mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: This PR adds ```MSELoss```, ```KLDivLoss``` and ```BCELoss```. The tests for ```BCELoss``` fail with the following error: ``` unknown file: Failure C++ exception with description "autograd_meta() INTERNAL ASSERT FAILED at /home/shahriar/Contrib/pytorch/c10/core/TensorImpl.h:533, please report a bug to PyTorch. set_requires_grad is not implemented for Tensor (set_requires_grad at /home/shahriar/Contrib/pytorch/c10/core/TensorImpl.h:533) ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/27156 Differential Revision: D17960323 Pulled By: yf225 fbshipit-source-id: 84b8431064f2f573679c03a8d7994e3e2f81a4d1 |
||
|---|---|---|
| .. | ||
| any.cpp | ||
| autograd.cpp | ||
| CMakeLists.txt | ||
| dataloader.cpp | ||
| enum.cpp | ||
| expanding-array.cpp | ||
| functional.cpp | ||
| init_baseline.h | ||
| init_baseline.py | ||
| init.cpp | ||
| integration.cpp | ||
| jit.cpp | ||
| memory.cpp | ||
| misc.cpp | ||
| module.cpp | ||
| modulelist.cpp | ||
| modules.cpp | ||
| nn_utils.cpp | ||
| optim_baseline.h | ||
| optim_baseline.py | ||
| optim.cpp | ||
| ordered_dict.cpp | ||
| parallel.cpp | ||
| README.md | ||
| rnn.cpp | ||
| sequential.cpp | ||
| serialize.cpp | ||
| static.cpp | ||
| support.h | ||
| tensor_cuda.cpp | ||
| tensor_options_cuda.cpp | ||
| tensor_options.cpp | ||
| tensor.cpp | ||
| torch_include.cpp | ||
C++ Frontend Tests
In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.
CUDA Tests
To make a test runnable only on platforms with CUDA, you should suffix your
test with _CUDA, e.g.
TEST(MyTestSuite, MyTestCase_CUDA) { }
To make it runnable only on platforms with at least two CUDA machines, suffix
it with _MultiCUDA instead of _CUDA, e.g.
TEST(MyTestSuite, MyTestCase_MultiCUDA) { }
There is logic in main.cpp that detects the availability and number of CUDA
devices and supplies the appropriate negative filters to GoogleTest.
Integration Tests
Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:
$ python tools/download_mnist.py -d test/cpp/api/mnist
The required paths will be referenced as test/cpp/api/mnist/... in the test
code, so you must run the integration tests from the PyTorch root folder.