pytorch/caffe2/python/pybind_state_gpu.cc
Yangqing Jia ced2c7e2b2 Remove Set/GetDefaultGPUID and move to use current gpu id instead.
Summary:
Reason for this change:

(1) Setting/Getting default gpu id doesn't seem to be used at all.
(2) It actually is confusing compared to the CUDA_VISIBLE_DEVICES options etc.
(3) When setting cuda_gpu_id=-1 in the CUDAContext arg, it used to use the
default gpu id but probably we should use the current gpu - so that the caller
will be able to control the device placement.

One use case is for TensorRT - if we have a custom callback layer, then it would
be easier for TRT or whatever caller to set the running device.

Reviewed By: dzhulgakov

Differential Revision: D6740357

fbshipit-source-id: 2ea710e434b10220d5a198e31c93847304636863
2018-01-19 18:03:21 -08:00

113 lines
3.5 KiB
C++

/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Note(jiayq): the import_array function is done inside
// caffe2_python.cc. Read
// http://docs.scipy.org/doc/numpy-1.10.1/reference/c-api.array.html#miscellaneous
// for more details.
#define NO_IMPORT_ARRAY
#include "pybind_state.h"
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "caffe2/core/common_cudnn.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/operator_fallback_gpu.h"
namespace caffe2 {
namespace python {
REGISTER_CUDA_OPERATOR(Python, GPUFallbackOp<PythonOp<CPUContext, false>>);
REGISTER_CUDA_OPERATOR(
PythonGradient,
GPUFallbackOp<PythonGradientOp<CPUContext, false>>);
REGISTER_CUDA_OPERATOR(PythonDLPack, PythonOp<CUDAContext, true>);
REGISTER_CUDA_OPERATOR(
PythonDLPackGradient,
PythonGradientOp<CUDAContext, true>);
REGISTER_BLOB_FETCHER((TypeMeta::Id<TensorCUDA>()), TensorFetcher<CUDAContext>);
REGISTER_BLOB_FEEDER(CUDA, TensorFeeder<CUDAContext>);
namespace py = pybind11;
void addCUDAGlobalMethods(py::module& m) {
m.def("num_cuda_devices", &NumCudaDevices);
m.def("get_cuda_version", &CudaVersion);
m.def("get_cudnn_version", &cudnnCompiledVersion);
m.def("get_cuda_peer_access_pattern", []() {
std::vector<std::vector<bool>> pattern;
CAFFE_ENFORCE(caffe2::GetCudaPeerAccessPattern(&pattern));
return pattern;
});
m.def("get_device_properties", [](int deviceid) {
auto& prop = GetDeviceProperty(deviceid);
std::map<std::string, py::object> obj;
obj["name"] = py::cast(prop.name);
obj["major"] = py::cast(prop.major);
obj["minor"] = py::cast(prop.minor);
return obj;
});
};
void addCUDAObjectMethods(py::module& m) {
py::class_<DLPackWrapper<CUDAContext>>(m, "DLPackTensorCUDA")
.def_property_readonly(
"data",
[](DLPackWrapper<CUDAContext>* t) -> py::object {
CAFFE_ENFORCE_EQ(
t->device_option.device_type(),
CUDA,
"Expected CUDA device option for CUDA tensor");
return t->data();
},
"Return DLPack tensor with tensor's data.")
.def(
"feed",
[](DLPackWrapper<CUDAContext>* t, py::object obj) {
CAFFE_ENFORCE_EQ(
t->device_option.device_type(),
CUDA,
"Expected CUDA device option for CUDA tensor");
t->feed(obj);
},
"Copy data from given DLPack tensor into this tensor.")
.def_property_readonly(
"_shape",
[](const DLPackWrapper<CUDAContext>& t) { return t.tensor->dims(); })
.def(
"_reshape",
[](DLPackWrapper<CUDAContext>* t, std::vector<TIndex> dims) {
t->tensor->Resize(dims);
});
}
PYBIND11_MODULE(caffe2_pybind11_state_gpu, m) {
m.doc() = "pybind11 stateful interface to Caffe2 workspaces - GPU edition";
addGlobalMethods(m);
addCUDAGlobalMethods(m);
addObjectMethods(m);
addCUDAObjectMethods(m);
}
} // namespace python
} // namespace caffe2