mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
We had the option but never used cpu_offload as optimizer state_dict offloads the tensors to CPU by default. And this is usually most users want as the tensors are required to be moved to CPU eventually. However, we may want to disable offloading to CPU in some cases, epsecially for the debugging purpose. This PR lets optimizer state_dict read the flag. Differential Revision: [D48913340](https://our.internmc.facebook.com/intern/diff/D48913340/) Pull Request resolved: https://github.com/pytorch/pytorch/pull/108434 Approved by: https://github.com/wz337
2014 lines
81 KiB
Python
2014 lines
81 KiB
Python
import copy
|
|
import functools
|
|
import logging
|
|
import warnings
|
|
from contextlib import ExitStack
|
|
from dataclasses import dataclass, field
|
|
from typing import (
|
|
Any,
|
|
cast,
|
|
Dict,
|
|
Iterable,
|
|
Iterator,
|
|
List,
|
|
NamedTuple,
|
|
Optional,
|
|
Sequence,
|
|
Set,
|
|
Tuple,
|
|
Union,
|
|
)
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.distributed.fsdp._traversal_utils as traversal_utils
|
|
import torch.nn as nn
|
|
from torch.distributed._shard.sharded_tensor import ShardedTensor
|
|
from torch.distributed._tensor import DTensor
|
|
from torch.distributed.distributed_c10d import _get_pg_default_device
|
|
from torch.distributed.fsdp._common_utils import (
|
|
_apply_to_modules,
|
|
_FSDPState,
|
|
_get_module_fsdp_state_if_fully_sharded_module,
|
|
_get_param_to_fqns,
|
|
_module_handle,
|
|
_named_parameters_with_duplicates,
|
|
clean_tensor_name,
|
|
)
|
|
from torch.distributed.fsdp._debug_utils import SimpleProfiler
|
|
from torch.distributed.fsdp._flat_param import FlatParameter, FlatParamHandle
|
|
from torch.distributed.fsdp._fsdp_extensions import (
|
|
_ext_chunk_dtensor,
|
|
_ext_chunk_tensor,
|
|
)
|
|
from torch.distributed.fsdp._runtime_utils import (
|
|
_lazy_init,
|
|
_reset_flat_param_grad_info_if_needed,
|
|
)
|
|
from torch.distributed.fsdp._shard_utils import _gather_state_dict
|
|
from torch.distributed.fsdp.api import ShardingStrategy
|
|
from torch.utils._pytree import tree_map_only
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class FSDPParamInfo:
|
|
state: _FSDPState
|
|
handle: FlatParamHandle
|
|
param_indices: Dict[str, int]
|
|
param_requires_grad: List[bool]
|
|
|
|
|
|
def sorted_items(dictionary: Dict[str, Any]) -> Iterator[Tuple[str, Any]]:
|
|
keys = sorted(dictionary.keys())
|
|
for k in keys:
|
|
yield k, dictionary[k]
|
|
|
|
|
|
@dataclass
|
|
class _ConsolidatedOptimState:
|
|
"""
|
|
This holds the consolidated optimizer state on the target rank. Positive-
|
|
dimension tensor state is communicated across ranks, while zero-dimension
|
|
tensor state and non-tensor state is taken directly from the target rank.
|
|
|
|
PyTorch version 1.12 moved to using zero-dimension tensors for scalar
|
|
values, but user implemented optimizers may still use float (i.e. a
|
|
non-tensor). Thus, we support both and handle them identically.
|
|
|
|
Attributes:
|
|
tensor_state (Dict[str, torch.Tensor]): Mapping from positive-dimension
|
|
tensor state name to the unsharded flat tensor representing the
|
|
state.
|
|
zero_dim_tensor_state (Dict[str, torch.Tensor]): Mapping from zero-
|
|
dimension tensor state name to its value.
|
|
non_tensor_state (Dict[str, Any]): Mapping from non-tensor state
|
|
name to its value.
|
|
"""
|
|
|
|
tensor_state: Dict[str, torch.Tensor] = field(default_factory=dict)
|
|
zero_dim_tensor_state: Dict[str, torch.Tensor] = field(default_factory=dict)
|
|
non_tensor_state: Dict[str, Any] = field(default_factory=dict)
|
|
|
|
|
|
class _PosDimTensorInfo(NamedTuple):
|
|
"""
|
|
Meatadata for positive-dimension tensors used internally for
|
|
:meth:`scatter_full_optim_state_dict`.
|
|
|
|
Attributes:
|
|
shape (torch.Size): Sharded tensor shape (which is equal to the
|
|
unsharded tensor shape if the tensor is optimizer state for a
|
|
non-FSDP parameter and is hence not sharded).
|
|
dtype (torch.dtype): Data type of the tensor.
|
|
"""
|
|
|
|
shape: torch.Size
|
|
dtype: torch.dtype
|
|
|
|
|
|
class _OptimStateKey(NamedTuple):
|
|
"""
|
|
This represents an optimizer state key that may be used commonly across
|
|
ranks. It is based on the unflattened parameter names rather than parameter
|
|
IDs to make it independent of each rank's own optimizer construction.
|
|
"""
|
|
|
|
unflat_param_names: Tuple[str, ...]
|
|
is_fsdp_managed: bool
|
|
|
|
|
|
def _unflatten_optim_state(
|
|
fsdp_param_info: FSDPParamInfo,
|
|
flat_param_state: Dict[str, Any],
|
|
to_save: bool,
|
|
shard_state: bool,
|
|
cpu_offload: bool,
|
|
) -> List[Dict[str, Any]]:
|
|
"""
|
|
Unflattens the optimizer state, consisting of the "state" part and the
|
|
"param_groups" part. Unflattening the "state" part involves consolidating
|
|
the state on the target rank and remapping from flattened to unflattened
|
|
parameter IDs, and the "param_groups" part only involves remapping from
|
|
flattened to unflattened parameter IDs.
|
|
|
|
Args:
|
|
fsdp_param_info (FSDPParamInfo): The FSDP state, the handle, and a
|
|
mapping from FQN to original parameter index.
|
|
flat_param_state (Dict[str, Any]): Entry for the flat parameter in the
|
|
"state" part of the optimizer state dict.
|
|
to_save (bool): Whether to save the state on this rank.
|
|
|
|
Returns:
|
|
List[Dict[str, Any]]: A :class:`list` holding the entries in the
|
|
"state" part of the optimizer state dict corresponding to the
|
|
unflattened parameters comprising the flat parameter if on the target
|
|
rank or an empty :class:`list` otherwise. The final optimizer state
|
|
dict will need to map these entries using the proper unflattened
|
|
parameter IDs.
|
|
"""
|
|
assert (
|
|
not shard_state or to_save
|
|
), "If ``shard_state`` is True, ``to_save`` has to be True."
|
|
consolidated_state = _communicate_optim_state(
|
|
fsdp_param_info,
|
|
flat_param_state,
|
|
)
|
|
if to_save:
|
|
unflat_param_state = _unflatten_communicated_optim_state(
|
|
fsdp_param_info,
|
|
consolidated_state,
|
|
shard_state,
|
|
)
|
|
for optim_state in unflat_param_state:
|
|
# We can't use .items() below cuz we'd run into a concurrent modification error
|
|
if cpu_offload:
|
|
for key in list(optim_state.keys()):
|
|
state = optim_state[key]
|
|
if not isinstance(state, torch.Tensor):
|
|
continue
|
|
optim_state[key] = state.cpu()
|
|
return unflat_param_state
|
|
else:
|
|
return []
|
|
|
|
|
|
def _is_zero_dim_tensor(x: Any) -> bool:
|
|
return torch.is_tensor(x) and x.dim() == 0
|
|
|
|
|
|
def _communicate_optim_state(
|
|
fsdp_param_info: FSDPParamInfo,
|
|
flat_param_state: Dict[str, Any],
|
|
) -> _ConsolidatedOptimState:
|
|
"""
|
|
Communicates the optimizer state for a flat parameter across ranks. All
|
|
ranks will hold the entire non-sharded optimizer state on GPU.
|
|
|
|
If ``N`` is the number of tensor optimizer states in the optimizer state
|
|
dict, then the communication complexity is 0 if ``N = 0`` and ``N + 1``
|
|
otherwise (where the plus 1 comes from all-gathering the padding per rank).
|
|
|
|
Args:
|
|
fsdp_param_info (FSDPParamInfo): The FSDP state, the handle, and a
|
|
mapping from FQN to original parameter index.
|
|
flat_param_state (Dict[str, Any]): The entry in the "state" part of the
|
|
optimizer state dict corresponding to the flat parameter.
|
|
|
|
Returns:
|
|
ConsolidatedOptimState: Consolidated optimizer state for the target
|
|
flat parameter.
|
|
"""
|
|
fsdp_state = fsdp_param_info.state
|
|
flat_param = fsdp_param_info.handle.flat_param
|
|
state = _ConsolidatedOptimState()
|
|
tensor_state, zero_dim_tensor_state, non_tensor_state = (
|
|
state.tensor_state,
|
|
state.zero_dim_tensor_state,
|
|
state.non_tensor_state,
|
|
)
|
|
|
|
for state_name, value in sorted_items(flat_param_state):
|
|
# Positive-dimension tensor state: communicate across ranks
|
|
if torch.is_tensor(value) and value.dim() > 0:
|
|
# If the parameter is not sharded, then neither is the
|
|
# positive-dimension tensor state, so no need to communicate it --
|
|
# we take the target rank's value
|
|
if (
|
|
fsdp_state.world_size == 1
|
|
or fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
|
|
):
|
|
tensor_state[state_name] = value
|
|
continue
|
|
assert (
|
|
fsdp_state.compute_device is not None
|
|
), "compute_device has not been initialized"
|
|
if value.device.type != fsdp_state.compute_device.type:
|
|
value = value.to(fsdp_state.compute_device)
|
|
# Assume that positive-dimension tensor optimizer state
|
|
# has the same shape as the sharded flat parameter
|
|
buffer_size = flat_param._full_param_padded.size() # type: ignore[attr-defined]
|
|
tensor_buffer = value.new_zeros(*buffer_size)
|
|
dist.all_gather_into_tensor(
|
|
tensor_buffer, value, group=fsdp_state.process_group
|
|
)
|
|
fsdp_state._device_handle.synchronize()
|
|
unpadded_numel = cast(
|
|
nn.Parameter, flat_param._unpadded_unsharded_size
|
|
).numel()
|
|
tensor_state[state_name] = tensor_buffer[:unpadded_numel]
|
|
# Zero-dimension tensor state and non-tensor state: take this rank's
|
|
# value directly
|
|
else:
|
|
if _is_zero_dim_tensor(value):
|
|
zero_dim_tensor_state[state_name] = value.detach().clone()
|
|
else:
|
|
non_tensor_state[state_name] = value
|
|
return state
|
|
|
|
|
|
def _unflatten_communicated_optim_state(
|
|
fsdp_param_info: FSDPParamInfo,
|
|
state: _ConsolidatedOptimState,
|
|
shard_state: bool,
|
|
) -> List[Dict[str, Any]]:
|
|
"""
|
|
Unflattens the communicated optimizer state (given by ``tensor_state``,
|
|
``non_tensor_state``, and ``zero_dim_tensor_state``) for a single flat
|
|
parameter. This should only be called on the target rank.
|
|
|
|
Args:
|
|
fsdp_param_info (FSDPParamInfo): The FSDP state, the handle, and a
|
|
mapping from FQN to original parameter index.
|
|
state (_ConsolidatedOptimState): Consolidated optimizer state.
|
|
|
|
Returns:
|
|
List[Dict[str, Any]]: A :class:`list` holding the entries in the
|
|
"state" part of the optimizer state dict corresponding to the
|
|
unflattened parameters comprising the flat parameter. The final
|
|
optimizer state dict will need to map these entries using the proper
|
|
unflattened parameter IDs.
|
|
"""
|
|
fsdp_state = fsdp_param_info.state
|
|
handle = fsdp_param_info.handle
|
|
flat_param = handle.flat_param
|
|
unflat_param_state: List[Dict[str, Any]] = []
|
|
flat_param_views: Dict[str, Iterator] = {}
|
|
num_unflat_params = flat_param._num_params
|
|
tensor_state, zero_dim_tensor_state, non_tensor_state = (
|
|
state.tensor_state,
|
|
state.zero_dim_tensor_state,
|
|
state.non_tensor_state,
|
|
)
|
|
|
|
for _ in range(num_unflat_params):
|
|
unflat_state_param = {}
|
|
# Add positive-dimension tensor state: unflatten with views
|
|
for state_name, flat_tensor in sorted_items(tensor_state):
|
|
views_generated = state_name in flat_param_views
|
|
if not views_generated:
|
|
views = handle._get_unflat_views(flat_tensor)
|
|
flat_param_views[state_name] = views
|
|
else:
|
|
views = flat_param_views[state_name]
|
|
optim_state: Union[torch.Tensor, ShardedTensor, DTensor] = next(views)
|
|
if shard_state:
|
|
osd_config = fsdp_state._optim_state_dict_config
|
|
if getattr(osd_config, "_use_dtensor", False):
|
|
assert fsdp_state._device_mesh is not None
|
|
optim_state = _ext_chunk_dtensor(
|
|
optim_state, fsdp_state.rank, fsdp_state._device_mesh
|
|
)
|
|
else:
|
|
assert fsdp_state.process_group is not None
|
|
optim_state = _ext_chunk_tensor(
|
|
optim_state,
|
|
fsdp_state.rank,
|
|
fsdp_state.world_size,
|
|
fsdp_state._device_handle.device_count(),
|
|
fsdp_state.process_group,
|
|
)
|
|
unflat_state_param[state_name] = optim_state
|
|
|
|
# Add zero-dimension tensor state: take the target rank's value
|
|
for state_name, zero_dim_tensor in sorted_items(zero_dim_tensor_state):
|
|
unflat_state_param[state_name] = zero_dim_tensor
|
|
# Add non-tensor state: take the target rank's value
|
|
for state_name, non_tensor in sorted_items(non_tensor_state):
|
|
unflat_state_param[state_name] = non_tensor
|
|
unflat_param_state.append(unflat_state_param)
|
|
return unflat_param_state
|
|
|
|
|
|
def _broadcast_processed_state(
|
|
fsdp_state: _FSDPState,
|
|
optim_state: Dict[str, Any],
|
|
group: Optional[dist.ProcessGroup],
|
|
) -> Dict[str, Any]:
|
|
objects: List[Any] = [None]
|
|
if fsdp_state.rank == 0:
|
|
objects[0] = tree_map_only(
|
|
torch.Tensor,
|
|
lambda v: v.cpu() if v.dim() == 0 else _PosDimTensorInfo(v.shape, v.dtype),
|
|
optim_state,
|
|
)
|
|
dist.broadcast_object_list(objects, src=0, group=group)
|
|
if fsdp_state.rank == 0:
|
|
return optim_state
|
|
else:
|
|
return objects[0]
|
|
|
|
|
|
def _broadcast_state(
|
|
fsdp_state: _FSDPState, state: Any, group: Optional[dist.ProcessGroup]
|
|
) -> Any:
|
|
device = _get_pg_default_device(group)
|
|
if fsdp_state.rank == 0:
|
|
if not isinstance(state, torch.Tensor) or state.dim() == 0:
|
|
return state
|
|
tensor = state.to(device)
|
|
else:
|
|
if isinstance(state, torch.Tensor):
|
|
assert state.dim() == 0, (
|
|
"For non-zero ranks, a tensor state should have zero dimension, "
|
|
"but got the state with shape {state.shape()}."
|
|
)
|
|
return state
|
|
elif not isinstance(state, _PosDimTensorInfo):
|
|
return state
|
|
tensor = torch.zeros(state.shape, dtype=state.dtype, device=device)
|
|
dist.broadcast(tensor, src=0, group=group)
|
|
return tensor
|
|
|
|
|
|
def _shard_orig_param_state(
|
|
fsdp_param_info: FSDPParamInfo,
|
|
fqn: str,
|
|
optim_state: Dict[str, Any],
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Shard the optimizer state for the original parameter with the name ``fqn``.
|
|
This API should only be used when ``use_orig_params`` is True.
|
|
"""
|
|
if not optim_state:
|
|
return {}
|
|
fsdp_state = fsdp_param_info.state
|
|
flat_param = fsdp_param_info.handle.flat_param
|
|
param_idx = fsdp_param_info.param_indices[fqn]
|
|
shard_param_info = flat_param._shard_param_infos[param_idx] # type: ignore[attr-defined]
|
|
optim_state = _gather_state_dict(
|
|
optim_state, pg=fsdp_state.process_group, device=fsdp_state.compute_device
|
|
)
|
|
if not shard_param_info.in_shard:
|
|
return {}
|
|
# Flatten and shard the state.
|
|
new_optim_state: Dict[str, Any] = {}
|
|
intra_param_start_idx = shard_param_info.intra_param_start_idx
|
|
intra_param_end_idx = shard_param_info.intra_param_end_idx
|
|
for state_name, value in optim_state.items():
|
|
if (
|
|
torch.is_tensor(value)
|
|
and value.dim() > 0
|
|
and fsdp_state.sharding_strategy != ShardingStrategy.NO_SHARD
|
|
):
|
|
value = value.flatten()[intra_param_start_idx : intra_param_end_idx + 1] # type: ignore[operator]
|
|
new_optim_state[state_name] = value
|
|
return new_optim_state
|
|
|
|
|
|
def _flatten_optim_state_dict(
|
|
optim_state_dict: Dict[str, Any],
|
|
model: nn.Module,
|
|
use_orig_params: bool = False,
|
|
optim: Optional[torch.optim.Optimizer] = None,
|
|
rank0_only: bool = False,
|
|
group: Optional[dist.ProcessGroup] = None,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Flattens the full optimizer state dict, still keying by unflattened parameter
|
|
names.
|
|
|
|
If ``use_orig_params`` is True, each rank will have all FSDP-managed
|
|
parameters but some of these parameters may be empty due to the sharding.
|
|
For a regular optim.Optimizer, states for those empty parameters will
|
|
not be initialized. So, when aggregating the FQNs across ranks, no assert
|
|
will be raised on a rank even if it does not have all the states -- it is
|
|
valid and FSDP know how to aggregate them. However, FSDP has to ignore
|
|
handling those parameters that are not managed by FSDP and do not exist on
|
|
the local rank -- it is managed by other parallelism and FSDP does not
|
|
know ho to handle/aggregate them.
|
|
|
|
Note that ``_flatten_tensor_optim_state`` does not need ``optim`` to
|
|
flatten/shard the state. However, NamedOptimizer and KeyedOptimizer require
|
|
all the states even if the corresponding parameters are empty. To this end,
|
|
``optim`` will be used to to get the initial state of the empty parameters.
|
|
``optim`` should only be non-None if the ``optim` is KeyedOptimizer or
|
|
NamedOptimizer.
|
|
|
|
Returns:
|
|
Dict[str, Any]: The flattened optimizer state dict.
|
|
"""
|
|
SimpleProfiler.reset()
|
|
|
|
unflat_osd = optim_state_dict
|
|
if "state" not in unflat_osd and not rank0_only:
|
|
raise ValueError(
|
|
'`optim_state_dict` must have the keys "state"'
|
|
"to be a valid optimizer state dict"
|
|
)
|
|
param_to_fqns = _get_param_to_fqns(model)
|
|
fqn_to_fsdp_param_info = _get_fqn_to_fsdp_param_info(model)
|
|
fsdp_state = next(iter(fqn_to_fsdp_param_info.values())).state
|
|
|
|
# Broadcast unflat_osd without non-scalar tensor if rank0_only is True.
|
|
if rank0_only:
|
|
unflat_osd = _broadcast_processed_state(fsdp_state, unflat_osd, group=group)
|
|
|
|
# Construct the "state" part
|
|
flat_osd_state: Dict[Union[_OptimStateKey, str], Any] = {}
|
|
unflat_osd_state = unflat_osd["state"]
|
|
all_state_keys = set(unflat_osd_state.keys())
|
|
|
|
for param, fqns in param_to_fqns.items():
|
|
fqn = fqns[0]
|
|
if fqn not in unflat_osd_state:
|
|
continue
|
|
all_state_keys.difference_update(fqns)
|
|
|
|
if rank0_only:
|
|
for fqn in fqns:
|
|
if not unflat_osd_state[fqn]:
|
|
continue
|
|
for state_name in unflat_osd_state[fqn].keys():
|
|
unflat_osd_state[fqn][state_name] = _broadcast_state(
|
|
fsdp_state, unflat_osd_state[fqn][state_name], group=group
|
|
)
|
|
fqn = fqns[0]
|
|
if fqn in fqn_to_fsdp_param_info:
|
|
fsdp_param_info = fqn_to_fsdp_param_info[fqn]
|
|
if use_orig_params:
|
|
with SimpleProfiler.profile(SimpleProfiler.Type.RESHARDING):
|
|
flat_state = _shard_orig_param_state(
|
|
fsdp_param_info,
|
|
fqn,
|
|
unflat_osd_state[fqn],
|
|
)
|
|
else:
|
|
flat_state = _flatten_optim_state(
|
|
fsdp_param_info,
|
|
unflat_osd_state,
|
|
fqns,
|
|
)
|
|
key = _OptimStateKey(tuple(fqns), True)
|
|
# Only include non-empty states since as expected by
|
|
# `torch.optim.Optimizer` s unless the optimizer is KeyedOptimizer
|
|
# or NamedOptimizer.
|
|
if flat_state:
|
|
flat_osd_state[key] = flat_state
|
|
elif use_orig_params:
|
|
assert (
|
|
len(fqns) == 1
|
|
), f"use_orig_params is True but there are multiple FQNs, {fqns}."
|
|
if optim is not None: # NamedOptimizer or KeyedOptimizer case.
|
|
state = optim.state.get(param, None) # type: ignore[call-overload]
|
|
if state is not None:
|
|
flat_osd_state[key] = copy.deepcopy(state)
|
|
else:
|
|
warnings.warn(
|
|
f"optim_state[{key}] is not on rank{fsdp_state.rank}."
|
|
)
|
|
|
|
else:
|
|
raise RuntimeError(
|
|
f"The state of {key} is empty. This should happen when "
|
|
"use_orig_params=True."
|
|
)
|
|
else: # do not flatten non-FSDP parameters' states
|
|
assert len(fqns) == 1
|
|
key = _OptimStateKey(tuple(fqns), False)
|
|
flat_osd_state[key] = copy.copy(unflat_osd_state[fqn])
|
|
|
|
if rank0_only:
|
|
for fqn in fqns:
|
|
if not unflat_osd_state[fqn]:
|
|
continue
|
|
for state_name, param_state in list(unflat_osd_state[fqn].items()):
|
|
if fsdp_state.rank > 0:
|
|
# Deference the tensor so that PyTorch can collect the memory.
|
|
del unflat_osd_state[fqn][state_name]
|
|
else:
|
|
# Move the tensor in the original osd back to CPU to make the
|
|
# original osd unaffected.
|
|
unflat_osd_state[fqn][state_name] = unflat_osd_state[fqn][
|
|
state_name
|
|
].cpu()
|
|
|
|
# Handle user-defined state, states that are not associated with parameters.
|
|
for key in all_state_keys:
|
|
user_state = unflat_osd_state[key]
|
|
if isinstance(user_state, torch.Tensor) and rank0_only and use_orig_params:
|
|
user_state = _broadcast_state(fsdp_state, user_state, group=group)
|
|
flat_osd_state[key] = copy.copy(user_state)
|
|
|
|
SimpleProfiler.dump_and_reset("FSDP _flatten_optim_state_dict() profiling: ")
|
|
# Construct the "param_groups" part -- copy as is since it will be
|
|
# rekeyed later according to the target rank's optimizer
|
|
# Only copy param_groups if it exists in unflat_osd
|
|
if "param_groups" in unflat_osd:
|
|
flat_osd_param_groups = copy.deepcopy(unflat_osd["param_groups"])
|
|
return {"state": flat_osd_state, "param_groups": flat_osd_param_groups}
|
|
else:
|
|
return {"state": flat_osd_state}
|
|
|
|
|
|
def _flatten_optim_state(
|
|
fsdp_param_info: FSDPParamInfo,
|
|
unflat_osd_state: Dict[str, Dict[str, Any]],
|
|
unflat_param_names: List[str],
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Flattens the optimizer state in ``full_optim_state_dict`` for a single
|
|
flat parameter in ``fsdp_param_info`` corresponding to the unflattened
|
|
parameter names in ``unflat_param_names``.
|
|
|
|
Args:
|
|
fsdp_param_info (FSDPParamInfo): The FSDP state, the handle, and a
|
|
mapping from FQN to original parameter index.
|
|
unflat_osd_state (Dict[str, Dict[str, Any]]): The "state" part of the
|
|
optimizer state dict corresponding to the unflattened parameters.
|
|
unflat_param_names (List[str]): A :class:`list` of unflattened
|
|
parameter names corresponding to the flat parameter ``flat_param``.
|
|
|
|
Returns:
|
|
Dict[str, Any]: A :class:`dict` mapping state names to their values for
|
|
a particular flat parameter. The sharded optimizer state dict's "state"
|
|
part will map a key to this returned value.
|
|
"""
|
|
fsdp_state = fsdp_param_info.state
|
|
handle = fsdp_param_info.handle
|
|
flat_param = handle.flat_param
|
|
num_unflat_params = len(unflat_param_names)
|
|
assert num_unflat_params > 0, (
|
|
"Expects at least one unflattened parameter corresponding to the "
|
|
"flat parameter"
|
|
)
|
|
unflat_param_shapes = flat_param._shapes
|
|
num_unflat_param_shapes = len(unflat_param_shapes)
|
|
assert (
|
|
num_unflat_params == num_unflat_param_shapes
|
|
), f"Expects {num_unflat_params} shapes but got {num_unflat_param_shapes}"
|
|
|
|
# Check if these unflattened parameters have any optimizer state
|
|
has_state = [
|
|
bool(unflat_param_name in unflat_osd_state)
|
|
for unflat_param_name in unflat_param_names
|
|
]
|
|
# If none of the unflattened parameters comprising this flat parameter have
|
|
# any state, then we do not want an entry in the optimizer state dict
|
|
if not any(has_state):
|
|
return {} # no need to flatten any state
|
|
# There may still be some unflattened parameters with state and some
|
|
# without
|
|
unflat_param_states = [
|
|
_gather_state_dict(
|
|
unflat_osd_state[unflat_param_name],
|
|
pg=fsdp_state.process_group,
|
|
device=fsdp_state.compute_device,
|
|
)
|
|
if unflat_param_name in unflat_osd_state
|
|
else None
|
|
for unflat_param_name in unflat_param_names
|
|
]
|
|
# Check that the unflattened parameters have the same state names
|
|
state_names = None
|
|
for unflat_param_state in unflat_param_states:
|
|
if unflat_param_state is None:
|
|
continue
|
|
if state_names is None:
|
|
state_names = set(unflat_param_state.keys())
|
|
else:
|
|
if state_names != set(unflat_param_state.keys()):
|
|
raise ValueError(
|
|
"Differing optimizer state names for the unflattened "
|
|
f"parameters: {unflat_param_names}"
|
|
)
|
|
assert state_names is not None
|
|
|
|
# Flatten the state
|
|
flat_state: Dict[str, Any] = {}
|
|
for state_name in state_names:
|
|
state_values = [
|
|
unflat_param_state[state_name] if unflat_param_state is not None else None
|
|
for unflat_param_state in unflat_param_states
|
|
]
|
|
non_none_state_values = [v for v in state_values if v is not None]
|
|
# If all ranks have None, this is a None value
|
|
if not non_none_state_values:
|
|
flat_state[state_name] = None
|
|
continue
|
|
are_pos_dim_tensors = are_zero_dim_tensors = are_non_tensors = True
|
|
for v in non_none_state_values:
|
|
are_pos_dim_tensors &= torch.is_tensor(v) and v.dim() > 0
|
|
are_zero_dim_tensors &= _is_zero_dim_tensor(v)
|
|
are_non_tensors &= not torch.is_tensor(v)
|
|
types = {type(v) for v in non_none_state_values}
|
|
if len(types) != 1 or not (
|
|
are_pos_dim_tensors or are_zero_dim_tensors or are_non_tensors
|
|
):
|
|
raise ValueError(
|
|
f"Differing optimizer state types for state {state_name}, "
|
|
f"values {non_none_state_values}, and unflattened parameter "
|
|
f"names {unflat_param_names}"
|
|
)
|
|
if are_pos_dim_tensors:
|
|
flat_tensor = _flatten_tensor_optim_state(
|
|
state_name,
|
|
state_values,
|
|
unflat_param_names,
|
|
unflat_param_shapes,
|
|
handle,
|
|
)
|
|
# Shard the flattened tensor immediately to minimize max memory
|
|
# usage
|
|
if (
|
|
fsdp_state.world_size != 1
|
|
and fsdp_state.sharding_strategy != ShardingStrategy.NO_SHARD
|
|
):
|
|
sharded_flat_tensor, _ = FlatParamHandle._get_shard(
|
|
flat_tensor,
|
|
fsdp_state.rank,
|
|
fsdp_state.world_size,
|
|
)
|
|
else:
|
|
sharded_flat_tensor = flat_tensor
|
|
flat_state[state_name] = sharded_flat_tensor
|
|
elif are_zero_dim_tensors:
|
|
flat_state[state_name] = _flatten_zero_dim_tensor_optim_state(
|
|
state_name,
|
|
state_values,
|
|
unflat_param_names,
|
|
)
|
|
else:
|
|
assert are_non_tensors
|
|
flat_state[state_name] = _flatten_non_tensor_optim_state(
|
|
state_name,
|
|
state_values,
|
|
unflat_param_names,
|
|
)
|
|
|
|
return flat_state
|
|
|
|
|
|
def _flatten_tensor_optim_state(
|
|
state_name: str,
|
|
pos_dim_tensors: List[torch.Tensor],
|
|
unflat_param_names: List[str],
|
|
unflat_param_shapes: Sequence[torch.Size],
|
|
handle: FlatParamHandle,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Flattens the positive-dimension tensor optimizer state given by the values
|
|
``tensors`` for the state ``state_name`` for a single flat parameter
|
|
from ``handle`` corresponding to the unflattened parameter names
|
|
``unflat_param_names`` and unflatted parameter shapes
|
|
``unflat_param_shapes``. This flattens each unflattened parameter's tensor
|
|
state into one tensor.
|
|
|
|
NOTE: We use zero tensors for any unflattened parameters without state
|
|
since some value is required to fill those entries. This assumes that the
|
|
zero tensor is mathematically equivalent to having no state, which is true
|
|
for Adam's "exp_avg" and "exp_avg_sq" but may not be true for all
|
|
optimizers.
|
|
|
|
Args:
|
|
state_name (str): Optimizer state name.
|
|
pos_dim_tensors (List[torch.Tensor]): Positive-dimension tensor
|
|
optimizer state values for the unflattened parameters corresponding
|
|
to the single flat parameter.
|
|
unflat_param_names (List[str]): A :class:`list` of unflattened
|
|
parameter names corresponding to the single flat parameter.
|
|
unflat_param_shapes (List[torch.Size]): Unflattened parameter shapes
|
|
corresponding to the single flat parameter.
|
|
handle (FlatParamHandle): The flat parameter's handle.
|
|
|
|
Returns:
|
|
torch.Tensor: A flat tensor containing the optimizer state
|
|
corresponding to ``state_name`` constructed by concatenating the
|
|
unflattened parameter tensor states in ``pos_dim_tensors`` (using zero
|
|
tensors for any unflattened parameters without the state).
|
|
"""
|
|
flat_param = handle.flat_param
|
|
non_none_tensors = [t for t in pos_dim_tensors if t is not None]
|
|
# Check that all are tensors with the same dtype
|
|
dtypes = {t.dtype for t in non_none_tensors}
|
|
if len(dtypes) != 1:
|
|
raise ValueError(
|
|
"All unflattened parameters comprising a single flat "
|
|
"parameter must have positive-dimension tensor state with the "
|
|
f"same dtype but got dtypes {dtypes} for state {state_name} and "
|
|
f"unflattened parameter names {unflat_param_names}"
|
|
)
|
|
dtype = next(iter(dtypes))
|
|
# Check that each tensor state matches its parameter's shape
|
|
for tensor, shape in zip(pos_dim_tensors, unflat_param_shapes):
|
|
if tensor is None and len(shape) == 0:
|
|
raise ValueError("Flattening a zero-dimension parameter is not supported")
|
|
elif tensor is not None and tensor.shape != shape:
|
|
raise ValueError(
|
|
"Tensor optimizer state does not have same shape as its "
|
|
f"parameter: {tensor.shape} {shape}"
|
|
)
|
|
# Flatten the tensor states: we do not need to add any right-hand-side
|
|
# padding since the flat optimizer state tensor is sharded via
|
|
# `_get_shard()`, which pads the shard as needed (just like for the flat
|
|
# parameter)
|
|
cpu_device = torch.device("cpu")
|
|
tensors_to_flatten = [
|
|
torch.flatten(state_value.to(cpu_device))
|
|
if state_value is not None
|
|
else torch.flatten(
|
|
torch.zeros(
|
|
size=shape,
|
|
dtype=dtype,
|
|
device=cpu_device,
|
|
)
|
|
)
|
|
for state_value, shape in zip(pos_dim_tensors, unflat_param_shapes)
|
|
]
|
|
flat_tensor = handle.flatten_tensors(tensors_to_flatten, handle._aligned_numel)
|
|
flat_param_shape = flat_param._unpadded_unsharded_size # type: ignore[attr-defined]
|
|
assert flat_tensor.shape == flat_param_shape, (
|
|
f"tensor optim state: {flat_tensor.shape} "
|
|
f"flat parameter: {flat_param_shape}"
|
|
)
|
|
return flat_tensor
|
|
|
|
|
|
def _flatten_zero_dim_tensor_optim_state(
|
|
state_name: str,
|
|
zero_dim_tensors: List[torch.Tensor],
|
|
unflat_param_names: List[str],
|
|
) -> torch.Tensor:
|
|
"""
|
|
Flattens the zero-dimension tensor optimizer state given by the values
|
|
``zero_dim_tensors`` for the state ``state_name`` for a single flat
|
|
parameter corresponding to the unflattened parameter names
|
|
``unflat_param_names`` by enforcing that all tensors are the same and using
|
|
that common value.
|
|
|
|
NOTE: The requirement that the tensors are the same across all unflattened
|
|
parameters comprising the flat parameter is needed to maintain the
|
|
invariant that FSDP performs the same computation as its non-sharded
|
|
equivalent. This means that none of the unflattened parameters can be
|
|
missing this state since imposing a value may differ from having no value.
|
|
For example, for Adam's "step", no value means maximum bias correction,
|
|
while having some positive value means less bias correction.
|
|
|
|
Args:
|
|
state_name (str): Optimizer state name.
|
|
zero_dim_tensors (List[torch.Tensor]): Zero-dimension optimizer state
|
|
for the unflattened parameters corresponding to the single
|
|
flat parameter.
|
|
unflat_param_names (List[str]): A :class:`list` of unflattened
|
|
parameter names corresponding to the single flat parameter.
|
|
|
|
Returns:
|
|
torch.Tensor: A zero-dimensional tensor giving the value of the state
|
|
``state_name`` for all unflattened parameters corresponding to the
|
|
names ``unflat_param_names``.
|
|
"""
|
|
non_none_tensors = [t for t in zero_dim_tensors if t is not None]
|
|
# Enforce that all have the same value and dtype
|
|
values_set = {t.item() if t is not None else None for t in zero_dim_tensors}
|
|
dtypes = {t.dtype if t is not None else None for t in zero_dim_tensors}
|
|
if (
|
|
len(non_none_tensors) != len(zero_dim_tensors)
|
|
or len(values_set) != 1
|
|
or len(dtypes) != 1
|
|
):
|
|
raise ValueError(
|
|
"All unflattened parameters comprising a single flat "
|
|
"parameter must have scalar state with the same value and dtype "
|
|
f"but got values {values_set} and dtypes {dtypes} for state "
|
|
f"{state_name} and unflattened parameter names "
|
|
f"{unflat_param_names}"
|
|
)
|
|
value = next(iter(values_set))
|
|
dtype = next(iter(dtypes))
|
|
return torch.tensor(value, dtype=dtype, device=torch.device("cpu"))
|
|
|
|
|
|
def _flatten_non_tensor_optim_state(
|
|
state_name: str,
|
|
non_tensors: List[Any],
|
|
unflat_param_names: List[str],
|
|
) -> Any:
|
|
"""
|
|
Flattens the non-tensor optimizer state given by the values ``non_tensors``
|
|
for the state ``state_name`` for a single flat parameter corresponding
|
|
to the unflattened parameter names ``unflat_param_names`` by enforcing that
|
|
all values are the same and using that common value.
|
|
|
|
See the note in :func:`_flatten_zero_dim_tensor_optim_state`.
|
|
|
|
Args:
|
|
state_name (str): Optimizer state name.
|
|
non_tensors (List[Any]): Non-tensor optimizer state for the unflattened
|
|
parameters corresponding to the single flat parameter.
|
|
unflat_param_names (List[str]): A :class:`list` of unflattened
|
|
parameter names corresponding to the single flat parameter.
|
|
|
|
Returns:
|
|
Any: A non-tensor giving the value of the state ``state_name`` for all
|
|
unflattened parameters corresponding to the names
|
|
``unflat_param_names``.
|
|
"""
|
|
non_none_non_tensors = [nt for nt in non_tensors if nt is not None]
|
|
# Enforce that all have the same value (same type already checked)
|
|
non_tensor_set = set(non_tensors)
|
|
if len(non_none_non_tensors) != len(non_tensors) or len(non_tensor_set) != 1:
|
|
raise ValueError(
|
|
"All unflattened parameters comprising a single flat "
|
|
"parameter must have scalar state with the same value and dtype "
|
|
f"but got values {non_tensor_set} for state {state_name} and "
|
|
f"unflattened parameter names {unflat_param_names}"
|
|
)
|
|
non_tensor = next(iter(non_tensor_set))
|
|
return non_tensor
|
|
|
|
|
|
def _rekey_sharded_optim_state_dict(
|
|
sharded_osd: Dict[str, Any],
|
|
model: nn.Module,
|
|
optim: torch.optim.Optimizer,
|
|
optim_input: Optional[
|
|
Union[
|
|
List[Dict[str, Any]],
|
|
Iterable[nn.Parameter],
|
|
]
|
|
],
|
|
using_optim_input: bool,
|
|
is_named_optimizer: bool = False,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Rekeys the optimizer state dict from unflattened parameter names to flat
|
|
parameter IDs according to the calling rank's ``optim``, which may be
|
|
different across ranks. In particular, the unflattened parameter names are
|
|
represented as :class:`_OptimStateKey` s.
|
|
"""
|
|
param_to_fqns = _get_param_to_fqns(model)
|
|
flat_param_to_fqn = _get_flat_param_to_fqn(model)
|
|
param_to_param_key: Dict[nn.Parameter, Union[int, str]] = cast(
|
|
Dict[nn.Parameter, Union[int, str]],
|
|
(
|
|
_get_param_to_param_id_from_optim_input(model, optim_input)
|
|
if using_optim_input
|
|
else _get_param_to_param_key(
|
|
optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
|
|
)
|
|
),
|
|
)
|
|
# All parameter keys in `param_to_param_key` should be in
|
|
# `param_to_fqns` -- strict inequality follows when not all parameters are
|
|
# passed to the optimizer
|
|
assert len(param_to_param_key) <= len(param_to_fqns)
|
|
|
|
unflat_param_names_to_flat_param_key: Dict[
|
|
Tuple[str, ...], Union[int, str]
|
|
] = {} # for "state"
|
|
unflat_param_name_to_flat_param_key: Dict[
|
|
str, Union[int, str]
|
|
] = {} # for "param_groups"
|
|
for param, unflat_param_names in param_to_fqns.items():
|
|
if param not in param_to_param_key:
|
|
# This parameter was not passed to the optimizer
|
|
continue
|
|
flat_param_key = param_to_param_key[param]
|
|
unflat_param_names_to_flat_param_key[tuple(unflat_param_names)] = flat_param_key
|
|
for unflat_param_name in unflat_param_names:
|
|
unflat_param_name_to_flat_param_key[unflat_param_name] = flat_param_key
|
|
|
|
sharded_osd_state = sharded_osd["state"]
|
|
rekeyed_osd_state: Dict[Union[str, int], Any] = {}
|
|
for key, param_state in sharded_osd_state.items():
|
|
if isinstance(key, str):
|
|
rekeyed_osd_state[key] = param_state
|
|
continue
|
|
flat_param_key = unflat_param_names_to_flat_param_key.get(
|
|
key.unflat_param_names, key.unflat_param_names
|
|
)
|
|
rekeyed_osd_state[flat_param_key] = param_state
|
|
|
|
# Only process param_groups if it exists in sharded_osd
|
|
if "param_groups" in sharded_osd:
|
|
rekeyed_osd_param_groups: List[Dict[str, Any]] = []
|
|
for unflat_param_group in sharded_osd["param_groups"]:
|
|
flat_param_group = copy.deepcopy(unflat_param_group)
|
|
flat_param_keys = sorted(
|
|
{
|
|
unflat_param_name_to_flat_param_key[unflat_param_name]
|
|
for unflat_param_name in unflat_param_group["params"]
|
|
}
|
|
)
|
|
flat_param_group["params"] = flat_param_keys
|
|
rekeyed_osd_param_groups.append(flat_param_group)
|
|
return {"state": rekeyed_osd_state, "param_groups": rekeyed_osd_param_groups}
|
|
else:
|
|
return {"state": rekeyed_osd_state}
|
|
|
|
|
|
def _get_param_id_to_param_from_optim_input(
|
|
model: nn.Module,
|
|
optim_input: Optional[
|
|
Union[
|
|
List[Dict[str, Any]],
|
|
Iterable[nn.Parameter],
|
|
]
|
|
] = None,
|
|
) -> Dict[int, nn.Parameter]:
|
|
"""
|
|
Constructs a mapping from parameter IDs to parameters. This may be used
|
|
both for models with ``FlatParameter`` s and without.
|
|
|
|
NOTE: This method is only preserved for backward compatibility. The method
|
|
:meth:`_get_param_key_to_param` is the preferred code path that does not
|
|
rely on ``optim_input``.
|
|
|
|
NOTE: We critically assume that, whether the optimizer input is a list of
|
|
parameters or a list of parameter groups, :class:`torch.optim.Optimizer`
|
|
enumerates the parameter IDs in order. In other words, for a parameter list
|
|
input, the parameter IDs should be in that list order, and for a parameter
|
|
groups input, the parameter IDs should be in order within each parameter
|
|
group and in order across parameter groups.
|
|
|
|
Args:
|
|
model (nn.Module): Model whose parameters are passed into the
|
|
optimizer.
|
|
optim_input (Optional[Union[List[Dict[str, Any]],
|
|
Iterable[nn.Parameter]]]): Input passed into the optimizer
|
|
representing either a :class:`list` of parameter groups or an
|
|
iterable of parameters; if ``None``, then this method assumes the
|
|
input was ``model.parameters()``. (Default: ``None``)
|
|
|
|
Returns:
|
|
List[nn.Parameter]: Mapping from parameter IDs to parameters,
|
|
where the parameter ID is implicitly the index in the :class:`list`.
|
|
"""
|
|
# Assume the standard case of passing `model.parameters()` to the optimizer
|
|
# if `optim_input` is not specified
|
|
if optim_input is None:
|
|
return dict(enumerate(model.parameters()))
|
|
try:
|
|
params = cast(List[nn.Parameter], list(optim_input))
|
|
except TypeError as e:
|
|
raise TypeError(
|
|
"Optimizer input should be an iterable of Tensors or dicts, "
|
|
f"but got {optim_input}"
|
|
) from e
|
|
if len(params) == 0:
|
|
raise ValueError("Optimizer input should not be empty")
|
|
|
|
# Check if the optimizer input represents tensors or parameter groups
|
|
all_tensors = True
|
|
all_dicts = True
|
|
for param in params:
|
|
all_tensors &= isinstance(param, torch.Tensor)
|
|
all_dicts &= isinstance(param, dict)
|
|
if not all_tensors and not all_dicts:
|
|
raise TypeError("Optimizer input should be an iterable of Tensors or dicts")
|
|
if all_tensors:
|
|
return dict(enumerate(params))
|
|
assert all_dicts
|
|
param_id_to_param: List[nn.Parameter] = []
|
|
for param_group in params:
|
|
has_params_key = "params" in param_group # type: ignore[operator]
|
|
assert has_params_key, (
|
|
'A parameter group should map "params" to a list of the '
|
|
"parameters in the group"
|
|
)
|
|
for param in param_group["params"]: # type: ignore[index]
|
|
# Implicitly map `flat_param_id` (current length of the list) to
|
|
# `param`
|
|
param_id_to_param.append(param)
|
|
return dict(enumerate(param_id_to_param))
|
|
|
|
|
|
def _get_flat_param_to_fqn(model: torch.nn.Module) -> Dict[FlatParameter, str]:
|
|
"""
|
|
Constructs a mapping from ``FlatParameter`` to a cleaned (devoid of prefixes
|
|
from wrappers) fully qualified name (FQN). Note that this FQN is "non-canonical"
|
|
because ``FlatParameter`` s do not come from the original module but are
|
|
registered only after FSDP has been applied. This function returns the FSDP-given
|
|
name for the ``FlatParameter`` (usually module._flat_param) as opposed to the
|
|
canonical FQNs returned for ``FlatParameter`` s in ``_common_utils._get_param_to_fqns(...)``).
|
|
|
|
Consequently, this function will only return a non-empty mapping if FSDP was
|
|
applied with ``use_orig_params=False`` as, otherwise, the original parameters
|
|
are used within the module and there would be no ``FlatParameter`` s in the module.
|
|
|
|
"""
|
|
|
|
def module_fn(module, prefix, tree_level, flat_param_to_fqn):
|
|
for param_name, param in _named_parameters_with_duplicates(
|
|
module, recurse=False
|
|
):
|
|
if not isinstance(param, FlatParameter):
|
|
continue
|
|
fqn = clean_tensor_name(prefix + param_name)
|
|
flat_param_to_fqn[param] = fqn
|
|
|
|
def return_fn(flat_param_to_fqn):
|
|
return flat_param_to_fqn
|
|
|
|
flat_param_to_fqn_ret: Dict[FlatParameter, str] = {}
|
|
return _apply_to_modules(
|
|
model,
|
|
module_fn,
|
|
return_fn,
|
|
[fqn for fqn, _ in _named_parameters_with_duplicates(model)],
|
|
flat_param_to_fqn_ret,
|
|
)
|
|
|
|
|
|
def _get_param_key_to_param(
|
|
optim: torch.optim.Optimizer,
|
|
model: Optional[nn.Module] = None,
|
|
is_named_optimizer: bool = False,
|
|
param_to_fqns: Optional[Dict[nn.Parameter, List[str]]] = None,
|
|
flat_param_to_fqn: Optional[Dict[FlatParameter, str]] = None,
|
|
) -> Dict[Union[int, str], nn.Parameter]:
|
|
"""
|
|
Constructs a mapping from parameter keys to parameters. For the regular
|
|
optimizers, the keys are parameter IDs. For NamedOptimizer, the keys
|
|
are FQNs. This API may be used both for models with ``FlatParameter`` s and
|
|
without.
|
|
"""
|
|
clean_fqn_to_curr_fqn: Dict[str, str] = {}
|
|
if is_named_optimizer:
|
|
assert (
|
|
param_to_fqns is not None and flat_param_to_fqn is not None
|
|
), "The optimizer is a NamedOptimizer, `param_to_fqns` must not be None."
|
|
assert model is not None
|
|
for key, _ in _named_parameters_with_duplicates(model):
|
|
clean_fqn_to_curr_fqn[clean_tensor_name(key)] = key
|
|
|
|
param_key_to_param: Dict[Union[str, int], nn.Parameter] = {}
|
|
pid = 0
|
|
for param_group in optim.param_groups:
|
|
if is_named_optimizer:
|
|
for param in param_group["params"]:
|
|
assert flat_param_to_fqn is not None
|
|
if param in flat_param_to_fqn:
|
|
# FlatParameter case
|
|
key = flat_param_to_fqn[param]
|
|
else:
|
|
assert param_to_fqns is not None
|
|
# use_orig_params case
|
|
assert len(param_to_fqns[param]) == 1
|
|
key = param_to_fqns[param][0]
|
|
try:
|
|
key = clean_fqn_to_curr_fqn[key]
|
|
except KeyError as e:
|
|
raise KeyError(
|
|
f"Can't find {key} from {list(clean_fqn_to_curr_fqn.keys())}."
|
|
) from e
|
|
param_key_to_param[key] = param
|
|
else:
|
|
for param in param_group["params"]:
|
|
param_key_to_param[pid] = param
|
|
pid += 1
|
|
|
|
return param_key_to_param
|
|
|
|
|
|
def _get_param_to_param_key(
|
|
optim: torch.optim.Optimizer,
|
|
model: Optional[nn.Module] = None,
|
|
is_named_optimizer: bool = False,
|
|
param_to_fqns: Optional[Dict[nn.Parameter, List[str]]] = None,
|
|
flat_param_to_fqn: Optional[Dict[FlatParameter, str]] = None,
|
|
) -> Dict[nn.Parameter, Union[int, str]]:
|
|
"""
|
|
Constructs the inverse mapping of :func:`_get_param_key_to_param`. This API
|
|
only supports the case where `optim` is a regular optimizer, not NamedOptimizer.
|
|
So the parameter keys will be parameter ids.
|
|
"""
|
|
param_id_to_param = _get_param_key_to_param(
|
|
optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
|
|
)
|
|
return {param: param_id for param_id, param in param_id_to_param.items()}
|
|
|
|
|
|
def _get_param_to_param_id_from_optim_input(
|
|
model: nn.Module,
|
|
optim_input: Optional[
|
|
Union[
|
|
List[Dict[str, Any]],
|
|
Iterable[nn.Parameter],
|
|
]
|
|
] = None,
|
|
) -> Dict[nn.Parameter, int]:
|
|
"""Constructs the inverse mapping of :func:`_get_param_id_to_param_from_optim_input`."""
|
|
param_id_to_param = _get_param_id_to_param_from_optim_input(model, optim_input)
|
|
return {param: param_id for param_id, param in param_id_to_param.items()}
|
|
|
|
|
|
def _check_missing_keys_on_rank(
|
|
r0_optim_state_keys: List[_OptimStateKey],
|
|
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[str, int]],
|
|
param_key_to_param: Dict[Union[str, int], nn.Parameter],
|
|
group: Optional[dist.ProcessGroup],
|
|
) -> None:
|
|
# Ensure that all ranks have at least the optimizer states needed by
|
|
# rank 0's optimizer
|
|
missing_keys: List[_OptimStateKey] = []
|
|
for r0_optim_state_key in r0_optim_state_keys:
|
|
if r0_optim_state_key not in optim_state_key_to_param_key:
|
|
# A parameter from rank 0's optimizer does not exist for this
|
|
# rank's optimizer
|
|
missing_keys.append(r0_optim_state_key)
|
|
continue
|
|
param_key = optim_state_key_to_param_key[r0_optim_state_key]
|
|
if isinstance(param_key, int):
|
|
assert param_key >= 0 and param_key < len(
|
|
param_key_to_param
|
|
), "Check the `param_key_to_param` construction"
|
|
device = _get_pg_default_device(group)
|
|
num_missing = torch.tensor([len(missing_keys)], dtype=torch.int32, device=device)
|
|
dist.all_reduce(num_missing, group=group)
|
|
if num_missing.item() > 0:
|
|
obj_list = [None for _ in range(dist.get_world_size(group))]
|
|
dist.all_gather_object(obj_list, missing_keys, group=group)
|
|
error_msg = (
|
|
"FSDP currently requires each rank to have at least the "
|
|
"optimizer states needed by rank 0's optimizer but some ranks "
|
|
"are missing some of those states"
|
|
)
|
|
for rank, keys in enumerate(obj_list):
|
|
keys = cast(List[_OptimStateKey], keys)
|
|
if len(keys) > 0:
|
|
error_msg += (
|
|
f"\nRank {rank} is missing states for the parameters: "
|
|
f"{[key.unflat_param_names for key in keys]}"
|
|
)
|
|
raise RuntimeError(error_msg)
|
|
|
|
|
|
def _map_param_key_to_optim_keys(
|
|
optim_state_dict: Dict[str, Any],
|
|
group: Optional[dist.ProcessGroup],
|
|
param_key_to_param: Dict[Union[int, str], nn.Parameter],
|
|
param_to_fqns: Dict[nn.Parameter, List[str]],
|
|
fqn_to_fsdp_param_info: Dict[str, FSDPParamInfo],
|
|
merge_keys: bool = False,
|
|
) -> Tuple[List[_OptimStateKey], Dict[_OptimStateKey, Union[int, str]]]:
|
|
"""
|
|
Construct the local mapping between the ``_OptimStateKey`` and parameter keys
|
|
and all the ``_OptimStateKey`` across ranks. If ``merge_keys`` is False, rank0
|
|
must contain all the ``_OptimStateKey``, an exception will be raised otherwise.
|
|
Note that ``merge_keys`` should equal to ``use_orig_params``.
|
|
"""
|
|
rank = dist.get_rank(group)
|
|
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[int, str]] = {} # local
|
|
all_optim_state_keys: List[_OptimStateKey] = []
|
|
|
|
for param_key, param in param_key_to_param.items():
|
|
# Do not include parameters without state to avoid empty mappings
|
|
# just like in normal `torch.optim.Optimizer.state_dict()`
|
|
if param_key not in optim_state_dict["state"]:
|
|
continue
|
|
fqns = param_to_fqns[param]
|
|
is_fsdp_managed = isinstance(param, FlatParameter)
|
|
if is_fsdp_managed:
|
|
assert fqns[0] in fqn_to_fsdp_param_info, (
|
|
fqns[0],
|
|
list(fqn_to_fsdp_param_info.keys()),
|
|
)
|
|
is_fsdp_managed = fqns[0] in fqn_to_fsdp_param_info
|
|
optim_state_key = _OptimStateKey(
|
|
unflat_param_names=tuple(fqns),
|
|
is_fsdp_managed=is_fsdp_managed,
|
|
)
|
|
if rank == 0 or merge_keys:
|
|
all_optim_state_keys.append(optim_state_key)
|
|
optim_state_key_to_param_key[optim_state_key] = param_key
|
|
|
|
if merge_keys:
|
|
all_keys: List[List[_OptimStateKey]] = [
|
|
[] for _ in range(dist.get_world_size(group))
|
|
]
|
|
dist.all_gather_object(all_keys, all_optim_state_keys, group=group)
|
|
merge_all_optim_state_keys = [
|
|
key for local_keys in all_keys for key in local_keys
|
|
]
|
|
all_optim_state_keys = sorted(set(merge_all_optim_state_keys))
|
|
else:
|
|
key_obj_list: List[Optional[List[_OptimStateKey]]] = (
|
|
[all_optim_state_keys] if rank == 0 else [None]
|
|
)
|
|
dist.broadcast_object_list(key_obj_list, src=0, group=group)
|
|
assert key_obj_list[0] is not None
|
|
all_optim_state_keys = key_obj_list[0]
|
|
_check_missing_keys_on_rank(
|
|
all_optim_state_keys,
|
|
optim_state_key_to_param_key,
|
|
param_key_to_param,
|
|
group,
|
|
)
|
|
|
|
return all_optim_state_keys, optim_state_key_to_param_key
|
|
|
|
|
|
def _unflatten_param_groups(
|
|
state_dict: Dict[str, Any],
|
|
param_key_to_param: Dict[Union[int, str], nn.Parameter],
|
|
param_to_fqns: Dict[nn.Parameter, List[str]],
|
|
) -> List[Dict[str, Any]]:
|
|
param_groups: List[Dict[str, Any]] = []
|
|
for flat_param_group in state_dict["param_groups"]:
|
|
unflat_param_group = copy.deepcopy(flat_param_group)
|
|
param_group_params = [
|
|
param_key_to_param[flat_param_key]
|
|
for flat_param_key in flat_param_group["params"]
|
|
]
|
|
nested_unflat_param_names = [
|
|
param_to_fqns[param] for param in param_group_params
|
|
]
|
|
unflat_param_group["params"] = [
|
|
unflat_param_name
|
|
for unflat_param_names in nested_unflat_param_names
|
|
for unflat_param_name in unflat_param_names
|
|
] # flatten the list of lists
|
|
param_groups.append(unflat_param_group)
|
|
return param_groups
|
|
|
|
|
|
def _is_named_optimizer(optim_state_dict: Dict[str, Any]) -> bool:
|
|
"""
|
|
Returns whether the state_dict is from a NamedOptimizer.
|
|
This function checks that the keys in the state_dict['state'] are strings
|
|
(which usually are FQNs) versus integers (which usually refer to param_ids
|
|
from a vanilla torch.optim.Optimizer).
|
|
"""
|
|
state = optim_state_dict.get("state", None)
|
|
if not state:
|
|
# If we cannot find a state, assume it is not NamedOptimizer as
|
|
# NamedOptimizer has eager initialization.
|
|
return False
|
|
try:
|
|
key = next(iter(state.keys()))
|
|
except Exception as e:
|
|
raise Exception(optim_state_dict) from e
|
|
return isinstance(key, str)
|
|
|
|
|
|
@dataclass
|
|
class StateInfo:
|
|
# The key of these dictionaries are the state name, e.g., `exp_avg`.
|
|
tensors: Dict[str, _PosDimTensorInfo]
|
|
scalar_tensors: Dict[str, torch.Tensor]
|
|
non_tensors: Dict[str, Any]
|
|
|
|
|
|
def _allgather_state_info(
|
|
fsdp_state: _FSDPState,
|
|
input_states: Dict[str, Any],
|
|
) -> List[Dict[str, StateInfo]]:
|
|
"""
|
|
Given the ``input_states``, allgather StateInfo for each state. The function
|
|
uses all_gather_object to gather StateInfo so no GPU tensors are sent.
|
|
"""
|
|
|
|
processed_state_dict: Dict[str, StateInfo] = {}
|
|
gathered_state_info: List[Dict[str, StateInfo]] = [
|
|
{} for _ in range(fsdp_state.world_size)
|
|
]
|
|
|
|
for fqn, optim_state in input_states.items():
|
|
# Allgather the scalar tensor state, non-tensor states and tensors metadata.
|
|
processed_state = StateInfo({}, {}, {})
|
|
for state_name, value in sorted_items(optim_state):
|
|
if torch.is_tensor(value):
|
|
if value.dim() == 0:
|
|
# Ensure that `step` is on CPU.
|
|
processed_state.scalar_tensors[state_name] = value.cpu()
|
|
else:
|
|
processed_state.tensors[state_name] = _PosDimTensorInfo(
|
|
value.shape, value.dtype
|
|
)
|
|
else:
|
|
processed_state.non_tensors[state_name] = value
|
|
processed_state_dict[fqn] = processed_state
|
|
dist.all_gather_object(
|
|
gathered_state_info,
|
|
processed_state_dict,
|
|
group=fsdp_state.process_group,
|
|
)
|
|
return gathered_state_info
|
|
|
|
|
|
def _convert_all_state_info(
|
|
fsdp_param_info: FSDPParamInfo,
|
|
gathered_state_info: List[Dict[str, StateInfo]],
|
|
input_states: Dict[str, Any],
|
|
output_states: Dict[str, Dict[str, Any]],
|
|
) -> Tuple[torch.dtype, Dict[str, List[Optional[torch.Tensor]]]]:
|
|
"""
|
|
Given the ``gathered_state_info`` and ``input_states``, the API converted
|
|
the StateInfo into the original state if the state is not a non-scalar
|
|
tensor. For a multi-dimensional tensor, the local state will be stored in
|
|
``state_buffer`` in a correct order for later allgather purpose.
|
|
"""
|
|
|
|
state_buffers: Dict[str, List[Optional[torch.Tensor]]] = {}
|
|
|
|
for fqn, gathered_state in output_states.items():
|
|
state_info = [s[fqn] for s in gathered_state_info]
|
|
all_tensor_states = sorted(
|
|
{n for state in state_info for n in state.tensors.keys()}
|
|
)
|
|
empty_ranks: Set[int] = set()
|
|
# First check all the non-scalar states and get the information of
|
|
# states on each rank.
|
|
for state_name in all_tensor_states:
|
|
numels = []
|
|
dtype: Optional[torch.dtype] = None
|
|
_empty_ranks: Set[int] = set()
|
|
for rank, object_state in enumerate(state_info):
|
|
numels.append(0)
|
|
info = object_state.tensors.get(state_name, None)
|
|
if info is not None:
|
|
numels[-1] = info.shape.numel()
|
|
if not dtype:
|
|
dtype = info.dtype
|
|
else:
|
|
assert dtype == info.dtype
|
|
if numels[-1] == 0:
|
|
_empty_ranks.add(rank)
|
|
|
|
assert not empty_ranks or empty_ranks == _empty_ranks
|
|
empty_ranks = _empty_ranks
|
|
if state_name not in state_buffers:
|
|
state_buffers[state_name] = [
|
|
None for _ in fsdp_param_info.param_indices
|
|
]
|
|
local_state = input_states[fqn].get(state_name, None)
|
|
state_buffers[state_name][fsdp_param_info.param_indices[fqn]] = local_state
|
|
|
|
# Restoring the scalar and non-tensor states. If the corresponding
|
|
# non-scalar states do not exist on the rank, we also skip the scalar
|
|
# non-tensor states on that rank.
|
|
for rank, object_state in enumerate(state_info):
|
|
if rank in empty_ranks:
|
|
continue
|
|
for name, non_tensor_value in object_state.non_tensors.items():
|
|
curr_non_tensor_value = gathered_state.get(name, None)
|
|
assert (
|
|
curr_non_tensor_value is None
|
|
or curr_non_tensor_value == non_tensor_value
|
|
), f"Different ranks have different values for {name}."
|
|
gathered_state[name] = non_tensor_value
|
|
|
|
for name, scalar_tensor_value in object_state.scalar_tensors.items():
|
|
curr_scalar_tensor_value = gathered_state.get(name, None)
|
|
assert curr_scalar_tensor_value is None or torch.equal(
|
|
scalar_tensor_value, curr_scalar_tensor_value
|
|
), f"Different ranks have different values for {name}."
|
|
gathered_state[name] = scalar_tensor_value
|
|
|
|
assert dtype is not None # typing purpose
|
|
return dtype, state_buffers
|
|
|
|
|
|
def _unflatten_orig_param_states(
|
|
fsdp_param_info: FSDPParamInfo,
|
|
output_states: Dict[str, Dict[str, Any]],
|
|
state_name: str,
|
|
shard_state: bool,
|
|
to_save: bool,
|
|
cpu_offload: bool,
|
|
) -> None:
|
|
"""
|
|
Given a output state dict, ``output_states``, which the keys are FQNs to the
|
|
original parameters (not FlatParameters nor parmeter ID), and the values
|
|
are gathered states, unflatten the states to the original dimensions.
|
|
|
|
This function performs the unflattening process in-place.
|
|
"""
|
|
if not to_save:
|
|
return
|
|
flat_param = fsdp_param_info.handle.flat_param
|
|
fsdp_state = fsdp_param_info.state
|
|
for fqn, gathered_state in output_states.items():
|
|
value = gathered_state[state_name]
|
|
|
|
param_idx = fsdp_param_info.param_indices[fqn]
|
|
value = value.reshape(flat_param._shapes[param_idx])
|
|
if shard_state:
|
|
osd_config = fsdp_state._optim_state_dict_config
|
|
if getattr(osd_config, "_use_dtensor", False):
|
|
assert fsdp_state._device_mesh is not None
|
|
value = _ext_chunk_dtensor(
|
|
value, fsdp_state.rank, fsdp_state._device_mesh
|
|
)
|
|
else:
|
|
assert fsdp_state.process_group is not None
|
|
value = _ext_chunk_tensor(
|
|
value,
|
|
fsdp_state.rank,
|
|
fsdp_state.world_size,
|
|
fsdp_state._device_handle.device_count(),
|
|
fsdp_state.process_group,
|
|
)
|
|
elif not cpu_offload:
|
|
with SimpleProfiler.profile("clone"):
|
|
value = value.detach.clone()
|
|
|
|
if cpu_offload:
|
|
with SimpleProfiler.profile(SimpleProfiler.Type.D2H):
|
|
value = value.cpu()
|
|
gathered_state[state_name] = value
|
|
|
|
|
|
def _allgather_orig_param_states(
|
|
fsdp_param_info: FSDPParamInfo,
|
|
gathered_state_info: List[Dict[str, StateInfo]],
|
|
input_states: Dict[str, Any],
|
|
shard_state: bool,
|
|
to_save: bool,
|
|
cpu_offload: bool,
|
|
) -> Dict[str, Dict[str, Any]]:
|
|
"""
|
|
Given the ``gathered_state_info`` and ``input_states``, the API allgathers
|
|
all tensor states and restore non-tensor states from ``gathered_state_info``.
|
|
"""
|
|
fsdp_state = fsdp_param_info.state
|
|
if fsdp_state.rank == 0:
|
|
logger.warning(
|
|
"CUDA Memory Summary before calling to _allgather_orig_param_states %s",
|
|
torch.cuda.memory_summary(),
|
|
)
|
|
|
|
output_states: Dict[str, Dict[str, Any]] = {fqn: {} for fqn in input_states.keys()}
|
|
|
|
dtype, state_buffers = _convert_all_state_info(
|
|
fsdp_param_info, gathered_state_info, input_states, output_states
|
|
)
|
|
|
|
has_state_params: List[bool] = [
|
|
True if fqn in output_states else False
|
|
for fqn, idx in fsdp_param_info.param_indices.items()
|
|
]
|
|
|
|
# Loop through the ``state_buffers`` and construct the flattened, concatenated,
|
|
# sharded states. The size of the constructed state will be the same size as
|
|
# flat_param (also sharded).
|
|
# Then we perform an allgather_into_tensor to get the full flat_param state.
|
|
# The full flat_param state is the result of concatenation of multiple states
|
|
# the order of of flat_param._fqns.
|
|
# The final step is to split the flat_param state into original param states
|
|
# and return the result.
|
|
flat_param = fsdp_param_info.handle.flat_param
|
|
empty_func = functools.partial(
|
|
torch.empty, dtype=dtype, device=fsdp_state.compute_device
|
|
)
|
|
gathered_tensor = empty_func(flat_param._padded_unsharded_size)
|
|
# Synchronize can be slow but this will be easier for us to debug.
|
|
torch.cuda.synchronize()
|
|
for state_name, buffers in state_buffers.items():
|
|
local_buffers: List[torch.Tensor] = []
|
|
begin = fsdp_state.rank * flat_param._sharded_size.numel()
|
|
# End is inclusive.
|
|
end = begin + flat_param._sharded_size.numel() - 1
|
|
# param_idx corresponds to the parameter index in the FlatParameter.
|
|
mem_offset, param_idx = 0, 0
|
|
for numel, is_padding in zip(
|
|
flat_param._numels_with_padding, flat_param._is_padding_mask
|
|
):
|
|
frozen_and_no_state = not is_padding and (
|
|
not fsdp_param_info.param_requires_grad[param_idx]
|
|
and not has_state_params[param_idx]
|
|
)
|
|
|
|
if is_padding or frozen_and_no_state:
|
|
# This memory range is a padding or the param is frozen and does
|
|
# not require gradient. For the later case, we treat it as a
|
|
# padding and add empty values to the local_buffers.
|
|
|
|
padding_begin, padding_end = mem_offset, mem_offset + numel - 1
|
|
if padding_begin <= begin <= padding_end:
|
|
# The range is an align padding before the first parameter in
|
|
# the shard. The shard includes parts of this align padding.
|
|
padding_len = (
|
|
padding_end - begin + 1
|
|
if end >= padding_end
|
|
else end - begin + 1
|
|
)
|
|
elif padding_begin <= end <= padding_end:
|
|
# The range is an align padding after the last parameter in
|
|
# the shard. The shard includes parts of this align padding.
|
|
padding_len = (
|
|
end - padding_begin + 1
|
|
if begin <= padding_begin
|
|
else end - begin + 1
|
|
)
|
|
elif begin < padding_begin <= padding_end < end:
|
|
# The range is an align padding that is completely in the
|
|
# shard.
|
|
padding_len = numel
|
|
else:
|
|
padding_len = 0
|
|
if padding_len:
|
|
local_buffers.append(empty_func(padding_len))
|
|
|
|
if not is_padding:
|
|
# This memory range is a parameter in FlatParameter. So there
|
|
# should be an corresponding state in the optimizer unless the
|
|
# parameter is frozen, which we treat it as a padding above.
|
|
|
|
# We need to check if this rank owns the buffer. If this is None:
|
|
# 1.) the rank does not own any part of the original parameter.
|
|
# As a result, there is no corresponding optimizer state on
|
|
# the rank as well.
|
|
# 2.) the parameter is frozen AND no optimizer state for the
|
|
# parameter. If a parameter is frozen, there can still be
|
|
# optimizer state if the parameter is not frozen in the
|
|
# previous steps.
|
|
if buffers[param_idx] is not None:
|
|
local_buffers.append(cast(torch.Tensor, buffers[param_idx]))
|
|
param_idx += 1
|
|
|
|
mem_offset += numel
|
|
|
|
shard_numel_padded = flat_param._sharded_size.numel() - (
|
|
sum(t.numel() for t in local_buffers)
|
|
)
|
|
|
|
assert flat_param._shard_numel_padded == shard_numel_padded, (
|
|
"Manually calculated _sharded_numel_padded is incorrect. "
|
|
f"_shard_numel_padded={flat_param._shard_numel_padded}, "
|
|
f"shard_numel_padded={shard_numel_padded}, "
|
|
f"_sharded_size.numel={flat_param._sharded_size.numel()}, "
|
|
f"_numels_with_padding={flat_param._numels_with_padding}, "
|
|
f"begin={begin}, end={end},"
|
|
)
|
|
if shard_numel_padded > 0:
|
|
# Add right-handed padding.
|
|
local_buffers.append(empty_func(shard_numel_padded))
|
|
local_shard = torch.cat(local_buffers)
|
|
assert local_shard.numel() * fsdp_state.world_size == gathered_tensor.numel(), (
|
|
"The size of local shard times the world size should equal to the "
|
|
"gathered tensor size. The inconsistency may be from a bug of "
|
|
"FlatParameter's metadata or the reconstruction logic in optimizer "
|
|
"state dict."
|
|
)
|
|
torch.cuda.synchronize()
|
|
with SimpleProfiler.profile(SimpleProfiler.Type.ALLGATHER):
|
|
dist.all_gather_into_tensor(
|
|
gathered_tensor, local_shard, group=fsdp_state.process_group
|
|
)
|
|
# Synchronize can be slow but this will be easier for us to debug.
|
|
torch.cuda.synchronize()
|
|
|
|
unpadded_tensor = gathered_tensor[: flat_param._unpadded_unsharded_size.numel()]
|
|
flat_param_handle = fsdp_param_info.handle
|
|
orig_states = flat_param_handle._get_unflat_views_aligned(unpadded_tensor)
|
|
assert len(orig_states) == len(fsdp_param_info.param_indices), (
|
|
"The number of parameters from FlatParameter is not consistent to "
|
|
"the number of states used by optimizer state dict reconstruction "
|
|
"logic."
|
|
)
|
|
for fqn, idx in fsdp_param_info.param_indices.items():
|
|
if fsdp_param_info.param_requires_grad[idx] or fqn in output_states:
|
|
output_states[fqn][state_name] = orig_states[idx]
|
|
|
|
_unflatten_orig_param_states(
|
|
fsdp_param_info,
|
|
output_states,
|
|
state_name,
|
|
shard_state,
|
|
to_save,
|
|
cpu_offload,
|
|
)
|
|
|
|
del gathered_tensor
|
|
return output_states
|
|
|
|
|
|
def _gather_all_orig_param_state(
|
|
fsdp_param_info: FSDPParamInfo,
|
|
input_states: Dict[str, Any],
|
|
shard_state: bool,
|
|
to_save: bool,
|
|
cpu_offload: bool,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Given a optimizer state dict, ``input_states``, which the keys are FQNs to the
|
|
original parameters (not FlatParameters nor parmeter ID), gather all the
|
|
states and unflatten them to the original dimensions. Note that all the
|
|
params referred by the ``input_states`` must be managed by FSDP.
|
|
"""
|
|
fsdp_state = fsdp_param_info.state
|
|
if (
|
|
fsdp_state.world_size == 1
|
|
or fsdp_state.sharding_strategy == ShardingStrategy.NO_SHARD
|
|
):
|
|
return input_states if to_save else {}
|
|
|
|
with SimpleProfiler.profile(SimpleProfiler.Type.RESHARDING):
|
|
with SimpleProfiler.profile(SimpleProfiler.Type.ALLGATHER_OBJ):
|
|
gathered_state_info = _allgather_state_info(fsdp_state, input_states)
|
|
output_states = _allgather_orig_param_states(
|
|
fsdp_param_info,
|
|
gathered_state_info,
|
|
input_states,
|
|
shard_state,
|
|
to_save,
|
|
cpu_offload,
|
|
)
|
|
if to_save:
|
|
for key, idx in fsdp_param_info.param_indices.items():
|
|
if key in output_states:
|
|
continue
|
|
if not fsdp_param_info.param_requires_grad[idx]:
|
|
continue
|
|
|
|
raise RuntimeError(
|
|
f"{key} is not in the output state. "
|
|
"The FSDPParamInfo has the param keys "
|
|
f"{sorted(fsdp_param_info.param_indices.keys())} while "
|
|
"the output_states has the param keys "
|
|
f"{sorted(output_states.keys())}."
|
|
)
|
|
return output_states
|
|
else:
|
|
return {}
|
|
|
|
|
|
def _convert_state_with_orig_params(
|
|
all_optim_state_keys: List[_OptimStateKey],
|
|
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[int, str]],
|
|
fqn_to_fsdp_param_info: Dict[str, FSDPParamInfo],
|
|
optim_state_dict: Dict[Union[str, int], Any],
|
|
to_save: bool,
|
|
shard_state: bool,
|
|
cpu_offload: bool = True,
|
|
) -> Dict[str, Any]:
|
|
fsdp_osd_state: Dict[str, Any] = {}
|
|
# This variable is used to deduplicate the FSDPParamInfo as one FSDPParamInfo
|
|
# usually corresponds to multiple parameters. We could not use FSDPParamInfo
|
|
# as the key because FSDPParamInfo is not hashable. As a result, we fall back
|
|
# to `id(FSDPParamInfo)`, which the type is an integer.
|
|
all_states: Dict[int, Dict[str, Any]] = {}
|
|
# Iterate in rank 0's flat parameter ID order to ensure aligned all-gathers
|
|
# across ranks
|
|
for optim_state_key in all_optim_state_keys:
|
|
param_key: Union[str, int, None] = optim_state_key_to_param_key.get(
|
|
optim_state_key, None
|
|
)
|
|
|
|
if param_key is None and not optim_state_key.is_fsdp_managed:
|
|
continue
|
|
|
|
if optim_state_key.is_fsdp_managed:
|
|
fqn = optim_state_key.unflat_param_names[0]
|
|
fsdp_param_info = fqn_to_fsdp_param_info[fqn]
|
|
state = {} if param_key is None else optim_state_dict[param_key]
|
|
if id(fsdp_param_info) not in all_states:
|
|
all_states[id(fsdp_param_info)] = {}
|
|
all_states[id(fsdp_param_info)][fqn] = state
|
|
|
|
elif to_save:
|
|
assert len(optim_state_key.unflat_param_names) == 1
|
|
unflat_param_name = optim_state_key.unflat_param_names[0]
|
|
with SimpleProfiler.profile("none_fsdp_managed_copy"):
|
|
param_key = cast(Union[str, int], param_key)
|
|
fsdp_osd_state[unflat_param_name] = copy.copy(
|
|
optim_state_dict[param_key]
|
|
)
|
|
if cpu_offload:
|
|
for state_name, value in sorted_items(
|
|
fsdp_osd_state[unflat_param_name]
|
|
):
|
|
if not torch.is_tensor(value):
|
|
continue
|
|
fsdp_osd_state[unflat_param_name][state_name] = value.cpu()
|
|
|
|
# Instead of gathering the state of each parameter individually, we perform
|
|
# the gathering all at once to speed up the process.
|
|
for _all_states in all_states.values():
|
|
fqn = next(iter(_all_states.keys()))
|
|
fsdp_param_info = fqn_to_fsdp_param_info[fqn]
|
|
assert len(fsdp_param_info.param_requires_grad) > 0, (
|
|
"With use_orig_params, FSDPParamInfo should have requires_grad "
|
|
"information. However, the length is zero."
|
|
)
|
|
for key, idx in fsdp_param_info.param_indices.items():
|
|
if key in _all_states:
|
|
continue
|
|
if not fsdp_param_info.param_requires_grad[idx]:
|
|
continue
|
|
raise RuntimeError(
|
|
f"{key} is not in the optimizer state. "
|
|
"The FSDPParamInfo has the param keys "
|
|
f"{sorted(fsdp_param_info.param_indices.keys())} while "
|
|
"the optimizer has the param keys "
|
|
f"{sorted(_all_states.keys())}."
|
|
)
|
|
fsdp_osd_state.update(
|
|
_gather_all_orig_param_state(
|
|
fsdp_param_info,
|
|
_all_states,
|
|
shard_state,
|
|
to_save,
|
|
cpu_offload,
|
|
)
|
|
)
|
|
|
|
return fsdp_osd_state
|
|
|
|
|
|
def _convert_state_with_flat_params(
|
|
all_optim_state_keys: List[_OptimStateKey],
|
|
optim_state_key_to_param_key: Dict[_OptimStateKey, Union[int, str]],
|
|
fqn_to_fsdp_param_info: Dict[str, FSDPParamInfo],
|
|
optim_state_dict: Dict[Union[str, int], Any],
|
|
to_save: bool,
|
|
shard_state: bool,
|
|
cpu_offload: bool = True,
|
|
) -> Dict[str, Any]:
|
|
fsdp_osd_state: Dict[str, Any] = {}
|
|
# Iterate in rank 0's flat parameter ID order to ensure aligned all-gathers
|
|
# across ranks
|
|
for optim_state_key in all_optim_state_keys:
|
|
param_key: Union[str, int, None] = optim_state_key_to_param_key.get(
|
|
optim_state_key, None
|
|
)
|
|
|
|
assert param_key is not None, (
|
|
"If use_orig_params is False, we must be able to find the "
|
|
f"corresponding param id. {optim_state_key} {param_key}"
|
|
)
|
|
|
|
if optim_state_key.is_fsdp_managed:
|
|
# If there are multiple unflat_param_names (not use_orig_params),
|
|
# they share the same FSDPParamInfo. So the first unflat_param_name
|
|
# is sufficient to fetch the FSDPParamInfo.
|
|
fqn = optim_state_key.unflat_param_names[0]
|
|
fsdp_param_info = fqn_to_fsdp_param_info[fqn]
|
|
unflat_state = _unflatten_optim_state(
|
|
fsdp_param_info,
|
|
optim_state_dict[param_key],
|
|
to_save,
|
|
shard_state,
|
|
cpu_offload,
|
|
)
|
|
if to_save:
|
|
assert len(unflat_state) == len(optim_state_key.unflat_param_names)
|
|
for unflat_param_name, unflat_param_state in zip(
|
|
optim_state_key.unflat_param_names,
|
|
unflat_state,
|
|
):
|
|
fsdp_osd_state[unflat_param_name] = unflat_param_state
|
|
elif to_save:
|
|
assert len(optim_state_key.unflat_param_names) == 1
|
|
unflat_param_name = optim_state_key.unflat_param_names[0]
|
|
fsdp_osd_state[unflat_param_name] = copy.copy(optim_state_dict[param_key])
|
|
if cpu_offload:
|
|
for state_name, value in sorted_items(
|
|
fsdp_osd_state[unflat_param_name]
|
|
):
|
|
if not torch.is_tensor(value):
|
|
continue
|
|
fsdp_osd_state[unflat_param_name][state_name] = value.cpu()
|
|
|
|
return fsdp_osd_state
|
|
|
|
|
|
@torch.no_grad()
|
|
def _optim_state_dict(
|
|
model: nn.Module,
|
|
optim: torch.optim.Optimizer,
|
|
optim_state_dict: Dict[str, Any],
|
|
optim_input: Optional[
|
|
Union[
|
|
List[Dict[str, Any]],
|
|
Iterable[nn.Parameter],
|
|
]
|
|
],
|
|
rank0_only: bool,
|
|
shard_state: bool,
|
|
group: Optional[dist.ProcessGroup],
|
|
using_optim_input: bool,
|
|
use_orig_params: bool = False,
|
|
cpu_offload: bool = True,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Consolidates the optimizer state and returns it as a :class:`dict`
|
|
following the convention of :meth:`torch.optim.Optimizer.state_dict`,
|
|
i.e. with keys ``"state"`` and ``"param_groups"``.
|
|
The flat parameters in ``FSDP`` modules contained in ``model`` are mapped
|
|
back to their unflattened parameters.
|
|
|
|
Parameter keys are not well-defined. For a regular optimizer, the optimizer
|
|
state_dict contains a mapping from parameter IDs to parameter states.
|
|
Parameter IDs are the order of parameters in ``optim.param_groups()`` across
|
|
all the groups. This API also allows user to pass ``optim_input`` for the
|
|
mapping between parameters and parameter IDs. Using ``optim_input`` is being
|
|
deprecated.
|
|
|
|
If the optimizer is a ``NamedOptimizer``, the optimizer state_dict does not
|
|
contain parameter IDs mapping but a mapping from parameter FQNs to parameter
|
|
states. This API finds the mapping from FQNs to parameters if the optimizer
|
|
is a ``NamedOptimizer``.
|
|
|
|
If ``use_orig_params`` is True, each rank will have all FSDP-managed
|
|
parameters but some of these parameters may be empty due to the sharding.
|
|
For a regular optim.Optimizer, states for those empty parameters will
|
|
not be initialized. So, when aggregating the FQNs across ranks, no assert
|
|
will be raised on a rank even if it does not have all the states -- it is
|
|
valid and FSDP knows how to aggregate them. However, FSDP has to ignore
|
|
handling those parameters that are not managed by FSDP and do not exist on
|
|
the local rank -- those are managed by other parallelisms and FSDP does not
|
|
know how to handle/aggregate them.
|
|
|
|
Args:
|
|
model (nn.Module): Root module (which may or may not be a
|
|
:class:`FullyShardedDataParallel` instance) whose parameters
|
|
were passed into the optimizer ``optim``.
|
|
optim (torch.optim.Optimizer): Optimizer for ``model`` 's
|
|
parameters.
|
|
rank0_only (bool): If ``True``, saves the populated :class:`dict`
|
|
only on rank 0; if ``False``, saves it on all ranks. (Default:
|
|
``True``)
|
|
shard_state (bool): If ``True``, shard and distribute all
|
|
non-zero-dimension states.
|
|
|
|
Returns:
|
|
Dict[str, Any]: A :class:`dict` containing the optimizer state for
|
|
``model`` 's original unflattened parameters and including keys
|
|
"state" and "param_groups" following the convention of
|
|
:meth:`torch.optim.Optimizer.state_dict`. If ``rank0_only=False``,
|
|
then nonzero ranks return an empty :class:`dict`.
|
|
"""
|
|
SimpleProfiler.reset()
|
|
cm = ExitStack()
|
|
cm.enter_context(SimpleProfiler.profile(SimpleProfiler.Type.ALL))
|
|
_reset_flat_param_grad_info_if_needed(traversal_utils._get_fsdp_handles(model))
|
|
to_save = not rank0_only or dist.get_rank(group) == 0 or shard_state
|
|
|
|
with SimpleProfiler.profile("preprocessing"):
|
|
param_to_fqns = _get_param_to_fqns(model)
|
|
flat_param_to_fqn = _get_flat_param_to_fqn(model)
|
|
is_named_optimizer = _is_named_optimizer(optim_state_dict)
|
|
|
|
param_key_to_param = cast(
|
|
Dict[Union[int, str], nn.Parameter],
|
|
(
|
|
_get_param_id_to_param_from_optim_input(model, optim_input)
|
|
if using_optim_input
|
|
else _get_param_key_to_param(
|
|
optim, model, is_named_optimizer, param_to_fqns, flat_param_to_fqn
|
|
)
|
|
),
|
|
)
|
|
fqn_to_fsdp_param_info = _get_fqn_to_fsdp_param_info(model)
|
|
|
|
with SimpleProfiler.profile("preprocessing_with_comm"):
|
|
(
|
|
all_optim_state_keys,
|
|
optim_state_key_to_param_key,
|
|
) = _map_param_key_to_optim_keys(
|
|
optim_state_dict,
|
|
group,
|
|
param_key_to_param,
|
|
param_to_fqns,
|
|
fqn_to_fsdp_param_info,
|
|
merge_keys=use_orig_params,
|
|
)
|
|
|
|
with SimpleProfiler.profile("state_converting"):
|
|
convert_fn = (
|
|
_convert_state_with_orig_params
|
|
if use_orig_params
|
|
else _convert_state_with_flat_params
|
|
)
|
|
fsdp_osd_state = convert_fn(
|
|
all_optim_state_keys,
|
|
optim_state_key_to_param_key,
|
|
fqn_to_fsdp_param_info,
|
|
optim_state_dict["state"],
|
|
to_save,
|
|
shard_state,
|
|
cpu_offload,
|
|
)
|
|
|
|
# At this point, communication is complete and ranks can return early if nothing
|
|
# will be saved on that rank.
|
|
if not to_save:
|
|
return {}
|
|
|
|
fsdp_osd: Dict[str, Any] = {"state": fsdp_osd_state}
|
|
|
|
flat_param_fqns = set(flat_param_to_fqn.values())
|
|
for key, value in optim_state_dict["state"].items():
|
|
if key in fsdp_osd_state:
|
|
continue
|
|
if key in flat_param_fqns:
|
|
continue
|
|
if key in param_key_to_param:
|
|
continue
|
|
# This key is not recognized by FSDP. It may be a user-defined state
|
|
# or some parameters state that FSDP is unable to map from
|
|
# ``optim.param_groups``.
|
|
warnings.warn(
|
|
f"Found a optim state, {key}, that FSDP cannot process. FSDP "
|
|
"will directly copy everything to the returned state_dict. In "
|
|
"most cases, this is a user-defined state that is not "
|
|
"associated with any particular parameter. Another possible "
|
|
"case is this state is managed by TorchRec. Otherwise, there may "
|
|
" be a mismatched assumption of optim_state_dict of this mode."
|
|
)
|
|
fsdp_osd_state[key] = value
|
|
|
|
if "param_groups" in optim_state_dict:
|
|
fsdp_osd["param_groups"] = _unflatten_param_groups(
|
|
optim_state_dict, param_key_to_param, param_to_fqns
|
|
)
|
|
|
|
cm.close()
|
|
SimpleProfiler.dump_and_reset("FSDP _optim_state_dict() profiling: ")
|
|
|
|
return fsdp_osd
|
|
|
|
|
|
def _get_fqn_to_fsdp_param_info(model: nn.Module) -> Dict[str, FSDPParamInfo]:
|
|
"""
|
|
Construct the mapping from a param's fqn to its corresponding ``FSDPParamInfo``
|
|
if the param is managed by FSDP. Shared parameters, or original parameters that
|
|
are shared across multiple nn.Modules, are required to belong to one and only
|
|
one FSDP instance and thus correspond to one ``FlatParameter``. Within the one
|
|
``FlatParameter``, ``FlatParameter._fqns`` only stores the first FQN of a shared
|
|
parameter. Thus, the keys in the mapping are guaranteed to map to unique parameters.
|
|
"""
|
|
|
|
def module_fn(module, prefix, tree_level, fqn_to_param_info):
|
|
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
|
|
if fsdp_state is None:
|
|
return
|
|
_lazy_init(fsdp_state, module)
|
|
handle = _module_handle(fsdp_state, module)
|
|
if not handle:
|
|
return
|
|
flat_param = handle.flat_param
|
|
fsdp_param_info = FSDPParamInfo(fsdp_state, handle, {}, [])
|
|
# NOTE: `idx` indexes into the data structures *without* padding
|
|
# elements
|
|
for idx, local_fqn in enumerate(flat_param._fqns):
|
|
fqn = clean_tensor_name(prefix + local_fqn)
|
|
if fqn in fqn_to_param_info:
|
|
assert fqn_to_param_info[fqn].handle.flat_param is flat_param, fqn
|
|
fqn_to_param_info[fqn] = fsdp_param_info
|
|
fsdp_param_info.param_indices[fqn] = idx
|
|
if flat_param._params is not None:
|
|
fsdp_param_info.param_requires_grad.append(
|
|
flat_param._params[idx].requires_grad
|
|
)
|
|
|
|
def return_fn(fqn_to_param_info):
|
|
return fqn_to_param_info
|
|
|
|
fqn_to_param_info: Dict[str, FSDPParamInfo] = {}
|
|
# FlatParameter._fqns stores the local fqn, starting from the root of the
|
|
# FSDP. Using _apply_to_modules() with model (may not be the FSDP root
|
|
# module) allows us to construct the global fqn.
|
|
return _apply_to_modules(
|
|
model,
|
|
module_fn,
|
|
return_fn,
|
|
[fqn for fqn, _ in _named_parameters_with_duplicates(model)],
|
|
fqn_to_param_info,
|
|
)
|