[ 0.4539, -0.0887]],
|
|
|
|
[[ 1.1336, -0.4025],
|
|
[-0.7089, 0.9032]]])
|
|
>>> A.det()
|
|
tensor([1.1990, 0.4099, 0.7386])
|
|
""")
|
|
|
|
add_docstr(torch.where,
|
|
r"""
|
|
where(condition, x, y) -> Tensor
|
|
|
|
Return a tensor of elements selected from either :attr:`x` or :attr:`y`, depending on :attr:`condition`.
|
|
|
|
The operation is defined as:
|
|
|
|
.. math::
|
|
\text{out}_i = \begin{cases}
|
|
\text{x}_i & \text{if } \text{condition}_i \\
|
|
\text{y}_i & \text{otherwise} \\
|
|
\end{cases}
|
|
|
|
.. note::
|
|
The tensors :attr:`condition`, :attr:`x`, :attr:`y` must be :ref:`broadcastable <broadcasting-semantics>`.
|
|
|
|
.. note::
|
|
Currently valid scalar and tensor combination are
|
|
1. Scalar of floating dtype and torch.double
|
|
2. Scalar of integral dtype and torch.long
|
|
3. Scalar of complex dtype and torch.complex128
|
|
|
|
Arguments:
|
|
condition (BoolTensor): When True (nonzero), yield x, otherwise yield y
|
|
x (Tensor or Scalar): value (if :attr:x is a scalar) or values selected at indices
|
|
where :attr:`condition` is ``True``
|
|
y (Tensor or Scalar): value (if :attr:x is a scalar) or values selected at indices
|
|
where :attr:`condition` is ``False``
|
|
|
|
Returns:
|
|
Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`x`, :attr:`y`
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(3, 2)
|
|
>>> y = torch.ones(3, 2)
|
|
>>> x
|
|
tensor([[-0.4620, 0.3139],
|
|
[ 0.3898, -0.7197],
|
|
[ 0.0478, -0.1657]])
|
|
>>> torch.where(x > 0, x, y)
|
|
tensor([[ 1.0000, 0.3139],
|
|
[ 0.3898, 1.0000],
|
|
[ 0.0478, 1.0000]])
|
|
>>> x = torch.randn(2, 2, dtype=torch.double)
|
|
>>> x
|
|
tensor([[ 1.0779, 0.0383],
|
|
[-0.8785, -1.1089]], dtype=torch.float64)
|
|
>>> torch.where(x > 0, x, 0.)
|
|
tensor([[1.0779, 0.0383],
|
|
[0.0000, 0.0000]], dtype=torch.float64)
|
|
|
|
.. function:: where(condition) -> tuple of LongTensor
|
|
|
|
``torch.where(condition)`` is identical to
|
|
``torch.nonzero(condition, as_tuple=True)``.
|
|
|
|
.. note::
|
|
See also :func:`torch.nonzero`.
|
|
""")
|
|
|
|
add_docstr(torch.logdet,
|
|
r"""
|
|
logdet(input) -> Tensor
|
|
|
|
Calculates log determinant of a square matrix or batches of square matrices.
|
|
|
|
.. note::
|
|
Result is ``-inf`` if :attr:`input` has zero log determinant, and is ``nan`` if
|
|
:attr:`input` has negative determinant.
|
|
|
|
.. note::
|
|
Backward through :meth:`logdet` internally uses SVD results when :attr:`input`
|
|
is not invertible. In this case, double backward through :meth:`logdet` will
|
|
be unstable in when :attr:`input` doesn't have distinct singular values. See
|
|
:meth:`~torch.svd` for details.
|
|
|
|
Arguments:
|
|
input (Tensor): the input tensor of size ``(*, n, n)`` where ``*`` is zero or more
|
|
batch dimensions.
|
|
|
|
Example::
|
|
|
|
>>> A = torch.randn(3, 3)
|
|
>>> torch.det(A)
|
|
tensor(0.2611)
|
|
>>> torch.logdet(A)
|
|
tensor(-1.3430)
|
|
>>> A
|
|
tensor([[[ 0.9254, -0.6213],
|
|
[-0.5787, 1.6843]],
|
|
|
|
[[ 0.3242, -0.9665],
|
|
[ 0.4539, -0.0887]],
|
|
|
|
[[ 1.1336, -0.4025],
|
|
[-0.7089, 0.9032]]])
|
|
>>> A.det()
|
|
tensor([1.1990, 0.4099, 0.7386])
|
|
>>> A.det().log()
|
|
tensor([ 0.1815, -0.8917, -0.3031])
|
|
""")
|
|
|
|
add_docstr(torch.slogdet,
|
|
r"""
|
|
slogdet(input) -> (Tensor, Tensor)
|
|
|
|
Calculates the sign and log absolute value of the determinant(s) of a square matrix or batches of square matrices.
|
|
|
|
.. note::
|
|
If ``input`` has zero determinant, this returns ``(0, -inf)``.
|
|
|
|
.. note::
|
|
Backward through :meth:`slogdet` internally uses SVD results when :attr:`input`
|
|
is not invertible. In this case, double backward through :meth:`slogdet`
|
|
will be unstable in when :attr:`input` doesn't have distinct singular values.
|
|
See :meth:`~torch.svd` for details.
|
|
|
|
Arguments:
|
|
input (Tensor): the input tensor of size ``(*, n, n)`` where ``*`` is zero or more
|
|
batch dimensions.
|
|
|
|
Returns:
|
|
A namedtuple (sign, logabsdet) containing the sign of the determinant, and the log
|
|
value of the absolute determinant.
|
|
|
|
Example::
|
|
|
|
>>> A = torch.randn(3, 3)
|
|
>>> A
|
|
tensor([[ 0.0032, -0.2239, -1.1219],
|
|
[-0.6690, 0.1161, 0.4053],
|
|
[-1.6218, -0.9273, -0.0082]])
|
|
>>> torch.det(A)
|
|
tensor(-0.7576)
|
|
>>> torch.logdet(A)
|
|
tensor(nan)
|
|
>>> torch.slogdet(A)
|
|
torch.return_types.slogdet(sign=tensor(-1.), logabsdet=tensor(-0.2776))
|
|
""")
|
|
|
|
add_docstr(torch.pinverse,
|
|
r"""
|
|
pinverse(input, rcond=1e-15) -> Tensor
|
|
|
|
Calculates the pseudo-inverse (also known as the Moore-Penrose inverse) of a 2D tensor.
|
|
Please look at `Moore-Penrose inverse`_ for more details
|
|
|
|
.. note::
|
|
This method is implemented using the Singular Value Decomposition.
|
|
|
|
.. note::
|
|
The pseudo-inverse is not necessarily a continuous function in the elements of the matrix `[1]`_.
|
|
Therefore, derivatives are not always existent, and exist for a constant rank only `[2]`_.
|
|
However, this method is backprop-able due to the implementation by using SVD results, and
|
|
could be unstable. Double-backward will also be unstable due to the usage of SVD internally.
|
|
See :meth:`~torch.svd` for more details.
|
|
|
|
Arguments:
|
|
input (Tensor): The input tensor of size :math:`(*, m, n)` where :math:`*` is zero or more batch dimensions
|
|
rcond (float): A floating point value to determine the cutoff for small singular values.
|
|
Default: 1e-15
|
|
|
|
Returns:
|
|
The pseudo-inverse of :attr:`input` of dimensions :math:`(*, n, m)`
|
|
|
|
Example::
|
|
|
|
>>> input = torch.randn(3, 5)
|
|
>>> input
|
|
tensor([[ 0.5495, 0.0979, -1.4092, -0.1128, 0.4132],
|
|
[-1.1143, -0.3662, 0.3042, 1.6374, -0.9294],
|
|
[-0.3269, -0.5745, -0.0382, -0.5922, -0.6759]])
|
|
>>> torch.pinverse(input)
|
|
tensor([[ 0.0600, -0.1933, -0.2090],
|
|
[-0.0903, -0.0817, -0.4752],
|
|
[-0.7124, -0.1631, -0.2272],
|
|
[ 0.1356, 0.3933, -0.5023],
|
|
[-0.0308, -0.1725, -0.5216]])
|
|
>>> # Batched pinverse example
|
|
>>> a = torch.randn(2,6,3)
|
|
>>> b = torch.pinverse(a)
|
|
>>> torch.matmul(b, a)
|
|
tensor([[[ 1.0000e+00, 1.6391e-07, -1.1548e-07],
|
|
[ 8.3121e-08, 1.0000e+00, -2.7567e-07],
|
|
[ 3.5390e-08, 1.4901e-08, 1.0000e+00]],
|
|
|
|
[[ 1.0000e+00, -8.9407e-08, 2.9802e-08],
|
|
[-2.2352e-07, 1.0000e+00, 1.1921e-07],
|
|
[ 0.0000e+00, 8.9407e-08, 1.0000e+00]]])
|
|
|
|
.. _Moore-Penrose inverse: https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
|
|
|
|
.. _[1]: https://epubs.siam.org/doi/10.1137/0117004
|
|
|
|
.. _[2]: https://www.jstor.org/stable/2156365
|
|
""")
|
|
|
|
add_docstr(torch.fft, r"""
|
|
fft(input, signal_ndim, normalized=False) -> Tensor
|
|
|
|
Complex-to-complex Discrete Fourier Transform
|
|
|
|
This method computes the complex-to-complex discrete Fourier transform.
|
|
Ignoring the batch dimensions, it computes the following expression:
|
|
|
|
.. math::
|
|
X[\omega_1, \dots, \omega_d] =
|
|
\sum_{n_1=0}^{N_1-1} \dots \sum_{n_d=0}^{N_d-1} x[n_1, \dots, n_d]
|
|
e^{-j\ 2 \pi \sum_{i=0}^d \frac{\omega_i n_i}{N_i}},
|
|
|
|
where :math:`d` = :attr:`signal_ndim` is number of dimensions for the
|
|
signal, and :math:`N_i` is the size of signal dimension :math:`i`.
|
|
|
|
This method supports 1D, 2D and 3D complex-to-complex transforms, indicated
|
|
by :attr:`signal_ndim`. :attr:`input` must be a tensor with last dimension
|
|
of size 2, representing the real and imaginary components of complex
|
|
numbers, and should have at least ``signal_ndim + 1`` dimensions with optionally
|
|
arbitrary number of leading batch dimensions. If :attr:`normalized` is set to
|
|
``True``, this normalizes the result by dividing it with
|
|
:math:`\sqrt{\prod_{i=1}^K N_i}` so that the operator is unitary.
|
|
|
|
Returns the real and the imaginary parts together as one tensor of the same
|
|
shape of :attr:`input`.
|
|
|
|
The inverse of this function is :func:`~torch.ifft`.
|
|
|
|
.. note::
|
|
For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
|
|
repeatedly running FFT methods on tensors of same geometry with same
|
|
configuration. See :ref:`cufft-plan-cache` for more details on how to
|
|
monitor and control the cache.
|
|
|
|
.. warning::
|
|
If the torch.fft module is imported then "torch.fft" will refer to the
|
|
module and not this function. Use :meth:`torch.Tensor.fft` instead.
|
|
|
|
.. warning::
|
|
Due to limited dynamic range of half datatype, performing this operation in half
|
|
precision may cause the first element of result to overflow for certain inputs.
|
|
|
|
.. warning::
|
|
For CPU tensors, this method is currently only available with MKL. Use
|
|
:func:`torch.backends.mkl.is_available` to check if MKL is installed.
|
|
|
|
Arguments:
|
|
input (Tensor): the input tensor of at least :attr:`signal_ndim` ``+ 1``
|
|
dimensions
|
|
signal_ndim (int): the number of dimensions in each signal.
|
|
:attr:`signal_ndim` can only be 1, 2 or 3
|
|
normalized (bool, optional): controls whether to return normalized results.
|
|
Default: ``False``
|
|
|
|
Returns:
|
|
Tensor: A tensor containing the complex-to-complex Fourier transform result
|
|
|
|
Example::
|
|
|
|
>>> # unbatched 2D FFT
|
|
>>> x = torch.randn(4, 3, 2)
|
|
>>> torch.fft(x, 2)
|
|
tensor([[[-0.0876, 1.7835],
|
|
[-2.0399, -2.9754],
|
|
[ 4.4773, -5.0119]],
|
|
|
|
[[-1.5716, 2.7631],
|
|
[-3.8846, 5.2652],
|
|
[ 0.2046, -0.7088]],
|
|
|
|
[[ 1.9938, -0.5901],
|
|
[ 6.5637, 6.4556],
|
|
[ 2.9865, 4.9318]],
|
|
|
|
[[ 7.0193, 1.1742],
|
|
[-1.3717, -2.1084],
|
|
[ 2.0289, 2.9357]]])
|
|
>>> # batched 1D FFT
|
|
>>> torch.fft(x, 1)
|
|
tensor([[[ 1.8385, 1.2827],
|
|
[-0.1831, 1.6593],
|
|
[ 2.4243, 0.5367]],
|
|
|
|
[[-0.9176, -1.5543],
|
|
[-3.9943, -2.9860],
|
|
[ 1.2838, -2.9420]],
|
|
|
|
[[-0.8854, -0.6860],
|
|
[ 2.4450, 0.0808],
|
|
[ 1.3076, -0.5768]],
|
|
|
|
[[-0.1231, 2.7411],
|
|
[-0.3075, -1.7295],
|
|
[-0.5384, -2.0299]]])
|
|
>>> # arbitrary number of batch dimensions, 2D FFT
|
|
>>> x = torch.randn(3, 3, 5, 5, 2)
|
|
>>> y = torch.fft(x, 2)
|
|
>>> y.shape
|
|
torch.Size([3, 3, 5, 5, 2])
|
|
|
|
""")
|
|
|
|
add_docstr(torch.ifft,
|
|
r"""
|
|
ifft(input, signal_ndim, normalized=False) -> Tensor
|
|
|
|
Complex-to-complex Inverse Discrete Fourier Transform
|
|
|
|
This method computes the complex-to-complex inverse discrete Fourier
|
|
transform. Ignoring the batch dimensions, it computes the following
|
|
expression:
|
|
|
|
.. math::
|
|
X[\omega_1, \dots, \omega_d] =
|
|
\frac{1}{\prod_{i=1}^d N_i} \sum_{n_1=0}^{N_1-1} \dots \sum_{n_d=0}^{N_d-1} x[n_1, \dots, n_d]
|
|
e^{\ j\ 2 \pi \sum_{i=0}^d \frac{\omega_i n_i}{N_i}},
|
|
|
|
where :math:`d` = :attr:`signal_ndim` is number of dimensions for the
|
|
signal, and :math:`N_i` is the size of signal dimension :math:`i`.
|
|
|
|
The argument specifications are almost identical with :func:`~torch.fft`.
|
|
However, if :attr:`normalized` is set to ``True``, this instead returns the
|
|
results multiplied by :math:`\sqrt{\prod_{i=1}^d N_i}`, to become a unitary
|
|
operator. Therefore, to invert a :func:`~torch.fft`, the :attr:`normalized`
|
|
argument should be set identically for :func:`~torch.fft`.
|
|
|
|
Returns the real and the imaginary parts together as one tensor of the same
|
|
shape of :attr:`input`.
|
|
|
|
The inverse of this function is :func:`~torch.fft`.
|
|
|
|
.. note::
|
|
For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
|
|
repeatedly running FFT methods on tensors of same geometry with same
|
|
configuration. See :ref:`cufft-plan-cache` for more details on how to
|
|
monitor and control the cache.
|
|
|
|
.. warning::
|
|
Due to limited dynamic range of half datatype, performing this operation in half
|
|
precision may cause the first element of result to overflow for certain inputs.
|
|
|
|
.. warning::
|
|
For CPU tensors, this method is currently only available with MKL. Use
|
|
:func:`torch.backends.mkl.is_available` to check if MKL is installed.
|
|
|
|
Arguments:
|
|
input (Tensor): the input tensor of at least :attr:`signal_ndim` ``+ 1``
|
|
dimensions
|
|
signal_ndim (int): the number of dimensions in each signal.
|
|
:attr:`signal_ndim` can only be 1, 2 or 3
|
|
normalized (bool, optional): controls whether to return normalized results.
|
|
Default: ``False``
|
|
|
|
Returns:
|
|
Tensor: A tensor containing the complex-to-complex inverse Fourier transform result
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(3, 3, 2)
|
|
>>> x
|
|
tensor([[[ 1.2766, 1.3680],
|
|
[-0.8337, 2.0251],
|
|
[ 0.9465, -1.4390]],
|
|
|
|
[[-0.1890, 1.6010],
|
|
[ 1.1034, -1.9230],
|
|
[-0.9482, 1.0775]],
|
|
|
|
[[-0.7708, -0.8176],
|
|
[-0.1843, -0.2287],
|
|
[-1.9034, -0.2196]]])
|
|
>>> y = torch.fft(x, 2)
|
|
>>> torch.ifft(y, 2) # recover x
|
|
tensor([[[ 1.2766, 1.3680],
|
|
[-0.8337, 2.0251],
|
|
[ 0.9465, -1.4390]],
|
|
|
|
[[-0.1890, 1.6010],
|
|
[ 1.1034, -1.9230],
|
|
[-0.9482, 1.0775]],
|
|
|
|
[[-0.7708, -0.8176],
|
|
[-0.1843, -0.2287],
|
|
[-1.9034, -0.2196]]])
|
|
|
|
""")
|
|
|
|
add_docstr(torch.rfft,
|
|
r"""
|
|
rfft(input, signal_ndim, normalized=False, onesided=True) -> Tensor
|
|
|
|
Real-to-complex Discrete Fourier Transform
|
|
|
|
This method computes the real-to-complex discrete Fourier transform. It is
|
|
mathematically equivalent with :func:`~torch.fft` with differences only in
|
|
formats of the input and output.
|
|
|
|
This method supports 1D, 2D and 3D real-to-complex transforms, indicated
|
|
by :attr:`signal_ndim`. :attr:`input` must be a tensor with at least
|
|
``signal_ndim`` dimensions with optionally arbitrary number of leading batch
|
|
dimensions. If :attr:`normalized` is set to ``True``, this normalizes the result
|
|
by dividing it with :math:`\sqrt{\prod_{i=1}^K N_i}` so that the operator is
|
|
unitary, where :math:`N_i` is the size of signal dimension :math:`i`.
|
|
|
|
The real-to-complex Fourier transform results follow conjugate symmetry:
|
|
|
|
.. math::
|
|
X[\omega_1, \dots, \omega_d] = X^*[N_1 - \omega_1, \dots, N_d - \omega_d],
|
|
|
|
where the index arithmetic is computed modulus the size of the corresponding
|
|
dimension, :math:`\ ^*` is the conjugate operator, and
|
|
:math:`d` = :attr:`signal_ndim`. :attr:`onesided` flag controls whether to avoid
|
|
redundancy in the output results. If set to ``True`` (default), the output will
|
|
not be full complex result of shape :math:`(*, 2)`, where :math:`*` is the shape
|
|
of :attr:`input`, but instead the last dimension will be halfed as of size
|
|
:math:`\lfloor \frac{N_d}{2} \rfloor + 1`.
|
|
|
|
The inverse of this function is :func:`~torch.irfft`.
|
|
|
|
.. note::
|
|
For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
|
|
repeatedly running FFT methods on tensors of same geometry with same
|
|
configuration. See :ref:`cufft-plan-cache` for more details on how to
|
|
monitor and control the cache.
|
|
|
|
.. warning::
|
|
Due to limited dynamic range of half datatype, performing this operation in half
|
|
precision may cause the first element of result to overflow for certain inputs.
|
|
|
|
.. warning::
|
|
For CPU tensors, this method is currently only available with MKL. Use
|
|
:func:`torch.backends.mkl.is_available` to check if MKL is installed.
|
|
|
|
Arguments:
|
|
input (Tensor): the input tensor of at least :attr:`signal_ndim` dimensions
|
|
signal_ndim (int): the number of dimensions in each signal.
|
|
:attr:`signal_ndim` can only be 1, 2 or 3
|
|
normalized (bool, optional): controls whether to return normalized results.
|
|
Default: ``False``
|
|
onesided (bool, optional): controls whether to return half of results to
|
|
avoid redundancy. Default: ``True``
|
|
|
|
Returns:
|
|
Tensor: A tensor containing the real-to-complex Fourier transform result
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(5, 5)
|
|
>>> torch.rfft(x, 2).shape
|
|
torch.Size([5, 3, 2])
|
|
>>> torch.rfft(x, 2, onesided=False).shape
|
|
torch.Size([5, 5, 2])
|
|
|
|
""")
|
|
|
|
|
|
add_docstr(torch.irfft,
|
|
r"""
|
|
irfft(input, signal_ndim, normalized=False, onesided=True, signal_sizes=None) -> Tensor
|
|
|
|
Complex-to-real Inverse Discrete Fourier Transform
|
|
|
|
This method computes the complex-to-real inverse discrete Fourier transform.
|
|
It is mathematically equivalent with :func:`ifft` with differences only in
|
|
formats of the input and output.
|
|
|
|
The argument specifications are almost identical with :func:`~torch.ifft`.
|
|
Similar to :func:`~torch.ifft`, if :attr:`normalized` is set to ``True``,
|
|
this normalizes the result by multiplying it with
|
|
:math:`\sqrt{\prod_{i=1}^K N_i}` so that the operator is unitary, where
|
|
:math:`N_i` is the size of signal dimension :math:`i`.
|
|
|
|
.. note::
|
|
Due to the conjugate symmetry, :attr:`input` do not need to contain the full
|
|
complex frequency values. Roughly half of the values will be sufficient, as
|
|
is the case when :attr:`input` is given by :func:`~torch.rfft` with
|
|
``rfft(signal, onesided=True)``. In such case, set the :attr:`onesided`
|
|
argument of this method to ``True``. Moreover, the original signal shape
|
|
information can sometimes be lost, optionally set :attr:`signal_sizes` to be
|
|
the size of the original signal (without the batch dimensions if in batched
|
|
mode) to recover it with correct shape.
|
|
|
|
Therefore, to invert an :func:`~torch.rfft`, the :attr:`normalized` and
|
|
:attr:`onesided` arguments should be set identically for :func:`~torch.irfft`,
|
|
and preferably a :attr:`signal_sizes` is given to avoid size mismatch. See the
|
|
example below for a case of size mismatch.
|
|
|
|
See :func:`~torch.rfft` for details on conjugate symmetry.
|
|
|
|
The inverse of this function is :func:`~torch.rfft`.
|
|
|
|
.. warning::
|
|
Generally speaking, input to this function should contain values
|
|
following conjugate symmetry. Note that even if :attr:`onesided` is
|
|
``True``, often symmetry on some part is still needed. When this
|
|
requirement is not satisfied, the behavior of :func:`~torch.irfft` is
|
|
undefined. Since :func:`torch.autograd.gradcheck` estimates numerical
|
|
Jacobian with point perturbations, :func:`~torch.irfft` will almost
|
|
certainly fail the check.
|
|
|
|
.. note::
|
|
For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
|
|
repeatedly running FFT methods on tensors of same geometry with same
|
|
configuration. See :ref:`cufft-plan-cache` for more details on how to
|
|
monitor and control the cache.
|
|
|
|
.. warning::
|
|
Due to limited dynamic range of half datatype, performing this operation in half
|
|
precision may cause the first element of result to overflow for certain inputs.
|
|
|
|
.. warning::
|
|
For CPU tensors, this method is currently only available with MKL. Use
|
|
:func:`torch.backends.mkl.is_available` to check if MKL is installed.
|
|
|
|
Arguments:
|
|
input (Tensor): the input tensor of at least :attr:`signal_ndim` ``+ 1``
|
|
dimensions
|
|
signal_ndim (int): the number of dimensions in each signal.
|
|
:attr:`signal_ndim` can only be 1, 2 or 3
|
|
normalized (bool, optional): controls whether to return normalized results.
|
|
Default: ``False``
|
|
onesided (bool, optional): controls whether :attr:`input` was halfed to avoid
|
|
redundancy, e.g., by :func:`rfft`. Default: ``True``
|
|
signal_sizes (list or :class:`torch.Size`, optional): the size of the original
|
|
signal (without batch dimension). Default: ``None``
|
|
|
|
Returns:
|
|
Tensor: A tensor containing the complex-to-real inverse Fourier transform result
|
|
|
|
Example::
|
|
|
|
>>> x = torch.randn(4, 4)
|
|
>>> torch.rfft(x, 2, onesided=True).shape
|
|
torch.Size([4, 3, 2])
|
|
>>>
|
|
>>> # notice that with onesided=True, output size does not determine the original signal size
|
|
>>> x = torch.randn(4, 5)
|
|
|
|
>>> torch.rfft(x, 2, onesided=True).shape
|
|
torch.Size([4, 3, 2])
|
|
>>>
|
|
>>> # now we use the original shape to recover x
|
|
>>> x
|
|
tensor([[-0.8992, 0.6117, -1.6091, -0.4155, -0.8346],
|
|
[-2.1596, -0.0853, 0.7232, 0.1941, -0.0789],
|
|
[-2.0329, 1.1031, 0.6869, -0.5042, 0.9895],
|
|
[-0.1884, 0.2858, -1.5831, 0.9917, -0.8356]])
|
|
>>> y = torch.rfft(x, 2, onesided=True)
|
|
>>> torch.irfft(y, 2, onesided=True, signal_sizes=x.shape) # recover x
|
|
tensor([[-0.8992, 0.6117, -1.6091, -0.4155, -0.8346],
|
|
[-2.1596, -0.0853, 0.7232, 0.1941, -0.0789],
|
|
[-2.0329, 1.1031, 0.6869, -0.5042, 0.9895],
|
|
[-0.1884, 0.2858, -1.5831, 0.9917, -0.8356]])
|
|
|
|
""")
|
|
|
|
|
|
add_docstr(torch.hann_window,
|
|
"""
|
|
hann_window(window_length, periodic=True, dtype=None, \
|
|
layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
""" + r"""
|
|
Hann window function.
|
|
|
|
.. math::
|
|
w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1} \right)\right] =
|
|
\sin^2 \left( \frac{\pi n}{N - 1} \right),
|
|
|
|
where :math:`N` is the full window size.
|
|
|
|
The input :attr:`window_length` is a positive integer controlling the
|
|
returned window size. :attr:`periodic` flag determines whether the returned
|
|
window trims off the last duplicate value from the symmetric window and is
|
|
ready to be used as a periodic window with functions like
|
|
:meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in
|
|
above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have
|
|
``torch.hann_window(L, periodic=True)`` equal to
|
|
``torch.hann_window(L + 1, periodic=False)[:-1])``.
|
|
|
|
.. note::
|
|
If :attr:`window_length` :math:`=1`, the returned window contains a single value 1.
|
|
""" + r"""
|
|
Arguments:
|
|
window_length (int): the size of returned window
|
|
periodic (bool, optional): If True, returns a window to be used as periodic
|
|
function. If False, return a symmetric window.
|
|
{dtype} Only floating point types are supported.
|
|
layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only
|
|
``torch.strided`` (dense layout) is supported.
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Returns:
|
|
Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window
|
|
|
|
""".format(**factory_common_args))
|
|
|
|
|
|
add_docstr(torch.hamming_window,
|
|
"""
|
|
hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, dtype=None, \
|
|
layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
""" + r"""
|
|
Hamming window function.
|
|
|
|
.. math::
|
|
w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right),
|
|
|
|
where :math:`N` is the full window size.
|
|
|
|
The input :attr:`window_length` is a positive integer controlling the
|
|
returned window size. :attr:`periodic` flag determines whether the returned
|
|
window trims off the last duplicate value from the symmetric window and is
|
|
ready to be used as a periodic window with functions like
|
|
:meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in
|
|
above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have
|
|
``torch.hamming_window(L, periodic=True)`` equal to
|
|
``torch.hamming_window(L + 1, periodic=False)[:-1])``.
|
|
|
|
.. note::
|
|
If :attr:`window_length` :math:`=1`, the returned window contains a single value 1.
|
|
|
|
.. note::
|
|
This is a generalized version of :meth:`torch.hann_window`.
|
|
""" + r"""
|
|
Arguments:
|
|
window_length (int): the size of returned window
|
|
periodic (bool, optional): If True, returns a window to be used as periodic
|
|
function. If False, return a symmetric window.
|
|
alpha (float, optional): The coefficient :math:`\alpha` in the equation above
|
|
beta (float, optional): The coefficient :math:`\beta` in the equation above
|
|
{dtype} Only floating point types are supported.
|
|
layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only
|
|
``torch.strided`` (dense layout) is supported.
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Returns:
|
|
Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window
|
|
|
|
""".format(**factory_common_args))
|
|
|
|
|
|
add_docstr(torch.bartlett_window,
|
|
"""
|
|
bartlett_window(window_length, periodic=True, dtype=None, \
|
|
layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
""" + r"""
|
|
Bartlett window function.
|
|
|
|
.. math::
|
|
w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases}
|
|
\frac{2n}{N - 1} & \text{if } 0 \leq n \leq \frac{N - 1}{2} \\
|
|
2 - \frac{2n}{N - 1} & \text{if } \frac{N - 1}{2} < n < N \\
|
|
\end{cases},
|
|
|
|
where :math:`N` is the full window size.
|
|
|
|
The input :attr:`window_length` is a positive integer controlling the
|
|
returned window size. :attr:`periodic` flag determines whether the returned
|
|
window trims off the last duplicate value from the symmetric window and is
|
|
ready to be used as a periodic window with functions like
|
|
:meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in
|
|
above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have
|
|
``torch.bartlett_window(L, periodic=True)`` equal to
|
|
``torch.bartlett_window(L + 1, periodic=False)[:-1])``.
|
|
|
|
.. note::
|
|
If :attr:`window_length` :math:`=1`, the returned window contains a single value 1.
|
|
""" + r"""
|
|
Arguments:
|
|
window_length (int): the size of returned window
|
|
periodic (bool, optional): If True, returns a window to be used as periodic
|
|
function. If False, return a symmetric window.
|
|
{dtype} Only floating point types are supported.
|
|
layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only
|
|
``torch.strided`` (dense layout) is supported.
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Returns:
|
|
Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window
|
|
|
|
""".format(**factory_common_args))
|
|
|
|
|
|
add_docstr(torch.blackman_window,
|
|
"""
|
|
blackman_window(window_length, periodic=True, dtype=None, \
|
|
layout=torch.strided, device=None, requires_grad=False) -> Tensor
|
|
""" + r"""
|
|
Blackman window function.
|
|
|
|
.. math::
|
|
w[n] = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{N - 1} \right)
|
|
|
|
where :math:`N` is the full window size.
|
|
|
|
The input :attr:`window_length` is a positive integer controlling the
|
|
returned window size. :attr:`periodic` flag determines whether the returned
|
|
window trims off the last duplicate value from the symmetric window and is
|
|
ready to be used as a periodic window with functions like
|
|
:meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in
|
|
above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have
|
|
``torch.blackman_window(L, periodic=True)`` equal to
|
|
``torch.blackman_window(L + 1, periodic=False)[:-1])``.
|
|
|
|
.. note::
|
|
If :attr:`window_length` :math:`=1`, the returned window contains a single value 1.
|
|
""" + r"""
|
|
Arguments:
|
|
window_length (int): the size of returned window
|
|
periodic (bool, optional): If True, returns a window to be used as periodic
|
|
function. If False, return a symmetric window.
|
|
{dtype} Only floating point types are supported.
|
|
layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only
|
|
``torch.strided`` (dense layout) is supported.
|
|
{device}
|
|
{requires_grad}
|
|
|
|
Returns:
|
|
Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window
|
|
|
|
""".format(**factory_common_args))
|
|
|
|
|
|
add_docstr(torch.vander,
|
|
"""
|
|
vander(x, N=None, increasing=False) -> Tensor
|
|
""" + r"""
|
|
Generates a Vandermonde matrix.
|
|
|
|
The columns of the output matrix are elementwise powers of the input vector :math:`x^{{(N-1)}}, x^{{(N-2)}}, ..., x^0`.
|
|
If increasing is True, the order of the columns is reversed :math:`x^0, x^1, ..., x^{{(N-1)}}`. Such a
|
|
matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde.
|
|
|
|
Arguments:
|
|
x (Tensor): 1-D input tensor.
|
|
N (int, optional): Number of columns in the output. If N is not specified,
|
|
a square array is returned :math:`(N = len(x))`.
|
|
increasing (bool, optional): Order of the powers of the columns. If True,
|
|
the powers increase from left to right, if False (the default) they are reversed.
|
|
|
|
Returns:
|
|
Tensor: Vandermonde matrix. If increasing is False, the first column is :math:`x^{{(N-1)}}`,
|
|
the second :math:`x^{{(N-2)}}` and so forth. If increasing is True, the columns
|
|
are :math:`x^0, x^1, ..., x^{{(N-1)}}`.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([1, 2, 3, 5])
|
|
>>> torch.vander(x)
|
|
tensor([[ 1, 1, 1, 1],
|
|
[ 8, 4, 2, 1],
|
|
[ 27, 9, 3, 1],
|
|
[125, 25, 5, 1]])
|
|
>>> torch.vander(x, N=3)
|
|
tensor([[ 1, 1, 1],
|
|
[ 4, 2, 1],
|
|
[ 9, 3, 1],
|
|
[25, 5, 1]])
|
|
>>> torch.vander(x, N=3, increasing=True)
|
|
tensor([[ 1, 1, 1],
|
|
[ 1, 2, 4],
|
|
[ 1, 3, 9],
|
|
[ 1, 5, 25]])
|
|
|
|
""".format(**factory_common_args))
|
|
|
|
|
|
add_docstr(torch.unbind,
|
|
r"""
|
|
unbind(input, dim=0) -> seq
|
|
|
|
Removes a tensor dimension.
|
|
|
|
Returns a tuple of all slices along a given dimension, already without it.
|
|
|
|
Arguments:
|
|
input (Tensor): the tensor to unbind
|
|
dim (int): dimension to remove
|
|
|
|
Example::
|
|
|
|
>>> torch.unbind(torch.tensor([[1, 2, 3],
|
|
>>> [4, 5, 6],
|
|
>>> [7, 8, 9]]))
|
|
(tensor([1, 2, 3]), tensor([4, 5, 6]), tensor([7, 8, 9]))
|
|
""")
|
|
|
|
|
|
add_docstr(torch.combinations,
|
|
r"""
|
|
combinations(input, r=2, with_replacement=False) -> seq
|
|
|
|
Compute combinations of length :math:`r` of the given tensor. The behavior is similar to
|
|
python's `itertools.combinations` when `with_replacement` is set to `False`, and
|
|
`itertools.combinations_with_replacement` when `with_replacement` is set to `True`.
|
|
|
|
Arguments:
|
|
input (Tensor): 1D vector.
|
|
r (int, optional): number of elements to combine
|
|
with_replacement (boolean, optional): whether to allow duplication in combination
|
|
|
|
Returns:
|
|
Tensor: A tensor equivalent to converting all the input tensors into lists, do
|
|
`itertools.combinations` or `itertools.combinations_with_replacement` on these
|
|
lists, and finally convert the resulting list into tensor.
|
|
|
|
Example::
|
|
|
|
>>> a = [1, 2, 3]
|
|
>>> list(itertools.combinations(a, r=2))
|
|
[(1, 2), (1, 3), (2, 3)]
|
|
>>> list(itertools.combinations(a, r=3))
|
|
[(1, 2, 3)]
|
|
>>> list(itertools.combinations_with_replacement(a, r=2))
|
|
[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)]
|
|
>>> tensor_a = torch.tensor(a)
|
|
>>> torch.combinations(tensor_a)
|
|
tensor([[1, 2],
|
|
[1, 3],
|
|
[2, 3]])
|
|
>>> torch.combinations(tensor_a, r=3)
|
|
tensor([[1, 2, 3]])
|
|
>>> torch.combinations(tensor_a, with_replacement=True)
|
|
tensor([[1, 1],
|
|
[1, 2],
|
|
[1, 3],
|
|
[2, 2],
|
|
[2, 3],
|
|
[3, 3]])
|
|
""")
|
|
|
|
add_docstr(torch.trapz,
|
|
r"""
|
|
trapz(y, x, *, dim=-1) -> Tensor
|
|
|
|
Estimate :math:`\int y\,dx` along `dim`, using the trapezoid rule.
|
|
|
|
Arguments:
|
|
y (Tensor): The values of the function to integrate
|
|
x (Tensor): The points at which the function `y` is sampled.
|
|
If `x` is not in ascending order, intervals on which it is decreasing
|
|
contribute negatively to the estimated integral (i.e., the convention
|
|
:math:`\int_a^b f = -\int_b^a f` is followed).
|
|
dim (int): The dimension along which to integrate.
|
|
By default, use the last dimension.
|
|
|
|
Returns:
|
|
A Tensor with the same shape as the input, except with `dim` removed.
|
|
Each element of the returned tensor represents the estimated integral
|
|
:math:`\int y\,dx` along `dim`.
|
|
|
|
Example::
|
|
|
|
>>> y = torch.randn((2, 3))
|
|
>>> y
|
|
tensor([[-2.1156, 0.6857, -0.2700],
|
|
[-1.2145, 0.5540, 2.0431]])
|
|
>>> x = torch.tensor([[1, 3, 4], [1, 2, 3]])
|
|
>>> torch.trapz(y, x)
|
|
tensor([-1.2220, 0.9683])
|
|
|
|
.. function:: trapz(y, *, dx=1, dim=-1) -> Tensor
|
|
|
|
As above, but the sample points are spaced uniformly at a distance of `dx`.
|
|
|
|
Arguments:
|
|
y (Tensor): The values of the function to integrate
|
|
dx (float): The distance between points at which `y` is sampled.
|
|
dim (int): The dimension along which to integrate.
|
|
By default, use the last dimension.
|
|
|
|
Returns:
|
|
A Tensor with the same shape as the input, except with `dim` removed.
|
|
Each element of the returned tensor represents the estimated integral
|
|
:math:`\int y\,dx` along `dim`.
|
|
""")
|
|
|
|
add_docstr(torch.repeat_interleave,
|
|
r"""
|
|
repeat_interleave(input, repeats, dim=None) -> Tensor
|
|
|
|
Repeat elements of a tensor.
|
|
|
|
.. warning::
|
|
|
|
This is different from :meth:`torch.Tensor.repeat` but similar to ``numpy.repeat``.
|
|
|
|
Args:
|
|
{input}
|
|
repeats (Tensor or int): The number of repetitions for each element.
|
|
repeats is broadcasted to fit the shape of the given axis.
|
|
dim (int, optional): The dimension along which to repeat values.
|
|
By default, use the flattened input array, and return a flat output
|
|
array.
|
|
|
|
Returns:
|
|
Tensor: Repeated tensor which has the same shape as input, except along the
|
|
given axis.
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([1, 2, 3])
|
|
>>> x.repeat_interleave(2)
|
|
tensor([1, 1, 2, 2, 3, 3])
|
|
>>> y = torch.tensor([[1, 2], [3, 4]])
|
|
>>> torch.repeat_interleave(y, 2)
|
|
tensor([1, 1, 2, 2, 3, 3, 4, 4])
|
|
>>> torch.repeat_interleave(y, 3, dim=1)
|
|
tensor([[1, 1, 1, 2, 2, 2],
|
|
[3, 3, 3, 4, 4, 4]])
|
|
>>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0)
|
|
tensor([[1, 2],
|
|
[3, 4],
|
|
[3, 4]])
|
|
|
|
.. function:: repeat_interleave(repeats) -> Tensor
|
|
|
|
If the `repeats` is `tensor([n1, n2, n3, ...])`, then the output will be
|
|
`tensor([0, 0, ..., 1, 1, ..., 2, 2, ..., ...])` where `0` appears `n1` times,
|
|
`1` appears `n2` times, `2` appears `n3` times, etc.
|
|
""".format(**common_args))
|
|
|
|
|
|
add_docstr(torch.quantize_per_tensor,
|
|
r"""
|
|
quantize_per_tensor(input, scale, zero_point, dtype) -> Tensor
|
|
|
|
Converts a float tensor to quantized tensor with given scale and zero point.
|
|
|
|
Arguments:
|
|
input (Tensor): float tensor to quantize
|
|
scale (float): scale to apply in quantization formula
|
|
zero_point (int): offset in integer value that maps to float zero
|
|
dtype (:class:`torch.dtype`): the desired data type of returned tensor.
|
|
Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32``
|
|
|
|
Returns:
|
|
Tensor: A newly quantized tensor
|
|
|
|
Example::
|
|
|
|
>>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8)
|
|
tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8,
|
|
quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10)
|
|
>>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8).int_repr()
|
|
tensor([ 0, 10, 20, 30], dtype=torch.uint8)
|
|
""")
|
|
|
|
add_docstr(torch.quantize_per_channel,
|
|
r"""
|
|
quantize_per_channel(input, scales, zero_points, axis, dtype) -> Tensor
|
|
|
|
Converts a float tensor to per-channel quantized tensor with given scales and zero points.
|
|
|
|
Arguments:
|
|
input (Tensor): float tensor to quantize
|
|
scales (Tensor): float 1D tensor of scales to use, size should match ``input.size(axis)``
|
|
zero_points (int): integer 1D tensor of offset to use, size should match ``input.size(axis)``
|
|
axis (int): dimension on which apply per-channel quantization
|
|
dtype (:class:`torch.dtype`): the desired data type of returned tensor.
|
|
Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32``
|
|
|
|
Returns:
|
|
Tensor: A newly quantized tensor
|
|
|
|
Example::
|
|
|
|
>>> x = torch.tensor([[-1.0, 0.0], [1.0, 2.0]])
|
|
>>> torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8)
|
|
tensor([[-1., 0.],
|
|
[ 1., 2.]], size=(2, 2), dtype=torch.quint8,
|
|
quantization_scheme=torch.per_channel_affine,
|
|
scale=tensor([0.1000, 0.0100], dtype=torch.float64),
|
|
zero_point=tensor([10, 0]), axis=0)
|
|
>>> torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8).int_repr()
|
|
tensor([[ 0, 10],
|
|
[100, 200]], dtype=torch.uint8)
|
|
""")
|
|
|
|
add_docstr(torch.Generator,
|
|
r"""
|
|
Generator(device='cpu') -> Generator
|
|
|
|
Creates and returns a generator object which manages the state of the algorithm that
|
|
produces pseudo random numbers. Used as a keyword argument in many :ref:`inplace-random-sampling`
|
|
functions.
|
|
|
|
Arguments:
|
|
device (:class:`torch.device`, optional): the desired device for the generator.
|
|
|
|
Returns:
|
|
Generator: An torch.Generator object.
|
|
|
|
Example::
|
|
|
|
>>> g_cpu = torch.Generator()
|
|
>>> g_cuda = torch.Generator(device='cuda')
|
|
""")
|
|
|
|
|
|
add_docstr(torch.Generator.set_state,
|
|
r"""
|
|
Generator.set_state(new_state) -> void
|
|
|
|
Sets the Generator state.
|
|
|
|
Arguments:
|
|
new_state (torch.ByteTensor): The desired state.
|
|
|
|
Example::
|
|
|
|
>>> g_cpu = torch.Generator()
|
|
>>> g_cpu_other = torch.Generator()
|
|
>>> g_cpu.set_state(g_cpu_other.get_state())
|
|
""")
|
|
|
|
|
|
add_docstr(torch.Generator.get_state,
|
|
r"""
|
|
Generator.get_state() -> Tensor
|
|
|
|
Returns the Generator state as a ``torch.ByteTensor``.
|
|
|
|
Returns:
|
|
Tensor: A ``torch.ByteTensor`` which contains all the necessary bits
|
|
to restore a Generator to a specific point in time.
|
|
|
|
Example::
|
|
|
|
>>> g_cpu = torch.Generator()
|
|
>>> g_cpu.get_state()
|
|
""")
|
|
|
|
|
|
add_docstr(torch.Generator.manual_seed,
|
|
r"""
|
|
Generator.manual_seed(seed) -> Generator
|
|
|
|
Sets the seed for generating random numbers. Returns a `torch.Generator` object.
|
|
It is recommended to set a large seed, i.e. a number that has a good balance of 0
|
|
and 1 bits. Avoid having many 0 bits in the seed.
|
|
|
|
Arguments:
|
|
seed (int): The desired seed. Value must be within the inclusive range
|
|
`[-0x8000_0000_0000_0000, 0xffff_ffff_ffff_ffff]`. Otherwise, a RuntimeError
|
|
is raised. Negative inputs are remapped to positive values with the formula
|
|
`0xffff_ffff_ffff_ffff + seed`.
|
|
|
|
Returns:
|
|
Generator: An torch.Generator object.
|
|
|
|
Example::
|
|
|
|
>>> g_cpu = torch.Generator()
|
|
>>> g_cpu.manual_seed(2147483647)
|
|
""")
|
|
|
|
|
|
add_docstr(torch.Generator.initial_seed,
|
|
r"""
|
|
Generator.initial_seed() -> int
|
|
|
|
Returns the initial seed for generating random numbers.
|
|
|
|
Example::
|
|
|
|
>>> g_cpu = torch.Generator()
|
|
>>> g_cpu.initial_seed()
|
|
2147483647
|
|
""")
|
|
|
|
|
|
add_docstr(torch.Generator.seed,
|
|
r"""
|
|
Generator.seed() -> int
|
|
|
|
Gets a non-deterministic random number from std::random_device or the current
|
|
time and uses it to seed a Generator.
|
|
|
|
Example::
|
|
|
|
>>> g_cpu = torch.Generator()
|
|
>>> g_cpu.seed()
|
|
1516516984916
|
|
""")
|
|
|
|
|
|
add_docstr(torch.Generator.device,
|
|
r"""
|
|
Generator.device -> device
|
|
|
|
Gets the current device of the generator.
|
|
|
|
Example::
|
|
|
|
>>> g_cpu = torch.Generator()
|
|
>>> g_cpu.device
|
|
device(type='cpu')
|
|
""")
|
|
|
|
add_docstr(torch.searchsorted,
|
|
r"""
|
|
searchsorted(sorted_sequence, values, out_int32=False, right=False, out=None) -> Tensor
|
|
|
|
Find the indices from the *innermost* dimension of :attr:`sorted_sequence` such that, if the
|
|
corresponding values in :attr:`values` were inserted before the indices, the order of the
|
|
corresponding *innermost* dimension within :attr:`sorted_sequence` would be preserved.
|
|
Return a new tensor with the same size as :attr:`values`. If :attr:`right` is False (default),
|
|
then the left boundary of :attr:`sorted_sequence` is closed. More formally, the returned index
|
|
satisfies the following rules:
|
|
|
|
.. list-table::
|
|
:widths: 12 10 78
|
|
:header-rows: 1
|
|
|
|
* - :attr:`sorted_sequence`
|
|
- :attr:`right`
|
|
- *returned index satisfies*
|
|
* - 1-D
|
|
- False
|
|
- ``sorted_sequence[i-1] <= values[m][n]...[l][x] < sorted_sequence[i]``
|
|
* - 1-D
|
|
- True
|
|
- ``sorted_sequence[i-1] < values[m][n]...[l][x] <= sorted_sequence[i]``
|
|
* - N-D
|
|
- False
|
|
- ``sorted_sequence[m][n]...[l][i-1] <= values[m][n]...[l][x] < sorted_sequence[m][n]...[l][i]``
|
|
* - N-D
|
|
- True
|
|
- ``sorted_sequence[m][n]...[l][i-1] < values[m][n]...[l][x] <= sorted_sequence[m][n]...[l][i]``
|
|
|
|
Args:
|
|
sorted_sequence (Tensor): N-D or 1-D tensor, containing monotonically increasing sequence on the *innermost*
|
|
dimension.
|
|
values (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s).
|
|
out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise.
|
|
Default value is False, i.e. default output data type is torch.int64.
|
|
right (bool, optional): if False, return the first suitable location that is found. If True, return the
|
|
last such index. If no suitable index found, return 0 for non-numerical value
|
|
(eg. nan, inf) or the size of *innermost* dimension within :attr:`sorted_sequence`
|
|
(one pass the last index of the *innermost* dimension). In other words, if False,
|
|
gets the lower bound index for each value in :attr:`values` on the corresponding
|
|
*innermost* dimension of the :attr:`sorted_sequence`. If True, gets the upper
|
|
bound index instead. Default value is False.
|
|
out (Tensor, optional): the output tensor, must be the same size as :attr:`values` if provided.
|
|
|
|
.. note:: If your use case is always 1-D sorted sequence, :func:`torch.bucketize` is preferred,
|
|
because it has fewer dimension checks resulting in slightly better performance.
|
|
|
|
|
|
Example::
|
|
|
|
>>> sorted_sequence = torch.tensor([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]])
|
|
>>> sorted_sequence
|
|
tensor([[ 1, 3, 5, 7, 9],
|
|
[ 2, 4, 6, 8, 10]])
|
|
>>> values = torch.tensor([[3, 6, 9], [3, 6, 9]])
|
|
>>> values
|
|
tensor([[3, 6, 9],
|
|
[3, 6, 9]])
|
|
>>> torch.searchsorted(sorted_sequence, values)
|
|
tensor([[1, 3, 4],
|
|
[1, 2, 4]])
|
|
>>> torch.searchsorted(sorted_sequence, values, right=True)
|
|
tensor([[2, 3, 5],
|
|
[1, 3, 4]])
|
|
|
|
>>> sorted_sequence_1d = torch.tensor([1, 3, 5, 7, 9])
|
|
>>> sorted_sequence_1d
|
|
tensor([1, 3, 5, 7, 9])
|
|
>>> torch.searchsorted(sorted_sequence_1d, values)
|
|
tensor([[1, 3, 4],
|
|
[1, 3, 4]])
|
|
""")
|
|
|
|
add_docstr(torch.bucketize,
|
|
r"""
|
|
bucketize(input, boundaries, out_int32=False, right=False, out=None) -> Tensor
|
|
|
|
Returns the indices of the buckets to which each value in the :attr:`input` belongs, where the
|
|
boundaries of the buckets are set by :attr:`boundaries`. Return a new tensor with the same size
|
|
as :attr:`input`. If :attr:`right` is False (default), then the left boundary is closed. More
|
|
formally, the returned index satisfies the following rules:
|
|
|
|
.. list-table::
|
|
:widths: 15 85
|
|
:header-rows: 1
|
|
|
|
* - :attr:`right`
|
|
- *returned index satisfies*
|
|
* - False
|
|
- ``boundaries[i-1] <= input[m][n]...[l][x] < boundaries[i]``
|
|
* - True
|
|
- ``boundaries[i-1] < input[m][n]...[l][x] <= boundaries[i]``
|
|
|
|
Args:
|
|
input (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s).
|
|
boundaries (Tensor): 1-D tensor, must contain a monotonically increasing sequence.
|
|
out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise.
|
|
Default value is False, i.e. default output data type is torch.int64.
|
|
right (bool, optional): if False, return the first suitable location that is found. If True, return the
|
|
last such index. If no suitable index found, return 0 for non-numerical value
|
|
(eg. nan, inf) or the size of :attr:`boundaries` (one pass the last index).
|
|
In other words, if False, gets the lower bound index for each value in :attr:`input`
|
|
from :attr:`boundaries`. If True, gets the upper bound index instead.
|
|
Default value is False.
|
|
out (Tensor, optional): the output tensor, must be the same size as :attr:`input` if provided.
|
|
|
|
|
|
Example::
|
|
|
|
>>> boundaries = torch.tensor([1, 3, 5, 7, 9])
|
|
>>> boundaries
|
|
tensor([1, 3, 5, 7, 9])
|
|
>>> v = torch.tensor([[3, 6, 9], [3, 6, 9]])
|
|
>>> v
|
|
tensor([[3, 6, 9],
|
|
[3, 6, 9]])
|
|
>>> torch.bucketize(v, boundaries)
|
|
tensor([[1, 3, 4],
|
|
[1, 3, 4]])
|
|
>>> torch.bucketize(v, boundaries, right=True)
|
|
tensor([[2, 3, 5],
|
|
[2, 3, 5]])
|
|
""")
|