mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-08 07:39:33 +01:00
# Summary: Full Context: https://docs.google.com/document/d/1-j5KSbfGFJQcH4sYh7BIeJXso3zYzl5G5yFQqXdKx_o/edit?usp=sharing tl;dr This change introduces classes which help determine a dynamic memory budget. This will mostly be helpful for models with many implicit graph breaks. --- New Classes: *GraphInfoProvider* * Takes the joint_graph as well as the input memories and runtimes and parses the graph + values into usable forms for the SolverEvaluator. *KnapsackEvaluator* * Provides a function: Given all of the four inputs (solver function as a callable, max_dynamic_memory_budget, min_dynamic_memory_budget, dynamic_memory_budget_pareto_granularity) it returns an approximation of the knee point of the pareto distribution. # Test Plan: ### LintRunner LintRunner Output: P1700445547 ### Unit Tests ``` $ buck test @mode/opt //caffe2/test/functorch:test_ac_knapsack `@mode/opt` was specified, but not found. Using file at `//mode/opt`. This behavior is being deprecated. Please use `"@//mode/opt"` instead File changed: fbcode//caffe2/.ruff_cache/0.7.4/.tmpB6PmDS File changed: fbsource//xplat/caffe2/test/functorch/test_ac_knapsack.py File changed: fbcode//caffe2/.ruff_cache/0.7.4/.tmpyjCiPn 20 additional file change events Buck UI: https://www.internalfb.com/buck2/414ead46-9ede-4192-8e1a-5d3c52bdb9cc Test UI: https://www.internalfb.com/intern/testinfra/testrun/6473924710342830 Network: Up: 0B Down: 0B (reSessionID-159794b9-9d61-477e-8e63-9bdeaa537dca) Analyzing targets. Remaining 0/214 Executing actions. Remaining 0/6933 0.1s exec time total Command: test. Finished 1 local Time elapsed: 18.5s Tests finished: Pass 15. Fail 0. Fatal 0. Skip 0. Build failure 0 ``` ### Test Run Updated the config: ``` activation_memory_budget_solver: DYNAMIC_MEMORY_BUDGET_DP ``` Confirming proper execution via: [aps-fb_fm_v4_768_01_dynamic-2a792ba8af](https://www.internalfb.com/mlhub/pipelines/runs/mast/aps-fb_fm_v4_768_01_dynamic-2a792ba8af?job_attempt=0&version=0&env=PRODUCTION) Pull Request resolved: https://github.com/pytorch/pytorch/pull/143539 Approved by: https://github.com/jansel
316 lines
13 KiB
Python
316 lines
13 KiB
Python
# Owner(s): ["module: functorch"]
|
|
from torch._functorch._activation_checkpointing.graph_info_provider import (
|
|
GraphInfoProvider,
|
|
)
|
|
from torch._functorch._activation_checkpointing.knapsack_evaluator import (
|
|
KnapsackEvaluator,
|
|
)
|
|
from torch.fx.graph import Graph
|
|
from torch.testing._internal.common_utils import run_tests, TestCase
|
|
|
|
|
|
class TestGraphInfoProvider(TestCase):
|
|
"""
|
|
Test class for GraphInfoProvider.
|
|
The test class sets up a small graph example and tests the methods validating the graph building logic.
|
|
"""
|
|
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
self.graph_nodes_in_order = [
|
|
"node1",
|
|
"node2",
|
|
"node3",
|
|
"node4",
|
|
"node5",
|
|
"output",
|
|
]
|
|
self.graph_edges = [
|
|
("node1", "node2"),
|
|
("node2", "node3"),
|
|
("node3", "node4"),
|
|
("node4", "node5"),
|
|
("node5", "output"),
|
|
("node1", "output"),
|
|
]
|
|
self.all_recomputable_banned_nodes = ["node1", "node2", "node5"]
|
|
self.recorded_knapsack_input_memories = [1.0, 1.0, 1.0]
|
|
self.recorded_knapsack_input_runtimes = [1.0, 1.0, 1.0]
|
|
self.graph_info_provider = GraphInfoProvider(
|
|
graph_nodes_in_order=self.graph_nodes_in_order,
|
|
graph_edges=self.graph_edges,
|
|
all_recomputable_banned_nodes=self.all_recomputable_banned_nodes,
|
|
recorded_knapsack_input_memories=self.recorded_knapsack_input_memories,
|
|
recorded_knapsack_input_runtimes=self.recorded_knapsack_input_runtimes,
|
|
)
|
|
|
|
def test_inialize_from_graph(self):
|
|
joint_graph = Graph()
|
|
node1 = joint_graph.placeholder("node1")
|
|
node2 = joint_graph.call_function(lambda x: x, (node1,))
|
|
node2.name = "node2"
|
|
node3 = joint_graph.call_function(lambda x: x, (node2,))
|
|
node3.name = "node3"
|
|
node4 = joint_graph.call_function(lambda x: x, (node3,))
|
|
node4.name = "node4"
|
|
node5 = joint_graph.call_function(lambda x: x, (node4,))
|
|
node5.name = "node5"
|
|
output = joint_graph.call_function(lambda x, y: (x, y), (node5, node1))
|
|
output.name = "output"
|
|
all_recomputable_banned_nodes = [node1, node2, node5]
|
|
recorded_knapsack_input_memories = [1.0, 1.0, 1.0]
|
|
recorded_knapsack_input_runtimes = [1.0, 1.0, 1.0]
|
|
graph_info_provider = GraphInfoProvider.inialize_from_graph(
|
|
joint_graph=joint_graph,
|
|
all_recomputable_banned_nodes=all_recomputable_banned_nodes,
|
|
recorded_knapsack_input_memories=recorded_knapsack_input_memories,
|
|
recorded_knapsack_input_runtimes=recorded_knapsack_input_runtimes,
|
|
)
|
|
self.assertEqual(
|
|
graph_info_provider.graph_nodes_in_order,
|
|
["node1", "node2", "node3", "node4", "node5", "output"],
|
|
)
|
|
self.assertEqual(
|
|
sorted(graph_info_provider.graph_edges),
|
|
sorted(
|
|
[
|
|
("node1", "node2"),
|
|
("node2", "node3"),
|
|
("node3", "node4"),
|
|
("node4", "node5"),
|
|
("node5", "output"),
|
|
("node1", "output"),
|
|
]
|
|
),
|
|
)
|
|
self.assertEqual(
|
|
graph_info_provider.all_recomputable_banned_nodes,
|
|
["node1", "node2", "node5"],
|
|
)
|
|
|
|
def test_get_non_ac_peak_memory(self):
|
|
self.assertEqual(
|
|
self.graph_info_provider.get_non_ac_peak_memory(),
|
|
sum(self.recorded_knapsack_input_memories),
|
|
)
|
|
|
|
def test_get_theoretical_max_runtime(self):
|
|
self.assertEqual(
|
|
self.graph_info_provider.get_theoretical_max_runtime(),
|
|
sum(self.recorded_knapsack_input_runtimes),
|
|
)
|
|
|
|
def test_get_knapsack_memory_input(self):
|
|
self.assertEqual(
|
|
self.graph_info_provider.get_knapsack_memory_input(),
|
|
self.recorded_knapsack_input_memories,
|
|
)
|
|
|
|
def test_get_knapsack_runtime_input(self):
|
|
self.assertEqual(
|
|
self.graph_info_provider.get_knapsack_runtime_input(),
|
|
self.recorded_knapsack_input_runtimes,
|
|
)
|
|
|
|
def test_recomputable_node_only_graph(self):
|
|
recomputable_node_only_graph = (
|
|
self.graph_info_provider.recomputable_node_only_graph
|
|
)
|
|
expected_nodes = self.all_recomputable_banned_nodes
|
|
expected_edges = [("node1", "node2")]
|
|
self.assertEqual(list(recomputable_node_only_graph.nodes), expected_nodes)
|
|
self.assertEqual(
|
|
sorted(recomputable_node_only_graph.edges), sorted(expected_edges)
|
|
)
|
|
|
|
def test_recomputable_node_only_graph_with_larger_graph_context(self):
|
|
recomputable_node_only_graph_with_larger_graph_context = (
|
|
self.graph_info_provider.recomputable_node_only_graph_with_larger_graph_context
|
|
)
|
|
expected_nodes = self.all_recomputable_banned_nodes
|
|
# node1 does not have an indirect path to node5 because of node2
|
|
# node2 has an indirect path to node5
|
|
expected_edges = [("node1", "node2"), ("node2", "node5")]
|
|
self.assertEqual(
|
|
sorted(recomputable_node_only_graph_with_larger_graph_context.nodes),
|
|
sorted(expected_nodes),
|
|
)
|
|
self.assertEqual(
|
|
sorted(recomputable_node_only_graph_with_larger_graph_context.edges),
|
|
sorted(expected_edges),
|
|
)
|
|
|
|
def test_full_joint_nx_graph(self):
|
|
graph_info_provider = GraphInfoProvider(
|
|
graph_nodes_in_order=self.graph_nodes_in_order,
|
|
graph_edges=self.graph_edges,
|
|
all_recomputable_banned_nodes=self.all_recomputable_banned_nodes,
|
|
recorded_knapsack_input_memories=self.recorded_knapsack_input_memories,
|
|
recorded_knapsack_input_runtimes=self.recorded_knapsack_input_runtimes,
|
|
)
|
|
full_joint_nx_graph = graph_info_provider.full_joint_nx_graph
|
|
expected_nodes = [
|
|
node for node in self.graph_nodes_in_order if node != "output"
|
|
]
|
|
expected_edges = [
|
|
(u, v) for u, v in self.graph_edges if u != "output" and v != "output"
|
|
]
|
|
self.assertEqual(list(full_joint_nx_graph.nodes), expected_nodes)
|
|
self.assertEqual(sorted(full_joint_nx_graph.edges), sorted(expected_edges))
|
|
|
|
def test_simplified_fx_joint_graph(self):
|
|
graph_info_provider = GraphInfoProvider(
|
|
graph_nodes_in_order=self.graph_nodes_in_order,
|
|
graph_edges=self.graph_edges,
|
|
all_recomputable_banned_nodes=self.all_recomputable_banned_nodes,
|
|
recorded_knapsack_input_memories=self.recorded_knapsack_input_memories,
|
|
recorded_knapsack_input_runtimes=self.recorded_knapsack_input_runtimes,
|
|
)
|
|
simplified_fx_joint_graph = graph_info_provider.simplified_fx_joint_graph
|
|
expected_nodes = self.graph_nodes_in_order
|
|
expected_edges = self.graph_edges
|
|
self.assertEqual(
|
|
[node.name for node in simplified_fx_joint_graph.nodes], expected_nodes
|
|
)
|
|
self.assertEqual(
|
|
sorted(
|
|
[
|
|
(node.name, user.name)
|
|
for node in simplified_fx_joint_graph.nodes
|
|
for user in node.users
|
|
]
|
|
),
|
|
sorted(expected_edges),
|
|
)
|
|
|
|
|
|
class TestKnapsackEvaluator(TestCase):
|
|
"""
|
|
Test class for KnapsackEvaluator.
|
|
The test class sets up a small graph example and tests the methods validating the knapsack evaluation logic.
|
|
"""
|
|
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
self.graph_nodes_in_order = [
|
|
"node1",
|
|
"node2",
|
|
"node3",
|
|
"node4",
|
|
"node5",
|
|
"output",
|
|
]
|
|
self.graph_edges = [
|
|
("node1", "node2"),
|
|
("node2", "node3"),
|
|
("node3", "node4"),
|
|
("node4", "node5"),
|
|
("node5", "output"),
|
|
("node1", "output"),
|
|
]
|
|
self.all_recomputable_banned_nodes = ["node1", "node2", "node5"]
|
|
self.recorded_knapsack_input_memories = [0.1, 0.2, 0.2]
|
|
self.recorded_knapsack_input_runtimes = [100.0, 50.0, 51.0]
|
|
self.graph_info_provider = GraphInfoProvider(
|
|
graph_nodes_in_order=self.graph_nodes_in_order,
|
|
graph_edges=self.graph_edges,
|
|
all_recomputable_banned_nodes=self.all_recomputable_banned_nodes,
|
|
recorded_knapsack_input_memories=self.recorded_knapsack_input_memories,
|
|
recorded_knapsack_input_runtimes=self.recorded_knapsack_input_runtimes,
|
|
)
|
|
self.knapsack_evaluator = KnapsackEvaluator(
|
|
graph_info_provider=self.graph_info_provider
|
|
)
|
|
self.knapsack_algo = lambda memory_values, runtime_values, memory_budget: {
|
|
0.1: (101.0, [0], [1, 2]),
|
|
0.2: (101.0, [0], [1, 2]),
|
|
0.3: (50.0, [0, 2], [1]),
|
|
0.4: (50.0, [0, 2], [1]),
|
|
0.5: (0.0, [0, 1, 2], []),
|
|
}.get(memory_budget, (0.0, [0, 1, 2], []))
|
|
|
|
def test_evaluate_knapsack_output_not_accounting_for_backward_pass(self):
|
|
saved_nodes_idxs = [0]
|
|
recomputable_node_idxs = [1, 2]
|
|
result = self.knapsack_evaluator.evaluate_knapsack_output(
|
|
saved_nodes_idxs=saved_nodes_idxs,
|
|
recomputable_node_idxs=recomputable_node_idxs,
|
|
)
|
|
self.assertEqual(result["peak_memory"], 0.1)
|
|
self.assertEqual(result["recomputation_runtime"], 101.0)
|
|
|
|
def test_evaluate_knapsack_output_accounting_for_backward_pass(self):
|
|
saved_nodes_idxs = [0]
|
|
recomputable_node_idxs = [1, 2]
|
|
result = self.knapsack_evaluator.evaluate_knapsack_output(
|
|
saved_nodes_idxs=saved_nodes_idxs,
|
|
recomputable_node_idxs=recomputable_node_idxs,
|
|
account_for_backward_pass=True,
|
|
)
|
|
self.assertEqual(result["peak_memory"], 0.5)
|
|
self.assertEqual(result["recomputation_runtime"], 101.0)
|
|
|
|
def test_evaluate_knapsack_output_with_wrong_sized_values(self):
|
|
saved_nodes_idxs = [0]
|
|
recomputable_node_idxs = [1]
|
|
with self.assertRaises(AssertionError):
|
|
self.knapsack_evaluator.evaluate_knapsack_output(
|
|
saved_nodes_idxs=saved_nodes_idxs,
|
|
recomputable_node_idxs=recomputable_node_idxs,
|
|
)
|
|
|
|
def test_evaluate_distribution_of_results_for_knapsack_algo(self):
|
|
memory_budget_values = [0.1, 0.2, 0.3]
|
|
results = (
|
|
self.knapsack_evaluator.evaluate_distribution_of_results_for_knapsack_algo(
|
|
knapsack_algo=self.knapsack_algo,
|
|
memory_budget_values=memory_budget_values,
|
|
)
|
|
)
|
|
self.assertEqual(len(results), len(memory_budget_values))
|
|
self.assertEqual(results[0]["memory_budget"], 0.1)
|
|
self.assertEqual(results[0]["peak_memory"], 0.1)
|
|
self.assertEqual(results[0]["recomputation_runtime"], 101)
|
|
self.assertEqual(results[1]["non_ac_peak_memory"], 0.5)
|
|
self.assertEqual(results[1]["theoretical_max_runtime"], 201)
|
|
self.assertEqual(results[2]["percentage_of_theoretical_peak_memory"], 0.3 / 0.5)
|
|
self.assertEqual(
|
|
results[2]["percentage_of_theoretical_peak_runtime"], 50.0 / 201
|
|
)
|
|
|
|
def test_get_knee_point_memory_budget(self):
|
|
max_mem_budget = 1.0
|
|
min_mem_budget = 0.1
|
|
iterations = 10
|
|
knee_point_memory_budget = self.knapsack_evaluator.get_knee_point_memory_budget(
|
|
knapsack_algo=self.knapsack_algo,
|
|
max_mem_budget=max_mem_budget,
|
|
min_mem_budget=min_mem_budget,
|
|
iterations=iterations,
|
|
)
|
|
self.assertEqual(knee_point_memory_budget, 0.4)
|
|
|
|
def test_get_backward_memory_from_topologically_sorted_graph(self):
|
|
result = self.knapsack_evaluator._get_backward_memory_from_topologically_sorted_graph(
|
|
node_graph=self.graph_info_provider.recomputable_node_only_graph_with_larger_graph_context,
|
|
node_memories=self.graph_info_provider.all_node_memories,
|
|
saved_nodes_set={"node1"},
|
|
peak_memory_after_forward_pass=0.1,
|
|
)
|
|
expected_result = [
|
|
(0.1, "Initial Peak/Current Memory"),
|
|
(0.3, "Recomputing Node: node5"),
|
|
(0.5, "Recomputing Predecessor of node5: node2"),
|
|
(0.3, "Dropping Node: node5"),
|
|
(0.1, "Dropping Node(already saved): node2"),
|
|
(0.0, "Dropping Node(already saved): node1"),
|
|
]
|
|
print(result, expected_result)
|
|
for result_item, expected_result_item in zip(result, expected_result):
|
|
self.assertAlmostEqual(result_item[0], expected_result_item[0])
|
|
self.assertEqual(result_item[1], expected_result_item[1])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|